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ON BLOW-UP OF SOLUTION FOR EULER EQUATIONS
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Abstract. We present numerical evidence for the blow-up of solution for the Euler equations. Our
approximate solutions are Taylor polynomials in the time variable of an exact solution, and we believe
that in terms of the exact solution, the blow-up will be rigorously proved.

Résumé. Nous présentons une solution numérique des équations d’Euler montrant la solution non-
bornée : l’approximation de la solution est donnée par une série de Taylor dans la variable de temps
de la solution exacte, et il est probable que cet exemple fournira le résultat.
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1. Introduction

The question about the blow-up of regular solution for the Euler equations or the Navier-Stokes equations
emerged with the first fundamental papers on the topic. Here we restrict ourselves to quoting the famous paper
of Leray [7] from 1934, in which he proposed to show the blow-up of solution for the Cauchy problem of the
Navier-Stokes equations using backward self-similar solutions. Only recently, in papers [11, 12] and [9], it was
proven that such a weak solution to the problem must be identically zero. The authors of this paper together
with several collaborators tried, without success, to construct a non-zero backward self-similar solution for the
boundary value problem on a half-space.

There is a series of papers showing the blow-up by numerical simulations; see, for example [3,6,13,14] and [4].
An eventual blow-up of solution for the Navier-Stokes equations is also a key for the proof of non-uniqueness.

All these results will create the need for a more adequate theory of incompressible fluids, where essential role
will be played by the theory of multipolar fluids (see [10]) as well as by the theory of fluids of higher grade
(see [1]).

This paper, in the authors’ belief, may be the basis for the proof of the blow-up of solution for the Euler
equations in the space-periodic case. For a special non-zero spatial vorticity we conjecture some estimates
implying blow-up. These estimates follow from a large computation of the solution as a Taylor series in time,
with the series computed up to the term of degree 35, with about 11 million of the coefficients of the series being
calculated. As the theoretic preparation for this numerical computation, some theorems about the analyticity
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in time of the solution with values in L2 will be mentioned in the next section. These results are very close to
those of Delort [2]. We also prove there that any L2-solution that is analytic in time and any W3,2-solution of
the same initial-value problem coincide on their common time interval.

It is known [8] (pp. 151–152) that for each p ∈ (1,+∞), there are no uniform W1,p-estimates, even for a very
short time. However, in this paper we deal with solutions that are analytic in the spatial variables.

2. Analyticity of solutions in time

We look for the space-periodic solutions uuu = (u1, u2, u3) with period 2π in the x1-, x2- and x3-directions to
the Euler equations

∂uj
∂t

+
3∑

m=1

um
∂uj
∂xm

+
∂p

∂xj
= 0 in (0, T )× (−π, π)3 for each j,

3∑
m=1

∂um
∂xm

= 0 in (0, T )× (−π, π)3, (2.1)

where T > 0 is a constant.
The second equation of (2.1) implies that for each j ∈ {1, 2, 3},

3∑
m=1

um
∂uj
∂xm

=
3∑

m=1

∂

∂xm
(umuj). (2.2)

So, from the first equation of (2.1) and the space-periodicity of uuu we deduce that the condition∫
(−π,π)3

uuu dxxx = 0 (2.3)

is satisfied for all time if it is so at t = 0. Therefore, we will always assume (2.3).
Let uuu(0) be a real-valued, space-periodic, divergence-free and real analytic function. Note that uuu(0) is real

analytic if and only if there is a constant C such that∥∥Dllluuu(0)
∥∥

L2 ≤ C|lll| lll!
∥∥uuu(0)

∥∥
L2 (2.4)

with lll! = l1! l2! l3! for all lll = (l1, l2, l3) ∈ N3
0, where N0 = {0, 1, 2, 3, · · · }. We shall look for a function uuu with

values in L2
(
(−π, π)3

)
, real analytic in t on (−T, T ), and satisfying

uuu(0,xxx) = uuu(0)(xxx) in (−π, π)3 (2.5)

as well as (2.1) with p real analytic in t on (−T, T ). It follows from (2.1) that

−
3∑

j,m=1

∂

∂xj

∂

∂xm

(
umuj

)
= 4p. (2.6)

Let

uuu(t,xxx) =
∑
lll∈Z3

uuulll(t)eilll·xxx =
∑
lll∈Z3

(
u1,lll(t), u2,lll(t), u3,lll(t)

