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INVERSE COEFFICIENT PROBLEMS FOR VARIATIONAL INEQUALITIES:
OPTIMALITY CONDITIONS AND NUMERICAL REALIZATION ∗

Michael Hintermüller
1

Abstract. We consider the identification of a distributed parameter in an elliptic variational in-
equality. On the basis of an optimal control problem formulation, the application of a primal-dual
penalization technique enables us to prove the existence of multipliers giving a first order characteriza-
tion of the optimal solution. Concerning the parameter we consider different regularity requirements.
For the numerical realization we utilize a complementarity function, which allows us to rewrite the
optimality conditions as a set of equalities. Finally, numerical results obtained from a least squares
type algorithm emphasize the feasibility of our approach.
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1. Introduction

In this paper, we focus on the identification of a distributed parameter in a variational inequality. Specifically,
we consider the problem of identifying u ∈ U := {w ∈ H2(Ω)|w ≥ ε > 0 a.e. in Ω} in∫

Ω

e(u)∇y∇(v − y)dx ≥ 〈f(u), v − y〉 for all v ∈ K, y ∈ K, (1.1)

from given data yd ∈ L2(Ω), where K = {y ∈ H1
o (Ω)|y ≥ 0}. We assume that e ∈ C2(R+;R+), with

e(z) ≥ ε > 0 for all z ≥ ε > 0, and that e−1 : R+ → R+ exists. Moreover, f(u) = Fu + g, with g ∈ H−1(Ω)
and F ∈ L(U,H−1(Ω)) completely continuous, i.e. {un} ⊂ U converging to u weakly in U implies that {Fun}
converges to Fu strongly in H−1(Ω). Further, 〈·, ·〉 = 〈·, ·〉H−1,H1

o
denotes the duality pairing between H1

o (Ω)
and its dual H−1(Ω). The domain Ω is a bounded subset of Rd, with 1 ≤ d ≤ 3 and a sufficiently smooth
boundary Γ.

Identification problems for variational inequalities of type (1.1) frequently occur in practical applications. One
instance is the elastohydrodynamic lubrication problem in a journal bearing, where e(z) = µ−1z3, f(u) = −c ∂u∂x2

,
with µ the constant viscosity coefficient and c a constant relative velocity; see for instance [2, 10, 15, 16]. The
coefficient depends on the distributed height function u between two rotating surfaces, and y represents the
pressure in the lubricant which fills the gap between the surfaces. The pressure y must satisfy y ≥ 0, and
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u has to be strictly positive in order to avoid damage of the surfaces. Since only the pressure is accessible via
measurements yd, the task is to recover the distributed height function u from yd.

A commonly used technique to identify the parameter u in (1.1) from measurements yd is to use a least squares
formulation which, in our case, results in the following bilevel optimal control problem where we consider

(P)
minimize

1
2
|y(u)− yd|2L2 +

α

2
|u|2U (1.2)

subject to u ∈ U, (1.3)

y(u) = argmin
{

1
2

∫
Ω

e(u)|∇y|2dx− 〈f(u), y〉
∣∣y ≥ 0

}
, (1.4)

with | · |L2 denoting the L2-norm in Ω. Moreover, U is endowed with the norm | · |U = | · |H2 . We remark
that in Section 4.3 we also address the case of rough coefficients, i.e. we reduce the regularity requirements
for the parameter u. The term α

2 |u|2U in (1.2) corresponds to Tikhonov’s regularization with parameter α > 0.
Generalizations of (1.2), like minimize h1(y) + h2(u), are possible which (under appropriate assumptions on h1

and h2) do not pose additional difficulties; see [1, 4, 18].
The term bilevel refers to the fact that in the optimal control problem (P) (1.4) again is a lower level infinite

dimensional optimization problem. Compared to a standard (constrained) optimal control problem, the bilevel
character of (P) poses additional difficulties. In fact, if (1.4) in (P) is replaced by its optimality system (as a so
called equilibrium constraint for (P)), i.e.∫

Ω

e(u)∇y(u)∇v dx− 〈f(u), v〉 −
∫

Ω

λv dx = 0 for all v ∈ H1
o (Ω),

λ ≥ 0, y(u) ≥ 0,
∫

Ω

λy(u)dx = 0,
(1.5)

then the existence of multipliers for the upper level problem may fail. See for instance [7, 18] for a discussion
in the case where u enters the variational inequality in an affine way. Note also that the multiplier of the lower
level problem, i.e. λ, appears as a primal variable in the upper level problem.

In this paper we guarantee existence of multipliers for (P) where classical (Lagrange) approaches based on
(1.5) fail; see for instance [7]. This is achieved by a primal-dual penalization technique. In addition, the
optimality system for (P), which is derived on the basis of this penalization technique and the utilization of
the concept of complementarity functions, is amenable to numerical realization. We shall mention that our
approach extending a technique used in [18] differs significantly from relaxation and/or dualization techniques
like in [4, 5, 19], regularization techniques like in [1], and techniques based on the conical derivative as in [22].
Besides the nonlinearity considered here, the first order characterization derived subsequently is more general
than the one in [8], where the optimality system is based on two special directions in control space. Moreover,
in contrast to the newly derived system many of the aforementioned first order characterizations cannot be used
for numerical realization.

In order to find numerically a stationary point for problem (P), the discretized first order system is solved
by a stabilized Gauss Newton method; see [12]. The choice of algorithm together with its globalization strategy
is based on smoothness properties of the reformulation of the complementarity condition. Analogous ideas are
developed in [13] and [21] but in a different context. Moreover, we take care of the fact that without further
assumptions the parameter u cannot be estimated from y on the singular set So = {x ∈ Ω|∇y(x) = 0}; see [17]
in the case of variational equalities.

The paper is organized as follows: In Section 2 we prove the existence of a solution of (P). The primal-dual
reformulation of the lower level problem eliminating y ≥ 0 from the set of explicit constraints is introduced in
Section 3. Moreover, the complementarity condition is reformulated by means of a complementarity function.
This technique results in an equivalent formulation of (P) which is well suited for numerical realization. Section 4
is concerned with the derivation of first order conditions for (P). This is done by regularization and passage
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to the limit. Another aspect addressed in Section 4 is the reduction of regularity requirements for u. In Section 5
we describe a Gauss Newton based method to solve the discretized first order system. Finally, numerical results
shall emphasize the feasibility of our approach.

Throughout the paper we shall invoke the following notation: The norm in a space S(Ω) is denoted by | · |S ,
(·, ·) stands for the L2-inner product. By 〈·, ·〉 = 〈·, ·〉H−1,H1

o
we indicate the duality pairing between H1

o (Ω)
and its dual H−1(Ω). The relations “≥” and “=” in function spaces are understood in the pointwise almost
everywhere sense. Moreover, C, C1, C2 shall denote generic positive constants which can take different values
on different occasions. We use “→” for convergence in the strong sense, “⇀” for convergence in the weak sense,
and “ ∗⇀” for weak* convergence.

2. Existence of a solution of problem (P)

In this section, we will prove that the bilevel optimal control problem (P) admits a solution (y∗, u∗) ∈
H1
o (Ω)× U . First note that for fixed u ∈ U the functional

Ju(y) =
1
2

∫
Ω

e(u)|∇y|2dx− 〈f(u), y〉, Ju : H1
o (Ω)→ R

is Gateaux differentiable and, due to e(u) ≥ ε > 0 a.e. in Ω, strictly convex. The set K = {y ∈ H1
o (Ω)|y ≥ 0}

is convex and closed. Thus by standard arguments it is seen that (1.4) admits a unique solution y(u) ∈ H1
o (Ω).

The optimal y(u) is characterized by

〈Ju′(y(u)), y − y(u)〉 ≥ 0 for all y ∈ K (2.1)

where Ju′ denotes the Gateaux derivative of Ju. Note that for v ∈ H1
o (Ω)

〈Ju′(y), v〉 = au(y, v)− 〈f(u), v〉, (2.2)

with au(y, v) = (e(u)∇y,∇v), and that due to our assumptions on U and e the bilinear form au : H1
o (Ω) ×

H1
o (Ω)→ R is symmetric, bounded and H1

o (Ω)-elliptic. The boundedness ensues from the compact embedding
of H2(Ω) in Co,ν(Ω̄), with 0 < ν < 1

2 , and the regularity of e. If we choose y = 0 ∈ K in (2.1), then

C|y(u)|2H1
o
≤ au(y(u), y(u)) ≤ 〈f(u), y(u)〉 ≤ |f(u)|H−1 |y(u)|H1

o

implying |y(u)|H1
o
≤ C|f(u)|H−1 .

For the mapping u 7→ y(u) the following continuity property holds.

Lemma 2.1. Let Φ : U → H1
o (Ω) be given by Φ(u) = y(u) and {un} ⊂ U be a sequence converging to u weakly

in U . Then {Φ(un)} converges to y(u) strongly in H1
o (Ω), i.e. the mapping Φ is completely continuous.

