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THE MORTAR FINITE ELEMENT METHOD FOR BINGHAM FLUIDS

Patrick Hild
1

Abstract. This paper deals with the flow problem of a viscous plastic fluid in a cylindrical pipe. In
order to approximate this problem governed by a variational inequality, we apply the nonconforming
mortar finite element method. By using appropriate techniques, we are able to prove the convergence
of the method and to obtain the same convergence rate as in the conforming case.

Résumé. On considère le problème de l’écoulement d’un fluide visqueux plastique dans une conduite
cylindrique. Afin d’approcher ce problème régi par une inéquation variationnelle, nous appliquons
la méthode non conforme des éléments finis avec joints. En utilisant des techniques appropriées, on
devient en mesure de prouver la convergence de la méthode avec un taux de convergence identique au
cas conforme.
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1. Introduction

The nonconforming mortar domain decomposition method allows the coupling of different approximation
methods (e.g. finite elements, spectral elements, wavelets) and also the efficient handling of independent dis-
cretizations of the subdomains. The setting of the method as well as the first analyses have been performed
in [6, 8]. Then the mortar procedure has been studied and extended to numerous areas and especially in fluid
and solid mechanics.

In the fluid mechanics context on which we will focus, the mortar finite element approach has been considered
from a theoretical or numerical point of view in [1, 3, 12], for the Stokes and the Navier-Stokes equations.

From a mathematical point of view, the mortar method was originally studied for problems governed by
variational equalities and the first extension of the method to variational inequalities was achieved in [5,16] for
the two-dimensional unilateral contact problem in elasticity when using finite elements.

Our purpose in this paper is to consider a variational inequality arising in fluid mechanics and modeling
the flow of a viscous plastic fluid (also called Bingham fluid) in a cylindrical pipe. As for unilateral contact,
our aim is to prove that the mortar finite element method leads to a convergence rate which is similar to the
rate obtained when using conforming finite elements (see [15]). Let us mention that significant differences will
occur in the convergence analysis in comparison with unilateral contact. In the latter case, the inequality of the
problem is “concentrated” on the boundary whereas in the context of the Bingham fluid the inequality problem
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estimates.
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holds on the entire domain. This fact leads to the use of new techniques in the error estimates, particularly in
the consistency error estimate due to the nonconformity of the method.

The outline of the paper is as follows. The variational formulation of the viscous-plastic medium is given in
the next section and in Section 3 the well posed finite element approximation of order one is stated. Section 4
deals with the convergence analysis of the method and begins with an adapted version of Falk’s lemma (see [14])
to our problem. The main characteristic of this tool is to measure an important term of the consistency error
in the W 1,1-norm that will lead us to a global convergence rate of order h

1
2 as in the conforming case (see [15]).

Notations. Let Ω be an open bounded subset of R2 whose generic point is denoted x = (x1, x2) and denote
by Lp(Ω), 1 ≤ p <∞ the set of real-valued Lebesgue measurable functions ψ such that |ψ|p is integrable. The
Banach space Lp(Ω) is endowed with the norm

‖ψ‖Lp(Ω) =
(∫

Ω

|ψ(x)|p dΩ
) 1
p

.

When p = 2, L2(Ω) is the Hilbert space associated with the inner product

(ϕ,ψ) =
∫

Ω

ϕ(x)ψ(x) dΩ.

Let m ∈ N and p ≥ 1. Define the Sobolev spaces

Wm,p(Ω) =
{
ψ ∈ Lp(Ω), Dαψ ∈ Lp(Ω), |α| ≤ m

}
,

where α = (α1, α2) is a multi–index in N2 and |α| = α1 + α2. The notation Dα denotes the partial derivative
∂α1∂α2

∂xα1
1 ∂xα2

2
. The convention W 0,p(Ω) = Lp(Ω) is adopted. The Banach spaces Wm,p(Ω) are equipped with

the norm

‖ψ‖Wm,p(Ω) =
( ∑
|α|≤m

‖Dαψ‖pLp(Ω)

) 1
p

.