)
eilll·xxx, (2.7)
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then it follows (see [5]) that as an L2-valued function, uuu is real analytic in t on (−T, T ) if and only if each uuulll is
so and the series (2.7) converges in L2

(
(−π, π)3

)
. We also put

p(t,xxx) =
∑
lll∈Z3

plll(t)eilll·xxx, (2.8)

where the sum is taken in the sense of distributions, then we have a similar claim relating p and plll. Since

∂

∂xm

(
umuj

)
= i

∑
lll∈Z3

∑
sss∈Z3

um,sssuj,lll−ssslmeilll·xxx (2.9)

in the sense of distributions, (2.6) yields that

i
3∑
j=1

Cj,llllj = (l21 + l22 + l23)plll for each lll ∈ Z3, (2.10)

where

Cj,lll(t) = i
3∑

m=1

∑
sss∈Z3

um,sss(t)uj,lll−sss(t)lm. (2.11)

Thus, the first equation of (2.1) together with (2.10) imply that for each j ∈ {1, 2, 3} and lll ∈ Z3 satisfying lll 6= 000,

u′j,lll(t) + Cj,lll(t)−
lj

l21 + l22 + l23

3∑
m=1

Cm,lll(t)lm = 0. (2.12)

For each j ∈ {1, 2, 3}, we set

uj(t,xxx) =
+∞∑
k=0

∑
lll∈Z3

uj,k,lllt
keilll·xxx, (2.13)

then (2.12) can be rewritten as

(k + 1)uj,k+1,lll + Cj,k,lll −
lj

l21 + l22 + l23

3∑
m=1

Cm,k,llllm = 0 (2.14)

for all j ∈ {1, 2, 3}, k ∈ N0 and lll ∈ Z3 satisfying lll 6= 000, where

Cj,k,lll = i
k∑
r=0

∑
sss∈Z3

uj,k−r,lll−sss

3∑
m=1

lmum,r,sss. (2.15)

Note also that now the reality of uuu is equivalent to

uj,k,lll = uj,k,−lll (2.16)

for each j ∈ {1, 2, 3}, k ∈ N0 and lll ∈ Z3, and that uuu is divergence-free if and only if

3∑
m=1

um,k,llllm = 0 (2.17)

for each k ∈ N0 and lll ∈ Z3.
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By [2], there is a unique solution to the problem consisting of (2.1) and (2.5) with values in the real analytic
functions and real analytic in time. Let T ′ > 0 be the constant such that (−T ′, T ′) is the maximal open interval
of time on which this real analytic solution is defined. The existence of the real analytic solution implies that
there is a unique solution to the problem with values in L2

(
(−π, π)3

)
and real analytic in time. We shall denote

by T0 this L2-solution’s radius of convergence at t = 0.

Proposition 2.18. Let uuu = uuu(t,xxx) be the L2-solution to the problem consisting of (2.1) and (2.5) that is real
analytic in time. Then,

∫
(−π,π)3

|uuu(t,xxx)|2 dxxx =
∫

(−π,π)3
|uuu(0,xxx)|2 dxxx for t ∈ (−T0, T0). (2.19)

Proof. For t ∈ (−T ′, T ′), the equality follows from classical estimates of the kinetic energy. Since the left hand

side of (2.19) is a real analytic function in t, (2.19) holds. �
For each n ∈ N, let uuu(n) =

(
u

(n)
1 , u

(n)
2 , u

(n)
3

)
be the Taylor expansion of uuu in t up to the power tn. Then, uuu(n)

is divergence-free and space-periodic. This notation will be used in the proof of the following uniqueness result.

Lemma 2.20. Let uuu = uuu(t,xxx) be the L2-solution to the problem consisting of (2.1) and (2.5) that is real analytic
in time, and www = www(t,xxx) any solution to the problem in C

(
[0, T ),W 3,2

)
∩ C1

(
[0, T ),W2,2

)
. Then, uuu = www for

t ∈ [0, T0) ∩ [0, T ).