Proof. For u ∈ U define the operator Au ∈ L(H1
o (Ω),H−1(Ω)) by 〈Auy, v〉 = au(y, v) for all y, v ∈ H1

o (Ω). Since
H2(Ω) is compactly embedded in Co(Ω̄) and e ∈ C2(R+;R+), we obtain

|Aun −Au|H−1←H1
o
→ 0 for un ⇀ u in U. (2.3)

From (2.1) and (2.2) we obtain

〈Auny(un), y(un)− y(um)〉 − 〈f(un), y(un)− y(um)〉 ≤ 0

and (by interchanging the role of y(un) and y(um))

〈Aumy(um), y(um)− y(un)〉 − 〈f(um), y(um)− y(un)〉 ≤ 0.
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Addition of the previous two equations and estimation yield

0 ≥ 〈Aun(y(un)− y(um)) + (Aun −Aum)y(um), y(un)− y(um)〉
+ 〈f(um)− f(un), y(un)− y(um)〉

≥ C|y(un)− y(um)|2H1
o
− |Aun −Aum |H−1←H1

o
|y(um)|H1

o
|y(un)− y(um)|H1

o

− |f(um)− f(un)|H−1 |y(un)− y(um)|H1
o
.

Hence, we obtain

|y(un)− y(um)|H1
o
≤ C

(
|Aun −Aum |H−1←H1

o
|f(um)|H−1 + |f(um)− f(un)|H−1

)
.

Since {un} converges to u weakly in U (by assumption), the previous estimate together with (2.3) and the
complete continuity of f yield the existence of ȳ ∈ H1

o (Ω) such that {y(un)} converges to ȳ strongly in H1
o (Ω).

Letting n tend to ∞ in aun(y(un), y − y(un)) ≥ 〈f(un), y − y(un)〉 results in au(ȳ, y − ȳ) ≥ 〈f(u), y − ȳ〉 for all
y ∈ K. Then ȳ = y(u) follows from the uniqueness of y(u).

Next we can establish the main result of this section.

Theorem 2.2. There exists an optimal solution (y∗, u∗) ∈ H1
o (Ω)× U of (P).

Proof. Let κ = inf{ 1
2 |y(u)− yd|2L2 + α

2 |u|2U |u ∈ U}, and let {un} ⊂ U be a sequence satisfying

κ ≤ 1
2
|y(un)− yd|2L2 +

α

2
|un|2U ≤ κ+

1
n
·

Then {un} is weakly compact in U . Hence, there exists a subsequence {un(k)} such that un(k) ⇀ u∗ in U

and y(un(k)) → y(u∗) =: y∗ in H1
o (Ω), where the second assertion holds due to Lemma 2.1. The weak lower

semicontinuity of norms yields
1
2
|y∗ − yd|2L2 +

α

2
|u∗|2U = κ,

and hence (y∗, u∗) is optimal solution of (P).

3. Reformulation of the lower level problem

In this section, we shall utilize a primal-dual reformulation technique for (1.4) in order to eliminate y ∈ K
from the set of explicit constraints. In the spirit of penalizing violations of y ≥ 0, let us consider the problem

minimize Juc (y) := Ju(y) +
1
2c
|max{λ̄− cy, 0}|2L2 over y ∈ H1

o (Ω), (3.1)

where λ̄ ∈ L2(Ω), with λ̄ ≥ 0, is arbitrarily fixed, and c > 0. The role of λ̄ is discussed at the end of this section.
Note that Ju(·) and |max{λ̄− c ·, 0}|2L2 are Gateaux-differentiable and strictly convex and convex, respectively.
This together with boundedness from below, radial unboundedness and semi continuity of Juc (·) guarantee the
existence and uniqueness of the solution yc(u) ∈ H1

o (Ω) of (3.1). It is readily checked (by differentiation of Juc )
that it satisfies

au(yc(u), dy)− 〈f(u), dy〉 − (max{λ̄− cyc(u), 0}, dy) = 0 (3.2)

for all dy = y − yc(u) with y ∈ H1
o (Ω). Observe that for dy = −yc(u) condition (3.2) becomes

au(yc(u), yc(u)) = 〈f(u), yc(u)〉+ (max{λ̄− cyc(u), 0}, yc(u)).
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Since (max{λ̄− cyc(u), 0}, yc(u)) ≤ |λ̄|L2 |yc(u)|H1
o
, it follows that |yc(u)|H1

o
≤ C(|f(u)|H−1 + |λ̄|L2). Note that

due to our definition of Au ∈ L(H1
o (Ω),H−1(Ω)) the first order optimality condition (3.2) can equivalently be

written as

Auyc(u)− f(u)−max{λ̄− cyc(u), 0} = 0 in H−1(Ω). (3.3)

Next we shall study the asymptotic behaviour of {ycl(u)} for cl →∞.

Lemma 3.1. Let {cl} ⊂ R+ be a sequence of penalty parameters satisfying cl → ∞ for l → ∞. Then the
sequence {ycl(u)} converges to y(u) strongly in H1

o (Ω).

Proof. First observe that

Ju(ycl(u)) ≤ Jucl(ycl(u)) ≤ Jucl(y) ≤ Ju(y) +
1

2cl
|λ̄|2L2 for all y ∈ K. (3.4)

For the specific choice y = 0 ∈ K we obtain

1
2cl
|λ̄|2L2 ≥ 1

2cl
|max{λ̄− clycl(u), 0}|2L2 + Ju(ycl(u))

≥ 1
2cl
|max{λ̄− clycl(u), 0}|2L2 − 〈f(u), ycl(u)〉+ C|ycl(u)|2H1

o
. (3.5)

This yields |ycl(u)|H1
o
≤ C, where the constant C is independent of {cl}. Hence, there exists a subsequence

{cl(k)} such that ycl(k)(u) ⇀ ȳ in H1
o (Ω). For k →∞ (3.5) yields

|max{ λ̄

cl(k)
− ycl(k)(u), 0}|2L2 → 0

implying ȳ ∈ K, and cf.(3.4)

Ju(ȳ) =
1
2
au(ȳ, ȳ)− 〈f(u), ȳ〉 ≤ 1

2
au(y, y)− 〈f(u), y〉 = Ju(y) for all y ∈ K.

From the uniqueness of the solution of (1.4) we obtain ȳ = y(u), and thus ycl(u) ⇀ y(u) in H1
o (Ω).

Moreover, we deduce lim au(ycl(u), ycl(u)) = au(y(u), y(u)). For sufficiently small γ > 0 the functional
Ψ(z) = au(z, z)− γ|z|2H1

o
is weakly lower semicontinuous. Hence,

au(y(u), y(u))− γ|y(u)|2H1
o
≤ lim inf

l→∞

(
au(ycl(u), ycl(u))− γ|ycl(u)|2H1

o

)
≤ au(y(u), y(u))− lim sup

l→∞
γ|ycl(u)|2H1

o

implying lim sup γ|ycl(u)|2H1
o
≤ γ|y(u)|2H1

o
. This together with the weak lower semicontinuity yields

lim γ|ycl(u)|2H1
o

= γ|y(u)|2H1
o
,

and thus ycl(u)→ y(u) in H1
o (Ω).

Based on the reformulation (3.1) we shall now consider the penalized version of (P) which is to

(Pc)
minimize

1
2
|yc(u)− yd|2L2 +

α

2
|u|2U

subject to u ∈ U,
yc(u) = argmin

{
Juc (y)|y ∈ H1

o (Ω)
}

(3.6)
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Before we prove existence of a solution of (Pc), we state a continuity result which is analogous to the complete
continuity of Φ (see Lem. 2.1). For this purpose define

Φc : U → H1
o (Ω), Φc(u) = yc(u).

Lemma 3.2. The mapping Φc is completely continuous uniformly in c ∈ R+.

Proof. Consider the first order condition (3.2) first with (u, dy) = (un, yc(um)− yc(un)) ∈ U ×H1
o (Ω) and then

with (u, dy) = (um, yc(un)− yc(um)) ∈ U ×H1
o (Ω). Adding both resulting equalities yields

0 = aun(yc(un), yc(um)− yc(un))− aum(yc(um), yc(um)− yc(un))
− (max{λ̄− cyc(un), 0} −max{λ̄− cyc(um), 0}, yc(um)− yc(un))
+ 〈f(um)− f(un), yc(um)− yc(un)〉,

which is equivalent to

0 = 〈Aun(yc(um)− yc(un)) + (Aum −Aun)yc(um), yc(um)− yc(un)〉
+ (max{λ̄− cyc(un), 0} −max{λ̄− cyc(um), 0}, yc(um)− yc(un))
−〈f(um)− f(un), yc(um)− yc(un)〉.

There obviously holds

(max{λ̄− cyc(un), 0} −max{λ̄− cyc(um), 0}, yc(um)− yc(un)) ≥ 0.

Thus we obtain

|yc(um)− yc(un)|H1
o
≤ C

(
|Aun −Aum |H−1←H1

o
(|f(um)|H−1 + |λ̄|L2) + |f(um)− f(un)|H−1

)
. (3.7)

From |Aun − Au|H−1←H1
o
→ 0 for un ⇀ u in U , the complete continuity of f and the uniqueness of yc(u) we

deduce the complete continuity of Φc. Uniformity w.r.t. c follows from |yc(u)|H1
o
≤ C(|f(u)|H−1 + |λ̄|L2) and

(3.7) where in both cases the upper bounds do not depend on c.

Concerning the existence of a solution of (Pc), the following result holds.

Theorem 3.3. There exists an optimal solution (y∗c , u∗c) ∈ H1
o (Ω)× U of (Pc).