We shall denote by Wm,p
0 (Ω) the closure of D(Ω) (i.e. the space of indefinitely differentiable functions with

compact support in Ω) in Wm,p(Ω). When p = 2, the spaces Wm,2(Ω) and Wm,2
0 (Ω) are denoted by Hm(Ω)

and Hm
0 (Ω) respectively which are Hilbert spaces.

Let γ be a connected portion of the boundary of Ω. For any τ ∈ R+ \N, the Hilbert space Hτ (γ) is assigned
with the norm

‖ψ‖Hτ (γ) =

(
‖ψ‖2Hm(γ) +

∫
γ

∫
γ

(Dmψ(x)−Dmψ(y))2

|x− y|1+2θ
dγ dγ

) 1
2

,

where m is the integer part of τ and θ its decimal part (see [2]). In the previous integral, Dmψ stands for the
m–order derivative of ψ along γ and dγ denotes the linear measure on γ.

In order to define the space H
1
2
00(γ), let us introduce the map ρ as the distance to the extreme points p1 and

p2 of γ:
ρ(x) = dist (x, {p1, p2}), ∀x ∈ γ.

The space H
1
2
00(γ) is then endowed with the norm

‖ψ‖
H

1
2
00(γ)

=

(
‖ψ‖2

H
1
2 (γ)

+
∫
γ

ψ(x)2

ρ(x)
dγ

) 1
2

.
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2. The variational formulation of the problem

Let us consider the laminar stationary flow of a Bingham fluid in a cylindrical pipe of cross-section Ω ⊂ R2.
According to Duvaut and Lions [13], the problem consists of finding the velocity field u defined in Ω and solution
of the variational inequality

u ∈ V, µ

∫
Ω

∇u.(∇v −∇u) dΩ + g

∫
Ω

(|∇v| − |∇u|) dΩ ≥
∫

Ω

f(v − u) dΩ, ∀v ∈ V, (2.1)

where V = H1
0 (Ω). The notation µ > 0 stands for the viscosity of the fluid and g > 0 denotes the yield limit

of the fluid. Such a fluid starts to flow only when the applied forces locally exceed g. The following notations
have been used for any v ∈ V :

∇v =
( ∂v
∂x1

,
∂v

∂x2

)
and |∇v| =

√( ∂v
∂x1

)2

+
( ∂v
∂x2

)2

.

Finally, f represents the decay of the pressure in the pipe. Henceforward we assume that f ∈ L2(Ω).
The existence and uniqueness statement for the variational inequality (2.1) follows directly from Lions-

Stampacchia’s theorem [17]. We recall this result (see [15]):

Proposition 2.1. Problem (2.1) admits a unique solution u ∈ V satisfying the stability property ‖u‖H1(Ω) ≤
(C/µ)‖f‖L2(Ω) where the positive constant C is independent of f .

Concerning the regularity of the solution u, the result of [10] is as follows:

Proposition 2.2. The solution u of (2.1) satisfies u ∈ H2(Ω)∩ V . Moreover, if Ω is a convex set, there exists
a positive constant C independent of f such that ‖u‖H2(Ω) ≤ (C/µ)‖f‖L2(Ω).

A significant investigation on the qualitative properties of the solution u has been accomplished in the
references [18–20]. In particular, the authors proved that there always exists at least one region of Ω where the
fluid behaves like a rigid medium (i.e. ∇u(x) = 0) and looked for the shape of such zones. The research of
stagnant regions (i.e. u(x) = 0) as well as their shape was also carried out.

In the case where Ω is a circular domain and if the function f is constant in Ω then an exact solution can be
exhibited (see [15]). This solution depends then only on the variable

√
x2

1 + x2
2. In that case, the velocity field

lies in V ∩W 2,∞(Ω) ∩Hs(Ω) for any s < 5
2 , (see [15]).

Remark 2.1. Let u be the solution of problem (2.1). Then u is solution of the minimization problem

u ∈ V, J(u) = min
v∈V

J(v),

where

J(v) =
µ

2

∫
Ω

∇v.∇v dΩ + g

∫
Ω

|∇v| dΩ−
∫

Ω

fv dΩ.