Proof. Since each uuu(n) is divergence-free, we have that for t ∈ [0, T0),

lim
n→+∞

3∑
j=1

∫
(−π,π)3

(
∂u

(n)
j

∂t
+

3∑
m=1

u(n)
m

∂u
(n)
j

∂xm

)
u

(n)
j dxxx = lim

n→+∞

1
2

∫
(−π,π)3

d
dt

∣∣∣uuu(n)
∣∣∣2 dxxx

=
1
2

d
dt

∫
(−π,π)3

|uuu|2 dxxx = 0. (2.21)

Let T∗ = min{T0, T}. For any ε > 0, there is a constant C(ε) such that∥∥∥∥ ∂wj∂xm

∥∥∥∥
L∞
≤ C(ε) for t ∈ [0, T∗ − ε]. (2.22)

Thus, from

3∑
j=1

∫
(−π,π)3

[
∂wj
∂t
−
∂u

(n)
j

∂t
+

3∑
m=1

(
wm

∂wj
∂xm

− u(n)
m

∂u
(n)
j

∂xm

)](
wj − u(n)

j

)
dxxx

=
3∑
j=1

∫
(−π,π)3

[
∂wj
∂t
−
∂u

(n)
j

∂t
+

3∑
m=1

(
wm

∂wj
∂xm

− u(n)
m

∂wj
∂xm

+u(n)
m

∂wj
∂xm

− u(n)
m

∂u
(n)
j

∂xm

)](
wj − u(n)

j

)
dxxx (2.23)

=
1
2

∫
(−π,π)3

d
dt

∣∣∣www −uuu(n)
∣∣∣2 dxxx

+
3∑

j,m=1

∫
(−π,π)3

(
wm − u(n)

m

)(
wj − u(n)

j

) ∂wj
∂xm

dxxx
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and (2.21) we obtain that when t ∈ [0, T∗ − ε],

d
dt

∫
(−π,π)3

∣∣∣www −uuu(n)
∣∣∣2 dxxx ≤ D(ε)

∫
(−π,π)3

∣∣∣www −uuu(n)
∣∣∣2 dxxx+E(ε, n) (2.24)

for some constants D(ε) and E(ε, n) satisfying limn→+∞E(ε, n) = 0 and, hence,

d
dt

∫
(−π,π)3

|www −uuu|2 dxxx ≤ D(ε)
∫

(−π,π)3
|www −uuu|2 dxxx. (2.25)

So, uuu = www for t ∈ [0, T∗ − ε], since uuu(0, ·) = www(0, ·) by our assumption. �
Remark 2.26. Note that the proof above only uses the divergence-freeness and space-periodicity conditions.
So, it works for many other equations. In particular, it implies a similar result for the Navier-Stokes equations.

Proposition 2.27. Let uuu = uuu(t,xxx) be the L2-solution to the problem consisting of (2.1) and (2.5) that is real
analytic in time, assume that ∑

lll∈Z3

∥∥uuulll(T∗, ·)∥∥2

L2(l21 + l22 + l23)2 = +∞, (2.28)

for some T∗ ∈ (0, T0), and denote by Tc the largest value of T > 0 such that there is a solution to the prob-
lem in C

(
[0, T ), rmW 3,2

)
∩ C1

(
[0, T ), rmW 2,2

)
. Then, Tc ≤ T∗ and, hence, the solution to the problem in

C
(
[0, Tc), rmW 3,2

)
∩ C1

(
[0, Tc), rmW 2,2

)
blows up at Tc, i.e.,

lim
t→T−c

∥∥uuu(t, ·)
∥∥
rmW3,2 = +∞. (2.29)

Proof. We can assume that T∗ is the smallest number satisfying (2.28). To reach a contradiction, suppose
that T∗ < Tc. Then, T∗ < T =: min{T0, Tc}. By Lemma 2.20, uuu is equal to the solution to the problem in
C
(
[0, T ), rmW 3,2

)
∩ C1

(
[0, T ), rmW 2,2

)
for t ∈ [0, T ). This is impossible, since (2.28) implies

lim
t→T−∗

∥∥uuu(t, ·)
∥∥
rmW3,2 = +∞. (2.30)

Therefore, we must have Tc ≤ T∗. �

3. Numerical approximations to a solution and blow-up of solution

In this section, we discuss how the Taylor polynomial (in time) approximations to a specially chosen solution
can be computed and then present some numerical results so obtained, plus our comments on blow-up.