Proof. The proof follows the lines for that of Theorem 2.2. We only have to consider yc(u) and Lemma 3.2
instead of y(u) and Lemma 2.1.

In the sequel, we shall call (y, u) ∈ H1
o (Ω) × U a strong-weak accumulation point of a sequence {(yn, un)}

if there exists a subsequence {n(k)} such that yn(k) → y in H1
o (Ω) and un(k) ⇀ u in U , i.e. {(yn(k), un(k))}

converges strongly-weakly to (y, u).
Lemma 3.2 and Theorem 3.3 yield the following result.

Theorem 3.4. Let {cn} ⊂ R+ be a sequence of penalty parameters satisfying cn → ∞ for n → ∞, and let
(ycn(ucn), ucn) be a solution of (Pcn). Then a strong-weak accumulation point (y∗, u∗) ∈ H1

o (Ω) × U of the
sequence {(ycn(ucn), ucn)} as cn →∞ exists, and every such accumulation point is a solution of (P).

Proof. Let {(ycn(ucn), ucn)} denote a sequence of optimal solutions to (Pc) with c replaced by the sequence
{cn}. For arbitrary u ∈ U let ycn(u) be a solution of (3.2) for c = cn. Then

1
2
|ycn(ucn)− yd|2L2 +

α

2
|ucn |2U ≤

1
2
|ycn(u)− yd|2L2 +

α

2
|u|2U . (3.8)
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From |ycn(u)| ≤ C(|f(u)|H−1 + |λ̄|L2) we infer that |ucn |U is bounded independently of {cn}. Hence, there exist
a subsequence {n(k)} and u∗ ∈ U such that ucn(k) ⇀ u∗ in U . Moreover, we have

|ycn(k)(ucn(k))− y(u∗)|H1
o
≤ |ycn(k)(ucn(k))− ycn(k)(u

∗)|H1
o

+ |ycn(k)(u
∗)− y(u∗)|H1

o
,

where the first term on the right hand side vanishes as k → ∞ by Lemma 3.2, and the second term becomes
zero as k →∞ by Lemma 3.1. Thus, ycn(k)(ucn(k))→ y(u∗) =: y∗ in H1

o (Ω). We further deduce that

a
ucn(k) (ycn(k)(ucn(k)), ycn(k)(ucn(k)))→ au

∗
(y∗, y∗).

From Lemma 3.1 it follows that ycn(k)(u)→ y(u) in H1
o (Ω). Therefore, from (3.8) we infer

1
2
|y∗ − yd|2L2 +

α

2
|u∗|2U ≤

1
2
|y(u)− yd|2L2 +

α

2
|u|2U

for all solutions (y(u), u) of (1.4). This proves the assertion.

The remainder of this section clarifies the role of λ̄. In fact, for a specific choice we derive important
properties of the solution of (3.2). But before we state the corresponding result, we shall introduce the notion
of a complementarity function. For optimization problems with inequality constraints the first order conditions
typically include a complementarity condition. For instance, in the case of the simple inequality constraint
y ≥ 0 the corresponding complementarity condition is

y ≥ 0, λ ≥ 0, (y, λ) = 0,

where λ denotes the pertinent Lagrange multiplier. This condition is not immediately amenable to numerical
realization, and in the context of bilevel problems (where the complementarity condition becomes a constraint
in the upper level problem) the existence of Lagrange multipliers may fail; see [7,14,18,20]. A possible remedy
is based on a reformulation with a complementarity function. A function Θ : R2 → R is called complementarity
function iff the relation

Θ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, a b = 0

is satisfied. There exist many instances in the literature like the Fischer-Burmeister function ΘFB(a, b) =√
a2 + b2 − (a+ b) (see [13]), or the Moreau-Yosida based function ΘMY(a, b) = a−max{a− cb, 0}, with c > 0

arbitrarily fixed (see [6]). For other choices (for more general complementarity problems) and references we
refer to [21].

This concept of reformulation by means of complementarity functions is used in the next result. From now
on, we invoke the following assumption:

f : U → L2(Ω). (A)

Theorem 3.5. Let (A) be fulfilled, and let {cn} ⊂ R+ satisfy cn →∞ for n→∞ and Θ be a complementarity
function. For λ̄ := λ̄(u) = max{−f(u), 0} we have ycn(u) ≥ 0. Moreover {λcn(u)}∞n=1 = {max{λ̄(u) −
cnycn(u), 0}}∞n=1 is uniformly bounded in L2(Ω) and converges weakly to λ(u) ∈ L2(Ω) satisfying

Auy(u) = f(u) + λ(u), and Θ(λ(u), y(u)) = 0 a.e. in Ω. (3.9)

Proof. Multiplying (3.3) by v = max{−ycn(u), 0} yields

0 = 〈Auycn(u), v〉 − 〈f(u) + λ̄(u), v〉 − cn(v, v) ≤ 〈Auycn(u), v〉 ≤ −C|v|2H1
o
≤ 0.
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Assume that Ω−cn = {ycn(u) < 0} 6= ∅. From the above relation we deduce that ycn(u)|Ω−cn = 0 which is a
contradiction. Hence, we have ycn(u) ≥ 0 a.e. in Ω. From the definition of λcn(u) we immediately obtain

0 ≤ λcn(u) ≤ λ̄(u) a.e. in Ω.

This implies that there exists a weakly convergent subsequence {λcn(k)(u)}. Let λ(u) ∈ L2(Ω) denote the weak
limit point. For cn(k) →∞ we obtain from Lemma 3.1 that ycn(k)(u) converges to y(u) strongly in H1

o (Ω). Thus
we have 〈Auycn(k)(u), ycn(k)(u)〉 → 〈f(u) + λ(u), y(u)〉. Since

〈Auy −Auz, y − z〉 = au(y − z, y − z) ≥ C|y − z|2H1
o

for all y, z ∈ H1
o (Ω),

the operator Au is monotone. Moreover Au is hemicontinuous, and thus maximal monotone [1]. Therefore, we
have

〈Auycn(k)(u)−Auz, ycn(k)(u)− z〉 ≥ 0
implying for cn(k) →∞

〈f(u) + λ(u)−Auz, y(u)− z〉 ≥ 0 for all z ∈ H1
o (Ω).

The maximal monotonicity of Au then yields Auy(u) = f(u) + λ(u). This shows the uniqueness of the weak
limit λ(u) of {λcn(k)(u)}. Moreover, for all cn > 0 we have λcn(u) ∈ {λ ∈ L2(Ω)|λ ≥ 0} implying λcn(u) ≥ 0
and

− λ̄(u)
cn

< −ycn(u) ≤ 0 a.e. in {x ∈ Ω|λcn(u)(x) > 0}.

Hence, ycn(u)λcn(u) → 0 in L1(Ω) for cn → ∞. From ycn(u)λcn(u) ∗
⇀ y(u)λ(u) in L∞(Ω)∗ we deduce

y(u)λ(u) = 0 a.e. in Ω, and it follows that Θ(λ(u), y(u)) = 0 a.e. in Ω. This completes the proof.

4. First order conditions

This section is devoted to the development of first order necessary optimality conditions for the bilevel
problem (P). First we regularize the non differentiable max-operation which appears in (3.2).

4.1. Regularization

Consider the following C1-regularization of x 7→ max{x, 0}:

maxc{x, 0} =

 x for x ≥ 1
2c ,

c
2 (x+ 1

2c )2 for |x| ≤ 1
2c ,

0 for x ≤ − 1
2c .

Then there obviously holds maxc{x, 0} =
∫ x
−∞ sgnc(t)dt, with

sgnc(x) =

 1 for x ≥ 1
2c ,

c(x+ 1
2c ) for |x| ≤ 1

2c ,
0 for x ≤ − 1

2c .

Note that sgnc(x) ≥ 0 for all x.
Next consider the regularized version of (Pc) which is to

(P̃c)
minimize

1
2
|y − yd|2L2 +

α

2
|u|2U

subject to u ∈ U,
Auy − f(u)−maxc{λ̄− cy, 0} = 0,
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where c > 0 and λ̄ ∈ L2(Ω), with λ̄ ≥ 0. Define Ψc(x) =
∫ x

0
maxc{t, 0}dt, and consider

minimize J̃uc (y) := Ju(y) +
∫

Ω

1
c

Ψc(λ̄− cy)dx over y ∈ H1
o (Ω). (4.1)

Some simple manipulations show that

0 ≤ Ψc(x) ≤ max
(

7
48c2

,
x2

2
+

1
48c2

)
for x ≥ 0, − 1

48c2
≤ Ψc(x) for x < 0.

Moreover, from its definition it is easily seen that Ψc is monotonically increasing, and∫
Ω

1
c

Ψc(λ̄− cv)dx ≤
∫

Ω

1
c

Ψc(λ̄)dx <∞ for all v ∈ K. (4.2)

Concerning the existence of a solution of (4.1) the following result holds.

Lemma 4.1. (a) For all c > 0 and u ∈ U problem (4.1) admits a unique solution ỹc(u) ∈ H1
o (Ω).

(b) For cn →∞ the sequence {ỹcn(u)} converges to y(u), the unique solution of (1.4), strongly in H1
o (Ω).