Moreover u is characterized by the existence of p satisfying:

u ∈ V, µ

∫
Ω

∇u.∇v dΩ + g

∫
Ω

p.∇v dΩ =
∫

Ω

fv dΩ, ∀v ∈ V,

p ∈ Λ, p.∇u = |∇u| a.e. in Ω,

where
Λ =

{
q, q ∈ (L2(Ω))2, |q(x)| ≤ 1 a.e. in Ω

}
·
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3. Finite element approximation

The present section consists of building the spaces approximating H1
0 (Ω) in the mortar finite element context

in order to set the approximation of problem (2.1). The framework of the mortar domain decomposition
method consists of dividing Ω into K polygonal open subdomains. For the sake of simplicity, we assume that
the polygonally shaped domain Ω is the union of two subdomains Ω1 and Ω2 with Ω1 ∩ Ω2 = γ where γ is the
straight line segment [p1, p2]. We set

X(Ω`) =
{
v` ∈ H1(Ω`), v`|∂Ω∩∂Ω` = 0

}
, ` = 1, 2,

where ∂Ω, ∂Ω` denote the boundaries of Ω and Ω` respectively. Define

X =
{
v ∈ L2(Ω), ∀`, v` = v|Ω` ∈ X(Ω`)

}
=

2∏
`=1

X(Ω`).

The norm on X , denoted ‖.‖, is as follows

‖v‖ =
(
‖v1‖2H1(Ω1) + ‖v2‖2H1(Ω2)

) 1
2
, ∀v = (v1, v2) ∈ X.

The space V can be identified with the subspace of X containing the functions satisfying continuity conditions
on γ:

V =
{
v = (v1, v2) ∈ X, v1|γ = v2|γ

}
·

Let us define the continuous bilinear form a(., .), the continuous functional j(.) and the continuous linear
form L(.):

a(u, v) =
2∑
`=1

∫
Ω`
∇u`.∇v` dΩ`, ∀u, v ∈ X,

j(v) =
2∑
`=1

∫
Ω`
|∇v`| dΩ`, ∀v ∈ X,

L(v) =
2∑
`=1

∫
Ω`
f `v` dΩ`, ∀v ∈ X.

With each subdomain Ω` is associated a regular family of discretizations T `
h (see [11]) of triangles κ of diameter

hκ so that
h` = max

κ∈T `
h

hκ

represents the discretization parameter on Ω` and we set

h = max(h1, h2).

Let Pq(κ) denote the space of polynomial functions whose degree is ≤ q on κ. Define

Vh(Ω`) =
{
v`h ∈ C (Ω

`
), ∀κ ∈ T `

h , v`h|κ ∈ P1(κ), v`h|∂Ω∩∂Ω` = 0
}
·
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Let I`h denote the Lagrange interpolation operator of order one on T `
h . The following error estimate is

obtained from [11] by Hilbertian interpolation: for any pair of real numbers (η, ν) ∈ [0, 1]×]1, 2], there exists a
constant C = C(η, ν) verifying:

‖v` − I`hv`‖Hη(Ω`) ≤ C(η, ν)hν−η` ‖v`‖Hν(Ω`), ∀v` ∈ Hν(Ω`). (3.1)

The trace space of Vh(Ω`) on γ is given by

W `
h(γ) =

{
v`h|γ , v`h ∈ Vh(Ω`)

}
,

and corresponds to the continuous functions on γ, piecewise linear on the trace T `h of the triangulation T `
h on

γ and vanishing at p1 and p2. Notice that (3.1) remains true when Ω` is replaced by γ and when I`h is replaced
by the Lagrange interpolation operator of order one on T `h . As T 1

h and T 2
h are generated independently, it

follows that the meshes of both subdomains do not coincide on the interface γ and therefore W 1
h (γ) 6= W 2

h (γ).
In order to use inverse inequalities, we suppose that both families of one-dimensional triangulations T 1

h and T 2
h

are uniformly regular. We then consider the spaces M `
h(γ) defined as follows

M `
h(γ) =

{
q`h ∈ C (γ), ∀T ∈ T `h , q`h|T ∈ P1(T ) and q`h|T ∈ P0(T ) if p1 or p2 ∈ T

}
·

The space approximating V = H1
0 (Ω) becomes (see [8]):

