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ONE-DIMENSIONAL KINETIC MODELS OF GRANULAR FLOWS

GlUSEPPE TOSCANI 1

Abstract. We introducé and discuss a one-dimensional kinetic model of the Boltzmarm équation
with dissipative collisions and variable coefficient of restitution. Then, the behavior of the Boltzmann
équation in the quasi elastic limit is investigated for a wide range of the rate function. By this limit
procedure we obtain a class of nonlinear équations classified as nonlinear friction équations. The
analysis of the cooling process shows that the nonlinearity on the relative velocity is of paramount
importance for the finite time extinction of the solution.
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L INTRODUCTION

Granular materials consist of a large number of small discrete grains. The individual grains interact by nearly
instantaneous collisions, much like in the classical model of a gas. Since the grains must be cohesionless, they
should only interact like hard-spheres, without long-range forces of any kind.

The crucial différence between collisions of granular and ideal gas particles, relies in the intrinsic inelasticity
of the collisions between grains. The lost energy heats the grains, but, unlike a classical fluid, this energy is not
returned in the form of random motion, or heat, of the grains themselves. In this sense, there is dissipation of
energy. The dissipative nature of the part iele collisions will bring a perturbed system quickly to the rest.

For identical particles, the energy lost in a collision is usually expressed by the loss of center of mass velocity as

v ' - w ' = - / i ( v - w ) (1)

where v, w and v', w' are the velocities of two grains before and after a collision respectively, and 0 < h < 1 is
the coefficient of restitution. Perfectly elastic collisions correspond to h = 1, while perfectly inelastic collisions
are obtained if h = 0. In this latter case the particles come out of the collision with the same velocity.

Granular materials composed by a large number of grains whose size is of a few microns are mesoscopic
in nature [12], and the natural way to describe their évolution is to use methods borrowed from the kinetic
theory of rarefied gases [8] and appropriately modined. This approach is at the basis of many recent studies
(see [4,105 12,17] and the références therein), where the basic models are Boltzmann-like équations for hard-
sphères undergoing partially inelastic collisions, with a fixed coefficient of restitution h. Like in the classical
Boltzmann équation [8], the collision kernel is proportional to the relative velocity \vf — wf\.

Two phenomena are peculiar to granular materials: collapse and clustering. The fixst is a kinetic and the
second is a hydrodynamic phenomenon. They are results of the inelastic nature of these Systems and have no
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equivalent in atomic gases. The essence of the collapse phenomenon can be easily understood by observing a
single inelastic bail dropped onto a surface. It will come to rest in a finite time, but it will have experienced (at
least, in principle) an infinité number of bounces before it does so. A similar effect occurs in many-body Systems,
where the surface is replaced by a collection of particles and where relative velocities of particles become very
small, leading (via a theoretically infinité number of collisions) to the émergence of strings of particles whose
relative velocities vanish. This mechanism is responsible of noticeably difficulties in numerical simulations since
a very large number of collisions occur in finite time while nothing much changes in the System [12].

In all the kinetic models quoted above [4,10,12,17], inelastic collisions are described by a flxed coefficient of
restitution h. This choice, while absolutely reasonable from the point of view of the mathematical complexity
of the model, appears inadequate to describe the whole variety of behaviors of these materials.

More accurate kinetic models could be obtained via a more précise description of the inelastic collisions.
Maybe the most natural way to obtain this improvement is to consider collisions between grains in which
the coefficient of restitution h can vary. More realistic coefficients of restitution that depend on the relative
velocity have been treated in the pertinent literature. For example, a variable restitution coefficient, in such
a way that collisions with small relative velocity are close to be elastic, has been recently used in molecular
dynamics simulation of oscillated granular media [6]. In another recent paper [11], it has been shown that
a variable coefficient of restitution with appropriate behavior for small values of the relative speed prevents
inelastic collapses.

In this paper, we propose a (one-dimensional) model of the Boltzmann équation for hard-spheres performing
partially inelastic collisions, where the coefficient of restitution h dépends on the relative speed. The choice of a
one-dimensional Boltzmann équation represents a compromise between the requirement to have a good approx-
imation of dilute granular Systems from the physical point of view, and reasonable difficulties of solutions both
from the mathematical and numerical point of view [18]. In fact, on the contrary to elastic collisions, partially
inelastic collisions have a nontrivial outcome as well in one dimension, and the one-dimensional idealization is
a nontrivial adjunct to more realistic studies [16].

By this kinetic model we will try to clarify the rôle of a variable coefficient of restitution in the collapse
(cooling) phenomenon. To do this, we will study two different asymptotic problems related to the spatially
homogeneous équation. The fîrst one is a rigorous study of the Boltzmann équation in the quasi elastic limit [17].
As explained in Section 4, in this limit, solutions of the Boltzmann équation are well approximated by solutions
of nonlinear friction type équation, in which the nonlincarity is dctcrrnincd by the dépendance of the coefficient
of restitution on the relative velocity. The second problem is the analysis of the cooling process of the spatially
homogeneous granular gas. We study this problem both for the Boltzmann équation and for the nonlinear
frictions équations. We find that the type of dependence of the coefficient of restitution on the relative velocity
is responsible of completely different behaviors. In accord with the resuit of [11], it can be shown that no finite
inelastic collapse can occur for hard-spheres interactions even if the coefficient of restitution dépends on the
relative velocity so that grains are close to be inelastic for small relative velocity. On the contrary, the study
of the self-similar solutions of the nonlinear friction équations suggests that finite extinction can occur if the
coefficient of restitution has an appropriate behavior with respect to the relative velocity.