Proof. (a) The existence of the unique solution ỹc(u) of (4.1) for some c > 0 follows from the monotonicity of
Ψc, the property (4.2) and the properties of Ju(y) (see Sect. 2).
(b) Due to the continuous differentiability of Ψc the unique solution satisfies the first order conditions

Auỹc(u)− f(u)−maxc{λ̄− cỹc(u), 0} = 0. (4.3)

Now consider (4.3) with c = cn. Multiplication by ỹcn(u) yields

C1|ỹcn(u)|2H1
o
≤ |f(u)|L2 |ỹcn(u)|H1

o
+ C2|ỹcn(u)|H1

o

implying |ỹcn(u)|H1
o
≤ C, where the constantC is independent of cn. Thus, there exists a subsequence {ỹcn(k)(u)}

converging to some ŷ weakly in H1
o (Ω).

Next we show that ŷ ∈ K. For this purpose define

Ω−cn(k)
= {λ̄− cn(k)ỹcn(k)(u) < 0} and Ω+

cn(k)
= {λ̄− cn(k)ỹcn(k)(u) ≥ 0},

and observe that

J̃ucn(ỹcn(u)) ≤ Ju(y) +
∫

Ω

1
cn

Ψcn(λ̄)dx for all y ∈ K.

For y := 0 ∈ K this results in∫
Ω

1
cn

Ψcn(λ̄)dx+ C|f(u)|L2 ≥
∫

Ω

1
cn

Ψcn(λ̄− cnỹcn(u))dx.

Since Ψcn(λ̄− cnỹcn(u)) ≥ −1/(48c2n), the sequence {
∫

Ω c
−1
n Ψcn(λ̄− cnỹcn(u))dx} is uniformly bounded. This

yields the uniform boundedness of{∫
Ω−cn(k)

1
cn(k)

Ψcn(k)(λ̄− cn(k)ỹcn(k)(u))dx

}
,
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which tends to 0 as cn(k) →∞, and the uniform boundedness of{∫
Ω+
cn(k)

1
cn(k)

Ψcn(k)(λ̄− cn(k)ỹcn(k)(u))dx

}
.

From Ψcn(k)(x) ≥ (x2/2) for all x ≥ 0 it follows that c−1
n(k)|max{λ̄− cn(k)ỹcn(k)(u), 0}|2L2 is uniformly bounded

and
lim
k→∞

|max{ 1
cn(k)

λ̄− ỹcn(k)(u), 0}|2L2 = 0.

Since λ̄ ≥ 0, the last equation implies ŷ ≥ 0.
Finally, let v ∈ K be arbitrarily fixed. Then for some 0 < η < 1

1
η

(
Ju(ỹcn(k)(u)) +

∫
Ω

1
cn(k)

Ψcn(k)(λ̄− cn(k)ỹcn(k)(u))dx
)
≤ 1
η

(
Ju(ỹcn(k)(u) + η(v − ỹcn(k)(u)))

+
∫

Ω

1
cn(k)

Ψcn(k)(λ̄− cn(k)(ỹcn(k)(u) + η(v − ỹcn(k)(u))))dx
)

which is equivalent to

au(ỹcn(k)(u), v − ỹcn(k)(u)) +
η

2
au(v − ỹcn(k)(u), v − ỹcn(k)(u))− 〈f(u), v − ỹcn(k)(u)〉

+
1
η

∫
Ω

1
cn(k)

Ψcn(k)(λ̄− cn(k)(ỹcn(k)(u) + η(v − ỹcn(k)(u))))dx

− 1
η

∫
Ω

1
cn(k)

Ψcn(k)(λ̄− cn(k)ỹcn(k)(u))dx ≥ 0.

For cn(k) →∞ it follows that

au(ŷ, v − ŷ) +
η

2
au(v − ŷ, v − ŷ)− 〈f(u), v − ŷ〉 ≥ 0 for all v ∈ K.

Then η → 0+ yields
au(ŷ, v − ŷ) ≥ 〈f(u), v − ŷ〉 for all v ∈ K,

which coincides with (2.1). Thus, we have ŷ = y(u).
The strong convergence of {ỹcn(u)} towards y(u) ensues from arguments similar to those in the proof of

Lemma 3.1 with ycl(u) and Ju replaced by ỹcn(u) and J̃u.

The next theorem is an analogue to Theorem 3.5.

Theorem 4.2. Let (A) be fulfilled, and let {cn} ⊂ R+ satisfy cn →∞ as n→∞ and Θ be a complementarity
function. Then for λ̄ := λ̄(u) = max{−f(u), 0} we have ỹcn(u) ≥ 0. Moreover {λ̃cn(u)}∞n=1 = {maxcn{λ̄(u) −
cnỹcn(u), 0}}∞n=1 is uniformly bounded in L2(Ω) and converges weakly to λ(u) ∈ L2(Ω) satisfying

Auy(u) = f(u) + λ(u), and Θ(λ(u), y(u)) = 0 a.e. in Ω.

Proof. From the definition of maxc{x, 0} we immediately obtain that maxc{x, 0} ≥ max{x, 0} ≥ x. Using this
fact and multiplying (4.3) by v = max{−ỹcn(u), 0} we obtain

0 ≤ 〈Auỹcn(u), v〉 − 〈f(u) + max{−f(u), 0}, v〉 − cn|v|2L2 (4.4)
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which implies 〈Auỹcn(u), v〉 ≥ 0. Assume that Ω−cn = {ỹcn(u) < 0} 6= ∅. From (4.4) it follows that

0 ≤ 〈Auỹcn(u), v〉 ≤ −C|v|2H1
o
≤ 0,

and thus ỹcn(u)|Ω−cn = 0 which is a contradiction. Hence, we have ỹcn(u) ≥ 0 a.e. in Ω.
The definition of maxc yields

0 ≤ λ̃cn(u) ≤ max{λ̄(u),
1

2cn
}.

This implies that there exists a weakly convergent subsequence {λ̃cn(k)(u)}. Let λ(u) ∈ L2(Ω) denote the weak
limit point. From the previous lemma we know that ỹcn(u) converges to y(u) strongly in H1

o (Ω) as cn → ∞.
Thus we have

〈Auỹcn(k) , ỹcn(k)〉 → 〈f(u) + λ(u), y(u)〉.
The maximal monotonicity of Au (see proof of Th. 3.5) then yields Auy(u) = f(u)+λ(u) implying the uniqueness
of the weak limit λ(u). For all cn > 0 we have λ̃cn(u) ≥ 0 by similar arguments as in the proof of Theorem 3.5.
Moreover,

− λ̄(u)
cn
− 1

2cn2
< −ỹcn(u) ≤ 0 a.e. in {x ∈ Ω|λ̃cn(u)(x) > 0}.

The assertion Θ(λ(u), y(u)) = 0 a.e. in Ω then ensues from the same arguments as in the proof of Theorem 3.5.

The complete continuity of the mapping u 7→ Φ̃c(u) = ỹc(u) is established next.

Lemma 4.3. The mapping Φ̃c is completely continuous uniformly in c ∈ R+.

Proof. The proof essentially follows that of Lemma 3.2. Instead of (3.2) consider now (4.3), and observe that
maxc satisfies

(maxc{λ̄− cỹc(un), 0} −maxc{λ̄− cỹc(um), 0}, ỹc(um)− ỹc(un)) ≥ 0.

Finally, we can guarantee that a sequence of optimal solutions of the regularized problems (P̃cn) tends (in the
strong-weak sense) towards an optimal solution of the original problem (P).

Theorem 4.4. (a) For c > 0 there exists an optimal solution (ỹ∗c , ũ
∗
c) ∈ H1

o (Ω)× U of (P̃c).
(b) Let {cn} ⊂ R+ satisfy cn →∞ as n→∞. Then a strong-weak accumulation point (y∗, u∗) ∈ H1

o (Ω)×U of
the sequence {(ỹ∗cn , ũ∗cn)} of optimal solutions to {(P̃cn)} as n→ ∞ exists, and every such accumulation point
is a solution of (P ).

Proof. The proofs of (a) and (b) are similar to the proofs of Theorem 3.3 and Theorem 3.4, respectively.

4.2. First order necessary conditions

Consider the regularized equilibrium constraint of problem (P̃c), i.e.

E(y, u) = Auy − f(u)−maxc{λ̄− cy, 0}, E : H1
o (Ω)× U → H−1(Ω).

Let E = E ′ denote the Gateaux-derivative of E , and recall that f(u) = Fu+ g (note that the analysis so far did
not require the affine nature of f(u)). Hence, for (dy, du) ∈ H1

o (Ω)× U we have

E(y, u)(dy, du) = Audy +Au′(y)du − Fdu + csgnc(λ̄− cy)dy,

with 〈Au′(y)du, v〉U∗,U = (e′(u)du∇y,∇v), where U∗ is the dual of U . Define the bilinear form ãy,u : H1
o (Ω)×

H1
o (Ω)→ R by

ãy,u(dy , v) = (e(u)∇dy,∇v) + c(sgnc(λ̄− cy)dy, v).
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Let F ? denote the adjoint operator of F , and define the linear functional f̃y,u : U → H−1 by

〈f̃y,u(du), v〉 = (e′(u)du∇y,∇v)− 〈F ?v, du〉

for all v ∈ H1
o (Ω). From sgnc(x) ≥ 0 for all x it immediately ensues that ãy,u(v, v) ≥ C|v|2H1

o
for all v ∈ H1

o (Ω).
The boundedness of ãy,u in H1

o (Ω), i.e. ãy,u(v, w) ≤ C|v|H1
o
|w|H1

o
, is a consequence of sgnc(x) ≤ 1 for all x.