Vh =
{
vh = (v1

h, v
2
h) ∈ Vh(Ω1)× Vh(Ω2),

∫
γ

(v1
h − v2

h)qh dγ = 0, ∀qh ∈Mh(γ)
}
, (3.2)

where Mh(γ) = M1
h(γ) or Mh(γ) = M2

h(γ).
The integral condition incorporated in (3.2) expresses a “weak continuity” relation across γ. It is easy to see

that the finite element approximation is nonconforming (Vh 6⊂ V ) in the general case of nonmatching meshes
on γ.

When the meshes fit together on γ, then the integral condition in (3.2) is equivalent to v1
h = v2

h on γ so that
the inclusion Vh ⊂ V holds. The latter case is considered in [15].

The discretized problem issued from (2.1) becomes: find uh such that

uh ∈ Vh, µa(uh, vh − uh) + gj(vh)− gj(uh) ≥ L(vh − uh), ∀vh ∈ Vh. (3.3)

We are now in a position to state the following existence and uniqueness result.

Proposition 3.1. Problem (3.3) admits a unique solution uh ∈ Vh.

Proof. The bilinear form a(., .) is continuous on Vh and Vh-elliptic (see [8]) and the linear form L(.) is continuous
on Vh. Moreover, j(.) is a convex continuous functional on Vh. The hypotheses of Lions-Stampacchia’s theorem
are then fulfilled. �

4. Error analysis

This section consists of obtaining a priori error estimates in the ‖.‖-norm committed by the finite element
approximation. Our purpose is to generalize the convergence results of the conforming finite element method
to the more general case described here and to prove that the error decays at least like h

1
2 which is the error

bound obtained in the conforming case (see [15]). The starting point is the next lemma: an adaptation of Falk’s
lemma (see [14]) to our problem.
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Lemma 4.1. Let u ∈ H2(Ω) ∩ V be the solution of (2.1) and let uh ∈ Vh be the solution of (3.3). Then the
following estimate holds:

‖u− uh‖2 ≤ C
{

inf
vh∈Vh

(
‖u− vh‖2 + ‖u− vh‖

)
+ inf
v∈V

( 2∑
`=1

‖v` − u`h‖W1,1(Ω`)

)
+
∣∣∣ ∫
γ

∂u1

∂n1
(u1
h − u2

h) dγ
∣∣∣} ·

(4.1)

where the constant C is independent of h.

Proof. Let α be the ellipticity constant of a(., .) on X . Then,

αµ‖u− uh‖2 ≤ µa(u− uh, u− uh) = µa(u, u)− µa(u, uh)− µa(uh, u) + µa(uh, uh).

Using (2.1) and (3.3), we write:

µa(u, u) ≤ µa(u, v)− L(v − u) + gj(v)− gj(u), ∀v ∈ V,
µa(uh, uh) ≤ µa(uh, vh)− L(vh − uh) + gj(vh)− gj(uh), ∀vh ∈ Vh.

Hence, the following inequality

αµ‖u− uh‖2 ≤ µa(uh − u, vh − u) + µa(u, vh − u)− L(vh − u) + gj(vh)− gj(u)
+µa(u, v − uh)− L(v − uh) + gj(v)− gj(uh). (4.2)

We now estimate separately the terms of (4.2). Denoting by M the norm of the continuous bilinear form a(., .)
on X yields

µa(uh − u, vh − u) ≤ µM‖u− uh‖‖u− vh‖ ≤
µα

2
‖u− uh‖2 +

µM2

2α
‖u− vh‖2. (4.3)

Using again the continuity of a(., .) so as the boundedness of ‖u‖ gives

µa(u, vh − u) ≤ µM‖u‖‖u− vh‖ ≤ C‖f‖L2(Ω)‖u− vh‖. (4.4)