Take the initial condition

uuu(0,xxx) = (1,−1, 0)
(

ei(x1+x2) + e−i(x1+x2)
)

+ (1, 0,−1)
(

ei(x1+x3) + e−i(x1+x3)
)

+(0, 1,−1)
(

ei(x2+x3) + e−i(x2+x3)
)
. (3.1)
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Then, using (2.14) and (2.15) one can prove by induction that for every j ∈ {1, 2, 3} and k ∈ N0,

Cj,k,lll = uj,k+1,lll = 0 if lm < −k − 2 or lm > k + 2 for some m (3.2)

and when lll satisfies −k − 2 ≤ lm ≤ k + 2 for each m, we have

Cj,k,lll = i
k∑
r=0

b1∑
s1=a1

b2∑
s2=a2

b3∑
s3=a3

uj,k−r,lll−sss

3∑
m=1

lmum,r,sss (3.3)

with

an = max{−r, ln − k + r} − 1 and bn = min{r, ln + k − r}+ 1 (3.4)

for each n ∈ {1, 2, 3}. Thus, for each N ∈ N0, the N -th Taylor polynomial approximation

uuu(N) =
N∑
k=0

∑
lll∈Z3

(
u1,k,lll, u2,k,lll, u3,k,lll

)
eilll·xxxtk (3.5)

of the solution uuu is actually a Fourier polynomial in the space variables. Moreover (3.2) together with the
symmetries of the Euler equations (2.1) and the initial condition (3.1) imply that for each N ∈ N0, the N -th
Taylor polynomial approximation uuu(N) satisfies

(2π)3
∥∥uuu(N)

∥∥2

L2 = 3
2N∑
k=0

b∑
m=a

∑
|l1|,|l2|,|l3|≤L

u1,k−m,lllu1,m,lll t
k,

(2π)3
∥∥uuu(N)

∥∥2

H3 = 3
2N∑
k=0

b∑
m=a

∑
|l1|,|l2|,|l3|≤L

(l21 + l22 + l23)3u1,k−m,lllu1,m,lll t
k, (3.6)

where

a = max{0, k −N}, b = min{N, k}, L = min{k −m,m}+ 1. (3.7)

It is straightforward to compute uuu(N) (with exact values of the coefficients) using Mathematica or similar software
for small N . We were able to compute uuu(N) using Mathematica for N = 1, 2, 3, ..., 10.

Using any code directly implementing (3.3, 2.14), and (3.6), one can also approximate uuu(N) for relatively
large, but not too large, N . Note also that the reality condition (2.16) can be used to save almost half of the
computations. We approximated uuu(N) for N = 11, 12, 13, ..., 35 with a C++ program. Here we summarize our
numerical results so obtained:

i) Among the 3(53 + 73 + · · ·+ 733) = 11, 240, 775 coefficients that have to be approximated, about 976, 455
are non-zero, and the largest absolute value of them is about 6.21× 1012.
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ii) At t = 0.32, the values of L(N) = (2π)3

12

∥∥uuu(N)
∥∥2

L2 are illustrated by the following graph, with
L(35) ≈ 1.00000:

L(N)

N

while the values of H(N) = (2π)3

96

∥∥uuu(N)
∥∥2

H3 are shown in the following graph, with H(35) ≈ 13.85000:

H(N)

N

We believe that this strongly indicates that both norms stay finite as N → +∞.
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iii) At t = 0.35, the values of L(N) = (2π)3

12

∥∥uuu(N)
∥∥2

L2 are illustrated by the following graph, with
L(35) ≈ 1.00001:

L(N)

N

while the values of H(N) = (2π)3

96

∥∥uuu(N)
∥∥2

H3 are shown in the following graph, with H(35) ≈ 35.7467:

H(N)

N

We believe that this gives strong indications that, as N → +∞, the L2-norm approaches 1 and the
H3-norm approaches +∞, i.e., blows up.
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iv) At t = 0.36, the values of L(N) = (2π)3

12

∥∥uuu(N)
∥∥2

L2 are illustrated by the following graph, with
L(35) ≈ 1.00007:

L(N)

N

while the values of H(N) = (2π)3

96

∥∥uuu(N)
∥∥2

H3 are shown in the following graph, with H(35) ≈ 146.777:

H(N)

N

We believe that this gives even stronger evidence that there is a T∗ at which, as N → +∞, the L2-norm
approaches 1 and the H3-norm blows up. We also believe that here we begin to see some rounding error
in computations.

v) Our numerical results also indicate that even though the H3-norm blows up at some point between 0.32
and 0.35, the convergence radius of the L2-solution is between 0.38 and 0.42.
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