The Lax-Milgram theorem then ensures the surjectivity of E.
Now it is an easy exercise to derive first order optimality conditions characterizing an optimal solution (ỹ∗c , ũ

∗
c)

of the regularized problem (P̃c). For this purpose, let B denote the representer of | · |U and B? its dual. Then
we have

ỹ∗c − yd +Aũ
∗
c p̃∗c + csgnc(λ̄− cỹ∗c )p̃∗c = 0, (4.5)

(αB?Bũ∗c + e′(u∗)∇ỹ∗c · ∇p̃∗c − F ?p̃∗c , u− ũ∗c) ≥ 0 for all u ∈ U, (4.6)

Aũ
∗
c ỹ∗c −maxc{λ̄− cỹ∗c , 0} = f(ũ∗c), (4.7)

where p̃∗c ∈ H1
o (Ω) denotes the adjoint state.

We will use the above first order conditions as c is replaced by a sequence {cn} with cn → ∞ in order to
derive first order necessary conditions for the bilevel control problem (P).

Theorem 4.5. Assume that (A) is satisfied, F ∈ L(U,L∞(Ω)), and let {cn} ⊂ R+ satisfy cn → ∞ for
n → ∞. Moreover, let Θ be a complementarity function. Then for each sequence {(ỹ∗cn , ũ∗cn)} of solutions of
the problems (P̃cn) converging strongly-weakly to (y∗, u∗), a solution of (P), there exist a subsequence {n(k)}
and multipliers (p∗, µ∗) ∈ H1

o (Ω) × L∞(Ω)∗ such that p̃∗cn(k)
converges to p∗ weakly in H1

o (Ω), and µ̃∗cn(k)
:=

cn(k)sgncn(k)
(λ̄ − cn(k)ỹ

∗
cn(k)

)p̃∗cn(k)
, with 0 ≤ λ̄ ∈ L2(Ω) suitably chosen, converges to µ∗ weakly* in L∞(Ω)∗.

Moreover, p∗ and µ∗ satisfy the first order conditions

Au
∗
p∗ + µ∗ + y∗ − yd = 0, (4.8)

(αB?Bu∗ + e′(u∗)∇y∗ · ∇p∗ − F ?p∗, u− u∗) ≥ 0 for all u ∈ U, (4.9)
p∗λ∗ = 0, µ∗y∗ = 0, (4.10)

Au
∗
y∗ − λ∗ = f(u∗), (4.11)

Θ(λ∗, y∗) = 0 a.e. in Ω, (4.12)

where λ∗ ∈ L2(Ω) is the weak limit of {λ̃∗cn}, with λ̃∗cn = maxcn{λ̄− cnỹ∗cn , 0}. Moreover, we have

au
∗
(p∗, χy∗) + (y∗ − yd, χy∗) = 0 for all χ ∈ C1(Ω), (4.13)

(y∗ − yd, p∗) + au
∗
(p∗, p∗) ≤ 0. (4.14)

Proof. Let {(ỹ∗cn , ũ∗cn)} denote a sequence of solutions to (P̃cn) which converges to (y∗, u∗), a solution of (P),
strongly-weakly in H1

o (Ω)× U . Multiplying (4.5) by p̃∗cn yields

0 = (ỹ∗cn − yd, p̃
∗
cn) + aũ

∗
cn (p̃∗cn , p̃

∗
cn) + cn(sgncn(λ̄− cnỹ∗cn)p̃∗cn , p̃

∗
cn) (4.15)

≥ (ỹ∗cn − yd, p̃
∗
cn) + C1|p̃∗cn |

2
H1
o

+ cn(sgncn(λ̄− cnỹ∗cn)p̃∗cn , p̃
∗
cn).

From sgncn ≥ 0 we obtain

C1|p̃∗cn |
2
H1
o

+ cn(sgncn(λ̄− cnỹ∗cn)p̃∗cn , p̃
∗
cn) ≤ C, (4.16)
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where the constant C is independent of {cn}. Next define

ρδ(x) =

 1 for x ≥ δ,
x
δ for |x| ≤ δ,
−1 for x ≤ −δ.

From this definition it follows that

0 = (ỹ∗cn − yd, ρδ(p̃
∗
cn)) + (ρ′δ(p̃

∗
cn)∇p̃∗cn , e(ũ

∗
cn)∇p̃∗cn)

+ (cnsgncn(λ̄− cnỹ∗cn)p̃∗cn , ρδ(p̃
∗
cn)) (4.17)

≥ −|ỹ∗cn − yd|L1 + (cnsgncn(λ̄− cnỹ∗cn)p̃∗cn , ρδ(p̃
∗
cn))

where inequality holds due to |ρδ(p̃∗cn)|L∞ ≤ 1 and ρ′δ(x) ≥ 0 for all x. Since sgncn(x) ≤ 1, cnsgncn(λ̄−cnỹ∗cn) ≥ 0
and µ̃∗cn = cnsgncn(λ̄− cnỹ∗cn)p̃∗cn , relation (4.17) yields for δ → 0

|µ̃∗cn |L1 ≤ |ỹ∗cn − yd|L1 , (4.18)

where we additionally used ρδ(p̃∗cn)p̃∗cn → |p̃∗cn | as δ → 0. Note that the right hand side above is uniformly
bounded (with respect to {cn}). Thus, due to (4.16) there exist a subsequence {n(k)}, p∗ ∈ H1

o (Ω) and
µ∗ ∈ L∞(Ω)∗ such that {p̃∗cn(k)

} converges to p∗ weakly in H1
o (Ω), and {µ̃∗cn(k)

} converges to µ∗ weakly* in
L∞(Ω)∗. Now, (4.8) and (4.9) immediately follow from (4.5) and (4.6), respectively. Moreover, (4.14) holds due
to (4.15).

Due to the assumption F ∈ L(U,L∞(Ω)) and the weak convergence of {ũ∗cn} in U , there exists a constant
M independent of {cn} such that |Fũ∗cn |L∞ ≤ M . Thus, for λ̄ ≥ max{−g, 0} + M we have y∗ ≥ 0 (see
Theorem 4.2). For λ̃∗cn = maxcn{λ̄− cnỹ∗cn , 0} it follows that λ̃∗cn ≤ max{λ̄, (2cn)−1}. Hence, for a subsequence
{n(k)} we have that {λ̃∗cn(k)

} converges to λ∗ weakly in L2(Ω) and Au
∗
y∗ − λ∗ = f(u∗), Θ(λ∗, y∗) = 0 a.e. in

Ω. This proves (4.11) and (4.12).
In order to establish the first part of (4.10) define S = {x ∈ Ω|0 < sgncn(λ̄− cnỹ∗cn)(x) < 1}. On S we obtain

λ̃∗cn = maxcn{λ̄− cnỹ∗cn , 0} =
∫ λ̄−cnỹ∗cn

−∞
sgncn(t)dt =

∫ λ̄−cnỹ∗cn

−1/(2cn)

cn

(
t+

1
2cn

)
dt

=
cn
2

[
(λ̄− cnỹ∗cn)2 +

1
cn

(λ̄− cnỹ∗cn) +
1

4c2n

]
<

1
2cn

cn

(
(λ̄− cnỹ∗cn) +

1
2cn

)
=

1
2cn

sgncn(λ̄− cnỹ∗cn).

Thus, we can infer that∫
Ω

| p̃∗cn λ̃
∗
cn |dx =

∫
S

|p̃∗cn λ̃
∗
cn |dx+

∫
Ω\S
|p̃∗cn λ̃

∗
cn |dx

≤ 1
2cn

∫
S

|p̃∗cnsgncn(λ̄− cnỹ∗cn)|dx+ |p̃∗cn |L2(Ω\S)|λ̃∗cn |L2

≤ 1
2c2n
|µ̃∗cn |L1 +

(∫
Ω

sgncn(λ̄− cnỹ∗cn)p̃∗cn p̃
∗
cndx

)1/2

|λ̃∗cn |L2

≤ 1
2c2n
|µ̃∗cn |L1 +

(
C

cn

)1/2

|λ̃∗cn |L2
n→∞−→ 0,
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where the next to the last inequality comes from the fact that sgncn(λ̄−cnỹ∗cn) = 0 implies maxcn{λ̄−cnỹ∗cn , 0} =
0 which in turn implies λ̃∗cn = 0, and 0 ≤ sgncn(λ̄− cnỹ∗cn) ≤ 1. The last inequality uses (4.16). From

max{|µ̃∗cn |L1 , |λ̃∗cn |L2 , |p̃∗cn λ̃
∗
cn |L1} ≤ C,

with C independent of {cn}, it follows that p̃∗cn λ̃
∗
cn converges to p∗λ∗ weakly* in L∞(Ω)∗. Thus we derive

p∗λ∗ = 0 a.e. in Ω.
We further have

−µ̃∗cn ỹ
∗
cn = −cnsgncn(λ̄− cnỹ∗cn)p̃∗cn ỹ

∗
cn

n→∞−→ 0 in L1(Ω). (4.19)

In fact, we define T = {x ∈ Ω|sgncn(λ̄− cnỹ∗cn)(x) > 0}, and consider∫
Ω

| µ̃∗cn ỹ
∗
cn |dx = cn

∫
Ω

|sgncn(λ̄− cnỹ∗cn)p̃∗cn ỹ
∗
cn |dx

≤ cn(sgncn(λ̄− cnỹ∗cn)p̃∗cn , p̃
∗
cn)1/2

(∫
T

sgncn(λ̄− cnỹ∗cn)|ỹ∗cn |
2dx
)1/2

≤ (sgncn(λ̄− cnỹ∗cn)p̃∗cn , p̃
∗
cn)1/2

(∫
Ω

(
1

2cn
+ λ̄

)2

dx

)1/2

.