Moreover, the following estimate holds

L(vh − u) ≤ ‖f‖L2(Ω)‖vh − u‖L2(Ω) ≤ ‖f‖L2(Ω)‖vh − u‖. (4.5)

Noting that |∇v`h| − |∇u`| ≤ |∇(v`h − u`)|, we can write

gj(vh)− gj(u) = g
2∑
`=1

∫
Ω`
|∇v`h| − |∇u`| dΩ` ≤ g

2∑
`=1

∫
Ω`
|∇(v`h − u`)| dΩ`

≤ g
2∑
`=1

√
meas(Ω`)‖v`h − u`‖H1(Ω`)

≤ g
√

2
√

meas(Ω)‖vh − u‖. (4.6)
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The term µa(u, v − uh) is handled by using Green’s formula and the property v1 = v2 on γ. The notation
∂u`/∂n` stands for the outward normal derivative of u` on Ω` and we have ∂u1/∂n1 + ∂u2/∂n2 = 0 on γ.

µa(u, v − uh) = µ
2∑
`=1

∫
Ω`
∇u`.∇(v` − u`h) dΩ`

= −µ
2∑
`=1

∫
Ω`

∆u`(v` − u`h) dΩ` + µ
2∑
`=1

∫
γ

∂u`

∂n`
(v` − u`h) dγ

≤ µ‖∆u‖L2(Ω)‖v − uh‖L2(Ω) + µ

∫
γ

∂u1

∂n1
(u2
h − u1

h) dγ

≤ µ‖u‖H2(Ω)‖v − uh‖L2(Ω) + µ

∫
γ

∂u1

∂n1
(u2
h − u1

h) dγ

≤ C
2∑
`=1

‖v` − u`h‖W1,1(Ω`) + µ

∫
γ

∂u1

∂n1
(u2
h − u1

h) dγ (4.7)

where the continuous embedding W 1,1(Ω`) ↪→ L2(Ω`) has been used (see [2]). Notice that if Ω is a convex set
then the constant C of (4.7) does not depend on u according to Proposition 2.2.

Using the same imbedding as previously yields

L(v − uh) ≤ ‖f‖L2(Ω)‖v − uh‖L2(Ω) ≤ ‖f‖L2(Ω)

2∑
`=1

‖v` − u`h‖W1,1(Ω`). (4.8)

The last term gj(v)− gj(uh) is evaluated as follows:

gj(v)− gj(uh) = g
2∑
`=1

∫
Ω`
|∇v`| − |∇u`h| dΩ` ≤ g

2∑
`=1

∫
Ω`
|∇(v` − u`h)| dΩ`

≤ g
2∑
`=1

‖v` − u`h‖W1,1(Ω`). (4.9)

Putting the estimates obtained in (4.3)–(4.9) into (4.2), and taking both infimum on V and Vh, we conclude to
the existence of a positive constant independent of h satisfying (4.1). That ends the proof of the lemma. �

The nonconformity of the method leads to two supplementary terms in (4.1) in comparison with the con-
forming case studied in [15]: the second infimum (on V ) as well as the integral term. The estimate of the
first infimum (i.e. the approximation error) is a standard result of the mortar finite element method proved
by Bernardi, Maday and Patera in [8] which we recall hereafter to render the paper self-contained and also to
introduce some useful tools. Afterwards, in order to simplify the notations, we will choose Mh(γ) = M1

h(γ) in
the definition of the approximation space in (3.2). Of course the symmetrical definition is also possible.