Finally, note that due to (sgncn(λ̄− cnỹ∗cn)p̃∗cn , p̃
∗
cn) ≤ (C/cn) (cf. (4.16)) it follows that

(sgncn(λ̄− cnỹ∗cn)p̃∗cn , p̃
∗
cn)1/2

(∫
Ω

(
1

2cn
+ λ̄

)2

dx

)1/2

n→∞−→ 0.

From (4.7) we derive that ỹ∗cn is bounded in H2(Ω), and since H2(Ω) is compactly embedded in Co(Ω̄),
equation (4.19) yields µ∗y∗ = 0 a.e. in Ω, which constitutes the second part of (4.10).

Next let χ ∈ C1(Ω). Then it ensues that

(ỹ∗cn − yd, χỹ
∗
cn) + aũcn (p̃∗cn , χỹ

∗
cn) + (cnsgncn(λ̄− cnỹ∗cn)p̃∗cn , χỹ

∗
cn) = 0.

As cn →∞ this yields (4.13).

To interpret µ∗ we assume that multipliers in the classical sense exist, i.e. we can set up the Lagrangian
for (P) with (1.4) replaced by (1.5), which is

L(y, u, λ, p, ν1, ν2, ν3) = Ju(y) + au(y, p)− (f(u) + λ, p)− (ν1, λ)− (ν2, y) + ν3(λ, y),

and consider the corresponding first order system

0 ≤ (∇uL, u− u∗) = (αB?Bu∗ − e′(u∗)∇y∗ · ∇p∗ − F ?p∗, u− u∗) for all u ∈ U,
0 = ∇yL = y∗ − yd +Au

∗
p∗ − ν∗2 + ν∗3λ

∗, (4.20)
0 = ∇λL = −p∗ − ν∗1 + ν∗3y

∗, (4.21)

0 = ∇pL = Au
∗
y∗ − f(u∗)− λ∗, (4.22)

0 = ∇ν3L = (λ∗, y∗), (4.23)
0 = (λ∗, ν∗1 ), 0 ≤ λ∗, 0 ≤ ν∗1 , (4.24)
0 = (y∗, ν∗2 ), 0 ≤ y∗, 0 ≤ ν∗2 . (4.25)
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Equation (4.20) suggests to set µ∗ = ν∗3λ
∗− ν∗2 . Then (4.20) formally corresponds to (4.8). From the definition

of µ∗ and (4.21) we obtain (4.10) by pointwise multiplication with y∗ and λ∗, respectively. Finally, (4.23)–(4.25)
yield (4.12).

4.3. Rough coefficients

Up to now we have assumed that the parameter u satisfies u ∈ {H2(Ω)|u ≥ ε > 0}. In this section we reduce
the regularity requirements, i.e. we consider the case of

u ∈ U := {w ∈ L∞(Ω) ∩ U|0 < ε ≤ w ≤ ε < +∞},

where the Hilbert space U is compactly embedded in some Lr(Ω), with r ≥ 2 sufficiently large (as specified
in the proof of Lem. 4.6 below). Moreover, U is endowed with the norm | · |U = | · |U . In this situation,
|Aun − Au|H−1←H1

o
→ 0 cannot be derived from the same arguments as in the proof of Lemma 2.1. Hence,

we need to establish the complete continuity of u 7→ y(u) in the present case in order to be able to apply the
techniques of the previous sections. Throughout this section we shall assume that Ω ⊂ Rd, with d ∈ {1, 2}, is
bounded with sufficiently smooth boundary, and f(u) ∈ L2(Ω) for all u ∈ U . Then, for instance, the choice
U = H1(Ω), | · |U = | · |H1 , frequently arising in applications is covered by the above requirements.

First note that for every u ∈ U by standard arguments the variational inequality

au(y, v − y)− (f(u), v − y) ≥ 0 for all v ∈ K, y ∈ K, (4.26)

admits a unique solution y(u) ∈ K, which satisfies |y(u)|H1
o
≤ C|f(u)|H−1 for some constant C. Moreover,

from [3, Chap. 1, Th. 4.2] it follows that there exists q > 2 such that for f(u) ∈W−1,q(Ω) the estimate

|y(u)|W1,q
o
≤ C|f(u)|W−1,q (4.27)

holds. Note that L2(Ω) is continuously and densely embedded in W−1,q(Ω) for q > 2.

Lemma 4.6. The mapping Φ : U → H1
o (Ω), Φ(u) = y(u), is completely continuous.

Proof. Observe that due to (4.27) there exists a subsequence {n(k)} such that {y(un(k))} converges to ȳ weakly
in H1

o (Ω). Consider∣∣aun(k)(y(un(k)), v)− au(ȳ, v)
∣∣ ≤ ∣∣aun(k)(y(un(k)), v)− au(y(un(k)), v)

∣∣+
∣∣au(ȳ − y(un(k)), v)

∣∣
≤ |e(un(k))− e(u)|Lq′ |∇y(un(k))|Lq |∇v|L2 (4.28)

+
∣∣au(ȳ − y(un(k)), v)

∣∣ . (4.29)

for all v ∈ H1
o (Ω). For the last inequality above we used (4.27) and Hölders inequality with q′ = 2q/(q−2). Since

un(k) ∈ U and thus 0 < ε ≤ un(k) ≤ ε <∞ for all k, un ⇀ u in U , y(un(k)) ⇀ ȳ in H1
o (Ω), and e ∈ C2(R+;R+),

we have limk |au(ȳ − y(un(k)), v)| = 0 for all v ∈ H1
o (Ω). Hence, the term in (4.29) vanishes as k → ∞. For

(4.28) consider the fact that U is compactly embedded in Lq
′
(Ω) by assumption, and that due to u, un(k) ∈ U

for all k and e ∈ C2(R+;R+) there exists a positive constant L such that

|e(un(k))− e(u)|Lq′ ≤ L|un(k) − u|Lq′ → 0 for k →∞.

Thus we obtain

lim
k→∞

(
aun(k)(y(un(k)), v)− (f(un(k)), v)

)
= au(ȳ, v)− (f(u), v) (4.30)
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for all v ∈ H1
o (Ω). Together with (4.27) we further infer∫

Ω

|(e(u)− e(un(k)))∇y(un(k))∇y(un(k))|dx ≤ C|u− un(k)|Lq′ |f(un(k))|2W−1,q .

Note that due to un ⇀ u in U , the sequence {un} is uniformly bounded. Therefore we have

lim
k→∞

∫
Ω

|(e(u)− e(un(k)))∇y(un(k))∇y(un(k))|dx = 0.

The convexity of v 7→
∫

Ω
e(u)∇v∇vdx implies lim infk→∞ au(y(un(k)), y(un(k))) ≥ au(ȳ, ȳ). Hence, from (4.30)

it follows that

au(ȳ, v − ȳ) =
∫

Ω

e(u)∇ȳ∇(v − ȳ)dx ≥
∫

Ω

f(u)(v − ȳ)dx = (f(u), v − ȳ) for all v ∈ K.

Due to the uniqueness of the solution of the variational inequality (4.26) we have ȳ = y(u). Since u ∈ U we
infer ∫

Ω

e(u)∇(y(un(k))− ȳ)∇(y(un(k))− ȳ)dx ≥ C|y(un(k))− ȳ|2H1
o
≥ 0.

The fact that y(un(k)) is the unique solution of (4.26) with u replaced by un(k) implies

au(y(un(k))− ȳ, y(un(k))− ȳ) ≤ au(y(un(k)), y(un(k)))− 2au(y(un(k)), ȳ) + au(ȳ, ȳ)
+ aun(k)(y(un(k)), v − y(un(k)))− (f(un(k)), v − y(un(k)))

= aun(k)(y(un(k), v)− (f(un(k)), v − y(un(k))) + au(ȳ, ȳ)
+ au(y(un(k)), y(un(k)))− aun(k)(y(un(k)), y(un(k)))− 2au(y(un(k)), ȳ)

for all v ∈ K. Hence, we obtain

lim inf
k→∞

au(y(un(k))− ȳ, y(un(k))− ȳ) ≤ lim sup
k→∞

au(y(un(k))− ȳ, y(un(k))− ȳ)

≤ au(y(u), v − y(u))− (f(u), v − y(u)).

For v = y(u) ∈ K the previous computations result in

lim
k→∞

|y(un(k))− y(u)|H1
o

= 0.