Lemma 4.2. Let u ∈ H2(Ω) ∩ V be the solution of (2.1). Then there exists vh ∈ Vh such that:

‖u− vh‖ ≤ Ch,

where the positive constant C is independent of h.
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Proof. Denoting by I`h the Lagrange interpolation operator of order one on T `
h and from the definition of the

norm ‖.‖, we get for any vh ∈ Vh

‖u− vh‖ ≤ ‖u1 − v1
h‖H1(Ω1) + ‖u2 − v2

h‖H1(Ω2)

≤ ‖u1 − I1
hu

1‖H1(Ω1) + ‖I1
hu

1 − v1
h‖H1(Ω1)

+‖u2 − I2
hu

2‖H1(Ω2) + ‖I2
hu

2 − v2
h‖H1(Ω2)

≤ ‖I1
hu

1 − v1
h‖H1(Ω1) + ‖I2

hu
2 − v2

h‖H1(Ω2) + Ch, (4.10)

where the error bounds (3.1) committed by I`h, ` = 1, 2 have been used. Choosing

v1
h = I1

hu
1 +R1

h(π1
h(I2

hu
2 − I1

hu
1)) and v2

h = I2
hu

2, (4.11)

where π1
h represents the projection operator on W 1

h (γ) defined for any function ϕ ∈ H
1
2
00(γ) by

π1
hϕ ∈ W 1

h (γ),∫
γ

(ϕ− π1
hϕ)ψh dγ = 0, ∀ψh ∈M1

h(γ). (4.12)

Such an operator is stable in L2(γ), in H1
0 (γ) and in H

1
2
00(γ) (the proofs require the uniform regularity of the

family of one-dimensional meshes T 1
h , see [8]): let Y = L2(γ) or H1

0 (γ) or H
1
2
00(γ), then

‖π1
hv‖Y ≤ C‖v‖Y , ∀v ∈ Y. (4.13)

Moreover the following approximation property holds (see [4]): for any 1
2 < ν ≤ 2

‖v − π1
hv‖L2(γ) + h

1
2
1 ‖v − π1

hv‖
H

1
2
00(γ)

≤ Chν1‖v‖Hν(γ), ∀v ∈ Hν(γ) ∩H
1
2
00(γ). (4.14)

In (4.11), the notationR1
h stands for a lifting operator fromW 1

h (γ)∩H1
0 (γ) into Vh(Ω1) satisfying ‖R1

hψ
1
h‖H1(Ω1) ≤

C‖ψ1
h‖
H

1
2
00(γ)

for any ψ1
h ∈W 1

h (γ)∩H1
0 (γ) (see [7,9]). Besides, it is straightforward that vh ∈ Vh. The definition

of vh and of the lifting operator, the stability condition (4.13) and the trace theorem yield

‖I1
hu

1 − v1
h‖H1(Ω1) = ‖R1

h(π1
h(I2

hu
2 − I1

hu
1))‖H1(Ω1)

≤ C‖π1
h(I2

hu
2 − I1

hu
1)‖

H
1
2
00(γ)

≤ C‖I2
hu

2 − I1
hu

1‖
H

1
2
00(γ)

≤ C
(
‖u2 − I2

hu
2‖
H

1
2
00(γ)

+ ‖u1 − I1
hu

1‖
H

1
2
00(γ)

)
≤ C

(
‖u2 − I2

hu
2‖H1(Ω1) + ‖u1 − I1

hu
1‖H1(Ω2)

)
≤ Ch. (4.15)

Using estimate (4.15) with (4.10) and noticing that ‖I2
hu

2 − v2
h‖H1(Ω2) = 0 leads to the estimate of the lemma.

�
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Next, we estimate the integral term of Lemma 4.1 which disappears in the conforming case of matching
meshes (see [15]).

Lemma 4.3. Let u ∈ H2(Ω) ∩ V be the solution of (2.1) and let uh ∈ Vh be the solution of (3.3). Then the
following estimate holds ∣∣∣ ∫

γ

∂u1

∂n1
(u1
h − u2

h) dγ
∣∣∣ ≤ C(h‖u− uh‖+ h2),

where the positive constant C is independent of h.

Proof. As uh belongs to Vh, we can write∫
γ

∂u1

∂n1
(u1
h − u2

h) dγ =
∫
γ

(∂u1

∂n1
− ψh

)
(u1
h − u2

h) dγ,

for all ψh ∈M1
h(γ). Denoting by (H

1
2
00(γ))′ the topological dual space of H

1
2
00(γ), we get∣∣∣ ∫

γ

∂u1

∂n1
(u1
h − u2

h) dγ
∣∣∣ ≤ inf

ψh∈M1
h(γ)

∥∥∥∂u1

∂n1
− ψh

∥∥∥
(H

1
2
00(γ))′

‖u1
h − u2

h‖
H

1
2
00(γ)

≤ Ch
∥∥∥∂u1

∂n1

∥∥∥
H

1
2 (γ)
‖u1

h − u2
h‖
H

1
2
00(γ)

≤ Ch‖u1
h − u2

h‖
H

1
2
00(γ)

. (4.16)

where the infimum is bounded as in ([8], Sect. 5.2) and the trace theorem has been used.
Since u1

h = π1
hu

2
h where π1

h has been defined in (4.12), we obtain thanks to the stability (4.13), the approxi-
mation property (4.14) and the trace theorem:

‖u1
h − u2

h‖
H

1
2
00(γ)

= ‖π1
hu

2
h − u2

h‖
H

1
2
00(γ)

≤ ‖π1
h(u2

h − u2)− (u2
h − u2)‖

H
1
2
00(γ)

+ ‖π1
hu

2 − u2‖
H

1
2
00(γ)

≤ C‖u2
h − u2‖

H
1
2
00(γ)

+ Ch‖u2‖
H

3
2 (γ)

≤ C‖u− uh‖+ Ch,

and combining the latter result with (4.16) ends the proof of the lemma. �
Having estimated the integral term, it remains to handle the second term of the consistency error which

requires a quite specific treatment.

Lemma 4.4. Let u ∈ H2(Ω) ∩ V be the solution of (2.1) and let uh ∈ Vh be the solution of (3.3). Then, there
exists v ∈ V such that:

2∑
`=1

‖v` − u`h‖W1,1(Ω`) ≤ C(h
1
2 ‖u− uh‖+ h

3
2 ),

where the positive constant C is independent of h.

Proof. (i) Let us choose v2 = u2
h in Ω2. In Ω1, we define ϕ1 = u1

h +R1(u2
h − u1

h) where R1 denotes a standard
continuous lifting operator from L1(γ) into W 1,1(Ω1) satisfying R1(u2

h − u1
h) = 0 on ∂Ω ∩ ∂Ω1. Hence

‖ϕ1 − u1
h‖W1,1(Ω1) = ‖R1(u2

h − u1
h)‖W1,1(Ω1) ≤ C‖u2

h − u1
h‖L1(γ) ≤ C′‖u2

h − u1
h‖L2(γ).
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Denoting by i2h the Lagrange interpolation operator of order one on T 2
h and noticing that u1

h = π1
hu

2
h (definition

of π1
h in (4.12)), it follows that

‖u2
h − u1

h‖L2(γ) = ‖u2
h − π1

hu
2
h‖L2(γ) ≤ ‖u2 − π1

hu
2‖L2(γ)

+‖(i2hu2 − u2)− π1
h(i2hu

2 − u2)‖L2(γ)

+‖(u2
h − i2hu2)− π1

h(u2
h − i2hu2)‖L2(γ). (4.17)

The first term of (4.17) is estimated with (4.14) so that

‖u2 − π1
hu

2‖L2(γ) ≤ Ch
3
2 ‖u2‖

H
3
2 (γ)

. (4.18)

The handling of the second term of (4.17) uses the L2(γ)-norm stability (4.13) and the interpolation error
estimate issued from (3.1):

‖(i2hu2 − u2)− π1
h(i2hu

2 − u2)‖L2(γ) ≤ C‖i2hu2 − u2‖L2(γ) ≤ Ch
3
2 ‖u2‖

H
3
2 (γ)

. (4.19)

It remains to bound the third term of (4.17). Let ` = 1, 2: the family of one-dimensional meshes T `h is supposed
uniformly regular which means that there exists a constant C satisfying

length(T ) ≤ C length(T ′), ∀T, T ′ ∈ T `h .