The proof of µ∗y∗ = 0 a.e. in Ω (see Th. 4.5) is now based on the fact that L2(Ω) is continuously embedded
in W−1,q(Ω), with q > 2, and hence {ỹ∗cn} is uniformly bounded in W 1,q

o (Ω). Since W 1,q
o (Ω) is compactly

embedded in Co(Ω̄), and thus {ỹ∗cn} converges to y∗ strongly in Co(Ω̄), the claim µ∗y∗ = 0 a.e. in Ω follows
essentially from the same arguments as in the proof of Theorem 4.5.

Note that for U = H1(Ω), | · |U = | · |H1 , in the case of d = 1 the Sobolev space H1(Ω) is compactly embedded
in Co,ν(Ω̄), with 0 < ν < 1/2, and thus Lemma 2.1 can be applied instead of Lemma 4.6.

5. Numerical realization

We shall now discuss some issues concerning the discretization of the first order system (4.8)–(4.12), and
suggest an algorithm for solving the discretized system. Finally, a brief report on numerical results will end the
section.
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5.1. Discretization

For the discretization of the function spaces U , H1
o (Ω), L2(Ω) and L∞(Ω)∗ we use finite dimensional subspaces

Uh, Wh, Lh and Mh, respectively. Let ui ≥ 0, i = 1, . . . , NUh , wi, i = 1, . . . , NWh
, li, i = 1, . . . , NLh and mi,

i = 1, . . . , NMh
, denote the linearly independent basis functions of the respective finite dimensional subspace.

Then, in terms of the basis functions, we obtain the following finite dimensional approximations of u ∈ U ,
y, p ∈ H1

o (Ω), λ ∈ L2(Ω), µ ∈ L∞(Ω)∗:

uh(x) =
NUh∑
i=1

Uiui(x), yh(x) =
NWh∑
i=1

Yiwi(x), ph(x) =
NWh∑
i=1

Piwi(x),

λh(x) =
NLh∑
i=1

Λili(x), µh(x) =
NMh∑
i=1

Mimi(x).

Let U = (U1, . . . , UNUh )T ∈ RNUh , and analogously for Y , P , Λ and M . Next define Ah(U) ∈ RNWh×NWh and
Ch(Y ) ∈ RNWh×NUh by

WTAh(U)Y = (eh(uh)∇yh,∇wh) for all wh ∈Wh,

V TCh(Y )TP = (e′h(uh)vh,∇yh · ∇ph) for all vh ∈ Uh,

where eh(vh)(x) =
∑NUh
i=1 e(Vi)ui(x) and e′h(vh)(x) =

∑NUh
i=1 e′(Vi)ui(x) for all vh ∈ Uh. Note that V TCh(Y )TP =

V TCh(P )TY . Moreover, we define Bh ∈ RNUh×NUh by UTBhQ = (uh, qh)U for uh, qh ∈ Uh, with (·, ·)U de-
noting the inner product of U , and Fh ∈ RNWh×NUh by QTFTh P = (F ?ph, qh). Further we use the following
notation for mass matrices: MUh

Wh
∈ RNUh×NWh is defined by (MUh

Wh
)i,j = (ui, wj).

With these definitions the discretizations of (4.8), (4.9) and (4.11) become

Ah(U∗)P ∗ +MWh
Mh

M∗ +MWh
Wh

Y ∗ −MWh
Lh

Yd = 0NWh , (5.1)

(αBhU∗ + Ch(Y ∗)TP ∗ − FTh P ∗)T (U − U∗) ≥ 0 for all U ∈ V, (5.2)

Ah(U∗)Y ∗ −MWh

Lh
Λ∗ − FhU∗ −MWh

Lh
G = 0NWh , (5.3)

with V = {U ∈ RNUh |uh ∈ Uh} the set of feasible coefficient vectors. The pointwise almost everywhere
conditions (4.10) and (4.12) are enforced at the nodal points. For this purpose we assume that N = NWh

=
NLh = NMh

, and wi ≥ 0, li ≥ 0 for all i = 1, . . . , N . The complementarity condition (4.12) is then defined in a
(vector) componentwise sense, i.e. ΘN : RN × RN → RN ,

ΘN(Λ, Y ) = (φ(Λ1, Y1), . . . , φ(ΛN , YN ))T ,

with φ : R2 → R denoting a complementarity function. One option for φ is the Fischer-Burmeister function
φ(a, b) = φFB(a, b) =

√
a2 + b2 − (a + b); see [13]. Let • denote the componentwise product of vectors. Then

the discretization of (4.10) and (4.12) becomes

P ∗ • Λ∗ = 0N , (5.4)
M∗ • Y ∗ = 0N , (5.5)

ΘN (Λ∗, Y ∗) = 0N . (5.6)
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An alternative representation of the discretized optimality system is obtained by using M∗ = R∗ • Λ∗ with
R∗ ∈ RN . If strict complementarity is satisfied, i.e. Y ∗i = 0 implies Λ∗i > 0, then (5.1)–(5.6) are equivalent to

Ah(U∗)P ∗ +MWh

Mh
(R∗ • Λ∗) +MWh

Wh
Y ∗ −MWh

Lh
Yd = 0NWh ,

(αBhU∗ + Ch(Y ∗)TP ∗ − FTh P ∗)T (U − U∗) ≥ 0 for all U ∈ V,
Ah(U∗)Y ∗ −MWh

Lh
Λ∗ − FhU∗ −MWh

Lh
G = 0NWh ,

ΘN (Λ∗, Y ∗) = 0N ,
P ∗ −R∗ • Y ∗ = 0N . (5.7)

Note that the number of equations is reduced, since (5.7) replaces (5.4) and (5.5). However, we prefer to
use (5.1)–(5.6) instead of the above smaller system due to the fact that the latter system requires strict comple-
mentarity to be satisfied. Although this might be the case at an optimal solution of the discrete problem to (P),
during the iterations of the algorithm, which will be used, the iterates may (nearly) lack strict complementarity,
and hence (5.7) causes numerical instabilities.

5.2. Algorithmic issues

Before we shall discuss the algorithm, another important property already briefly alluded to in the intro-
ductory section is addressed. Due to the inverse nature of (1.1), without further assumptions the parameter u
cannot be identified on the singular set So = {x ∈ Ω|∇y(x) = 0}; see [17] for a discussion on this issue in the
case of variational equalities. On the other hand, as it is seen from its definition Ah(U∗) depends on U∗|So,h ,
with So,h the discrete counterpart of So. In order to cope with this difficulty, from now on we assume that a
(sufficiently good) approximation of u∗|S, with So ⊂ S, is available. Let U∗a ∈ R|Sh|, with So,h ⊂ Sh, denote
the discretized available information on the parameter, and Un ∈ V an iterate of the subsequent algorithm.
Then we fix U∗a in Un, i.e. Un|Sh = U∗a, in all iterations. Hence, compared to the original finite dimensional
system (5.1)–(5.6) the number of unknowns is reduced by |Sh| ≤ N .

In order to incorporate the inequality condition (5.2), the iterates of the subsequent algorithm satisfy Un ∈
intV, the (strict) interior of V, for all iterations n. Hence, (5.2) becomes

αBhU + Ch(Y )TP − FTh P = 0NUh . (5.2’)

during the iteration. Due to the fact that (5.1),(5.2’), (5.3)–(5.6) is an overdetermined system, i.e. 5N +NUh
equations have to be satisfied by 4N + NUh − |Sh| unknowns, the computation of a solution is realized by a
least squares technique. For this purpose, we assume that the complementarity function φ is chosen such that

ΨN (Λ, Y ) = ΘN (Λ, Y )TΘN(Λ, Y ) ∈ C1(R2N ;R). (B)

The Fischer-Burmeister function introduced in Section 5.1 fulfills (B). For a corresponding proof we refer to [13].
The Moreau-Yosida based function φMY (a, b) = a − max{a − cb, 0} with c > 0, on the other hand, does not
satisfy (B).

Let X = (Y , Û, P ,Λ,M) ∈ RNv , with Nv = 4N +NUh − |Sh| and Û the unknown part of U , and let fi(X),
with i = 1, . . . , 6, denote the left hand sides of equations (5.1), (5.2’), (5.3)–(5.6) at X with U∗|Sh = U∗a fixed,
and define

F(X) =
1
2

6∑
i=1

fi(X)T fi(X). (5.8)

Note that F is continuously differentiable, and for φ = φFB we have

∇(Λ,Y )

(
f6(X)T f6(X)

)
= ∇(Λ,Y )ΨN(Λ, Y ) = 2∂ΘN(Λ, Y )TΘN (Λ, Y ),
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with ∂ΘN(Λ, Y ) denoting the generalized Jacobian of ΘN in Clarke’s sense [11], which exists by convexity of φ.
Clearly, we wish to compute X∗ such that F(X∗) = 0. Hence,

X∗ = argmin{F(X)|X = (Y , Û, P ,Λ,M) ∈ RNv , U ∈ V}.

Since we expect that (5.8) results in either a zero residual or a small residual problem, a Gauss-Newton-type
method [12] for the iterative solution of the discretized first order conditions is applied.