We then denote by h̃1 and h̃2 the greatest length of the meshes belonging to T 1
h and T 2

h respectively. Set

ηh = min

(
h̃1

2h̃2

,
h̃2

2h̃1

)
· (4.20)

Obviously 0 < ηh ≤ 1
2 . According to (4.14) and applying an inverse inequality gives

‖(u2
h − i2hu2)− π1

h(u2
h − i2hu2)‖L2(γ) ≤ Ch̃

1
2 +ηh
1 ‖u2

h − i2hu2‖
H

1
2 +ηh(γ)

≤ Ch̃
1
2
1

(
h̃1

h̃2

)ηh
‖u2

h − i2hu2‖
H

1
2 (γ)

.

It is easy to check that
x(min( x2 ,

1
2x )) ≤ e

1
2e , ∀x > 0.

Hence (
h̃1

h̃2

)ηh
≤ e

1
2e . (4.21)

And consequently

‖(u2
h − i2hu2)− π1

h(u2
h − i2hu2)‖L2(γ) ≤ Ch

1
2 ‖u2

h − i2hu2‖
H

1
2 (γ)

≤ Ch
1
2 (‖u2

h − u2‖
H

1
2 (γ)

+ ‖u2 − i2hu2‖
H

1
2 (γ)

)

≤ Ch
1
2 (‖uh − u‖+ h).
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Putting together estimates (4.18), (4.19) and (4.22) in (4.17) leads to

‖ϕ1 − u1
h‖W1,1(Ω1) ≤ C(h

1
2 ‖u− uh‖+ h

3
2 ). (4.22)

Since ϕ1 ∈ W 1,1(Ω1), the pair (ϕ1, v2) does not belong to V . The construction of an appropriate (v1, v2) ∈ V
is accomplished hereafter.
(ii) Next, we show that for every positive ε, there exists v1 ∈ X(Ω1) verifying v1 = u2

h on γ and
‖v1 − ϕ1‖W1,1(Ω1) ≤ ε. To do this, introduce ψ1 = u1

h +R1∗(u2
h − u1

h) where R1∗ denotes a continuous lifting

operator from H
1
2
00(γ) into H1(Ω1) satisfying R1∗(u2

h−u1
h) = 0 on ∂Ω∩∂Ω1. It follows that ϕ1−ψ1 ∈W 1,1

0 (Ω1).
Let then ε > 0 be given. A density argument implies that there exists χ1 ∈ H1

0 (Ω1) verifying
‖χ1 − (ϕ1 − ψ1)‖W1,1(Ω1) ≤ ε. Setting v1 = χ1 + ψ1, we deduce that

v1 ∈ X(Ω1), ‖v1 − ϕ1‖W1,1(Ω1) ≤ ε and v = (v1, v2) ∈ V.

The latter estimate together with (4.22) gives

2∑
`=1

‖v` − u`h‖W1,1(Ω`) = ‖v1 − u1
h‖W1,1(Ω1) ≤ ‖v1 − ϕ1‖W1,1(Ω1) + ‖ϕ1 − u1

h‖W1,1(Ω1)

≤ ε+ C(h
1
2 ‖u− uh‖+ h

3
2 ).

Choosing ε = h
3
2 ends the proof of the lemma. �

Remark 4.1. The technique leading to the bound (4.21) by choosing ηh as in (4.20) avoids the introduction
of the hypothesis “h1/h2 bounded as h→ 0” which should be used if ηh does not depend on h.

We are now in a position to exhibit an upper bound of the error committed by the mortar finite element
approximation in the following theorem.

Theorem 4.5. Let u ∈ H2(Ω) ∩ V be the solution of (2.1) and let uh ∈ Vh be the solution of (3.3). One has:

‖u− uh‖ ≤ Ch
1
2 ,

where the positive constant C is independent of h.

Proof. Putting together in (4.1) the estimates obtained in Lemmas 4.2, 4.3, and 4.4 yields the following bound

‖u− uh‖2 ≤ Ch+ Ch
1
2 ‖u− uh‖.

Writing Ch
1
2 ‖u− uh‖ ≤ 1

2‖u− uh‖2 + 1
2C

2h accomplishes the proof. �
Notice that the bound obtained in Theorem 4.5 is similar to that already known in the conforming case [15].
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