Let us address some details of our implementation: We use the forcing function ρ : R→ R+, with ρ(z) = z3 for
z ≥ ε > 0, where ε � 1, and ρ(z) = 0 otherwise, to modify the Gauss-Newton iteration matrix J(Xn)TJ(Xn)
by adding ρ(F(Xn)) I, with I ∈ RNv×Nv the unit matrix. Here J(X) ∈ RNe×Nv denotes the Jacobian of
(f1, f2, f3, f4, f5, f6)T (X) ∈ RNe , with Ne = 5N + NUh . This technique enhances robustness of the Gauss-
Newton method and corresponds to a Levenberg-Marquardt-type approach. Globalization, i.e. damping of the
full stabilized Gauss-Newton method for convergence from an arbitrary starting point, is achieved by a Wolfe
type line search procedure based on quadratic interpolation. Whenever the stabilized Gauss-Newton direction
Dn
sGN is not sufficiently descent, i.e.

∇F(Xn)TDn
sGN > −ν|Dn

sGN |l2(RNv )|∇F(Xn)|l2(RNv ),

with ν > 0 small, then the steepest descent direction Dn
S = −∇F(Xn) is used with a safeguarded Armijo type

line search such that strict feasibility of Un+1 is guaranteed. In order to maintain the requirement Un ∈ intV
we choose the initial data such that Uo ∈ intV, and restrict, if necessary, the length of the search direction for
Û such that strict feasibility for the full step is conserved. This is done by means of a trust region technique.

5.3. Results

Subsequently we report on some results of our test runs. In all examples listed below the domain was chosen
to be Ω = (0, 1)2. For our finite element discretization we use a classical triangulation with mesh size h = 2−5

and piecewise linear elements. Within this feasibility study we restrict ourselves to this simple discretization,
although the different regularity properties of the variables suggest to use different elements. We believe that
this issue requires further investigation which is not the focus of the present research. Typically in our tests,
we first fix the control u = ū and solve the forward problem, i.e. the variational inequality resulting from (1.4),
on a fine grid. Afterwards we use the restriction (to the coarser grid) of the solution (state) of the forward
problem, y∗h,V I , as desired state ydh and try to recover uh on the observation part Ω̂ = Ω \ S of Ω. On S we fix
uh|S = ūh|S. We shall also report on test runs where we impose noise on ydh.

Let us point out some of the properties of the examples considered below. From the solutions to the discretized
problems – see Figures 1–5 – one can conclude that the example in Section 5.3.1 safely satisfies the strict
complementarity condition, thus allowing to apply the classical (Lagrangian) theory for deriving a first order
optimality condition. The examples in Section 5.3.2–5.3.3 exhibit a certain degree of degeneracy, i.e., typically
yh is close to zero on the part of the inactive set Ih = {x ∈ Ω|yh(x) > 0} close to the active (or coincidence)
set Ah = Ω \ Ih. Although the classical theory could be applied, typically numerical algorithms based on the
classical first order system exhibit difficulties in locating Ih and Ah. The final example in Section 5.3.4 is
constructed in a way that the classical theory fails.

5.3.1. Example

We consider the variational inequality arising from the Reynolds lubrication equation; see for instance
[2, 9, 10,15,16] for details. The control u has the meaning of the height of the gap between two rotating

surfaces, and the state y corresponds to the pressure in the lubricant, which fills the gap. Here

e(z) = z3 and f(u) = − ∂u

∂x2
·
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Figure 1. Observation part Ω̂h and optimal primal variables for Example 5.3.1.

Table 1. Results for Example 5.3.1.

#it F∗ #feval rel(Y ∗) rel(U∗) rel(Λ∗)
35 8.39E-8 293 0.142 0.074 0.634

We use ū = 1+0.5 cos(2πx2), and the regularization parameter α = 10−3. The graph in the upper left corner
of Figure 1 displays the observation part Ω̂h. For the inverse coefficient problem the following initial values
were used:

Y o = Y d, Û
o

|Ω̂h ≡ 2, Mo
|Ω0
Y d

≡ 0.1, Mo
|Ω+
Y d

≡ 0,

Λo|Ω0
Y d

≡ 1.5, Λo|Ω+
Y d

≡ 0, P o|Ω0
Y d

≡ 0, P o|Ω+
Y d

≡ 0.001,

where Ω0
Y d

= {i|(Y d)i ≤ 0} and Ω+
Y d

= {i|(Y d)i > 0}.
In Table 1, #it denotes the number of iterations, F∗ is the function value at termination, #feval is the

number of function evaluations and

rel(Y ∗) =
|Y ∗ − Y ∗V I |∞
|Y ∗V I |∞

, rel(U∗) =
|U∗ − U |∞
|U |∞

, rel(Λ∗) =
|Λ∗ − Λ∗V I |∞
|Λ∗V I |∞

denote relative errors, where (Y ∗, U∗,Λ∗) are the values at the termination of the algorithm. Moreover, Λ∗V I
represents the restricted multiplier obtained from solving the forward problem on a fine grid.
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Figure 2. Observation part Ω̂h and optimal primal variables for Example 5.3.2.

Table 2. Results for Example 5.3.2.

η #it F∗ #feval rel(Y ∗) rel(U∗) rel(Λ∗)
η00 17 5.00E-10 42 0.056 0.168 0.148
η01 43 5.00E-10 200 0.073 0.200 0.128
η10 44 7.07E-10 385 0.061 0.157 0.618

The final iterations primarily reduce the relative gradient norm to the accuracy demanded by the stopping
rule, while the function values are only slightly decreasing. All iterations accept the stabilized Gauss-Newton
direction, i.e. Un ∈ intV without invoking the trust region modification.

5.3.2. Example

For the forward problem we use ū = 0.25(sin2(2πx1) + cos(2πx2)) + 1. The forcing term is f(u) = u −
π cos(2πx1) + 0.5π sin(2πx2), and e(z) = (z + 0.01)2. The regularization parameter is chosen to be α = 10−4.
The same starting values like in Example 5.3.1 were chosen. Figure 2 displays the observation part Ω̂h and the
optimal primal variables. In Table 2 the quantities η10 and η01 denote uniformly distributed random noise in
[0; 0.01] and [0; 0.001], respectively, and η00 represents the noise-free case.

The number of iterations, the number of function evaluations and the average relative error, i.e. (rel(Y ∗)+
rel(U∗) +rel(Λ∗))/3, increase with increasing noise level. This dependence on the noise level is typical within a
range of test examples.
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Figure 3. Observation part Ω̂h and optimal primal variables for Example 5.3.3.

Table 3. Results for Example 5.3.3.

η #it F∗ #feval rel(Y ∗) rel(U∗) rel(Λ∗)
η00 38 1.78E-9 244 0.149 0.044 0.536
η01 40 1.80E-9 318 0.789 0.127 0.536
η10 167 3.70E-9 1048 0.825 0.170 0.425

5.3.3. Example

We use ū = −2 ((x1 − 0.5)2 + (x2 − 0.5)2) + 2 in the forward problem. The forcing term is chosen to be
f(u) = ∂u

∂x1
+ ∂u

∂x2
+ g with g ≡ −5 on Ω+ and g ≡ 0 on Ω \ Ω+, where Ω+ = {x ∈ Ω|ū ≥ 1.75}. We further

have e(z) = z and α = 10−4. Again, we use the same start-up values as for Example 5.3.1. Figure 3 contains
the observation part and the optimal primal variables. In Table 3, η01 and η10 denote uniformly distributed
random noise in [0; 0.0001] and [0; 0.001], respectively.

Concerning the number of iterations, the number of function evaluations and the average relative errors the
same conclusions as for Example 5.3.2 can be drawn. The significant change for η01 and η10 can be explained by
the fact that y∗h is less than 2E-3 on large parts of Ω̂h, and thus the relative noise level in ydh is large. Therefore,
uh has to be recovered from very poor data.

5.3.4. Example

The data are as follows: ū = 1 + x1x2, F ≡ 0, and g = A(ū)y(ū)− λ(ū) with

y(ū) = 100
(
max{0, x1 − 0.4}2 max{0, 0.6− x1}2 max{0, x2 − 0.25}2 max{0, 0.75− x2}2

)
,

λ(ū) = max{0, 0.25− x1}2 + max{0, x1 − 0.75}2.
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Figure 4. Critical set (dark gray) of lack of strict complementarity.
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Figure 5. Observation part Ω̂h and optimal primal variables for Example 5.3.4.

Note that y(ū) with corresponding multiplier λ(ū) is the optimal solution of the lower level problem for
u = ū. The dark gray region in Figure 4 corresponds to the discrete analogue of the set {x ∈ Ω|y(ū)(x) =
0 and λ(ū)(x) = 0}, i.e. the set of lack of strict complementarity. From this figure we can see that the classical
theory cannot be applied. In Figure 5 the observation set and the optimal primal solution are shown. The
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results in Table 4 of a run of our algorithm show that the new first order characterization is effective, and that
the algorithm is not affected by lack of strict complementarity.

Table 4. Results for Example 5.3.4.

#it F∗ #feval rel(Y ∗) rel(U∗) rel(Λ∗)
20 7.98E-9 74 1.3E-5 2.0E-4 0.13

The following starting values were used:

Y o = Y d, Û
o

|Ω̂h ≡ 1.5, Mo
|Ω0
Y d

≡ 1.0, Mo
|Ω+
Y d

≡ 0,

Λo|Ω0
Y d

≡ 0.5, Λo|Ω+
Y d

≡ 0, P o|Ω0
Y d

≡ 0, P o|Ω+
Y d

≡ 0.1,
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