Some of these problems have been addressed before. In particular, a different kinetic model has been recently
proposed in [7]. This model is reminiscent of the Boltzmann équation for Maxwell molécules [8], where the
collision kernel does not depend on the relative velocity. A nonlinear friction équation corresponding to hard-
spheres with constant coefficient of restitution has been studied by [4,17].

2. THE KINETIC MODEL

Consider a System of (partially) inelastic point particles, ail with the same mass, moving on a line. If we
impose that the collisions conserve momentum but dissipate kinetic energy, the post-collisional velocities v' and
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wf are related to v and w by

v' = -{v + w) + -{y - w)h; wf = ~(v + w) - -(v - w)h. (2)
Z Z 2i &

Hère, h € [0,1] is the coefficient of restitution, and v' — wf ~ h(v — w). This notation is consistent with particles
that simply cross each other in a perfectly elastic collision, where h ~ 1. If h = 0 the collisions are perfectly
inelastic, and the particles come out of the collision with the same velocity. In between these two extrêmes, the
System is a simple model of a one dimensional "granular medium".

As discussed in [12], expérimental works show that the coefficient of restitution may depend on the relative
velocity. The grains are close to be elastic for binary collisions with a small relative velocity, while they exhibit
a certain degree of inelasticity when the relative velocity in the binary collision is high. A simple way to take
into account this phenomenon, is to consider the restitution coefficient in the form

where the exponent 7 characterizes the asymptotic of the restitution coefficient with respect to the relative
velocity. The variable 6 E M+ furnishes a measure of the degree of inelasticity of the collision, and we will call it
by now inelasticity parameter. Purely elastic collisions are obtained for 6 — 0, while perfectly inelastic collisions
correspond to 6 = +00. For any fixed value of the inelasticity parameter #, a positive value of 7 corresponds to
grains that are close to be elastic for small relative velocity. Of course, 7 < 0 gives the opposite phenomenon,
namely the grains are close to be elastic for large relative velocities. We will refer to this case as the case of
"anomalous" granular materials. To any collision we associate a kernel /3(9)\v — w\ which takes into account
bot h the rate function of the rigid sphères interactions, and the probability that collisions with a degree of
inelasticity 6 occur. Let us dénote by v*(v:w) and w*(v^w) the pre-collisional velocities corresponding to v,w.
If J is the Jacobian of the transformation (v,w) —• (vf ,wf), a direct computation shows that

J = J(6\v -w\^) = h{6\v - H 7 ) (1 - j9\v - w\^h(0\v - ™|7)) • (4)

Considering that 6\v — w^hlO^ — w|7) < 1, it turns out that, for all 7 < 1, J{0\v — w|7) is nonnegative. In
addition, J{r) is strictly positive on every compact set of M+. Consequently, the pre-collisional velocities v*
and w* are well-defined for all (v,w).

With these choices, following the standard procedures of kinetic theory, we introducé the phase-space density
function /(x^v^t) defining f{x,v,t)dxdv to be the number of particles located between x and x + dx with
velocities between v and v + dv at time t. If we assume that the probability of multiple collisions is negligible,
and that the probability of a binary collision between two particles with velocities v and w in volves only the
product f(v)f{w), "molecular chaos assumption", the governing équation for ƒ is a one-dimensional Boltzmann
équation:

ït + v^ = QJ{fJ)(x,v,t), (5)

where Q7 is the so-called granular collision operator, which describes the change in the density function due to
création and annihilation of particles in binary collisions:

Qy(fJ)= f f i3(e)\\v*-w*\-f(v*)f(w*)-\v-w\f(v)f(w))dwd6. (6)

For particular choices both of the function j3 and of the exponent 7, the collision operator (6) reduces to well-
known models. If 7 = 0, and ƒ?(#) equals the Dirac delta function 6(9 — (1 — q)/q)^ where q < 1 is a positive
constant, we obtain the Boltzmann équation introduced in [10,17]. This équation consider s the grains like rigid
sphères, and has constant coefficient of restitution h = q.
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Remark 2.1. Boltzmann operator (6) has much in common with the one-dimensional collision operator of Kac
caricature of a Maxwell gas [13], and its generalization [9]. Kac operator, which is a very popular model in
kinetic theory of rarefied gas, reads

Qk(fJ) = f T 0(\9\) [ƒ(«')ƒ(«>') - f(v)f(w)} dwdO, (7)

and the post-collisional velocities are given by

v' = vcosO — u?sin0, w' = vsinO + wcosO (8)

while the rate function /3(-)> which is a uniform probability density in the original Kac model [13], is almost
gênerai in Desvillette's paper [9]. In particular, in [9] by analogy with the non cut-off kernel of the true
Boltzmann équation [8], the function 0(9) has a singularity of the form 0~Q when 9 —> 0+ and 1 < a < 3.

Mutatis mutandis, both models are based on one-dimensional collisions depending on a given parameter 0,
in such a way that mass and momentum are conserved but the energy is dissipated (2), or mass and energy
are conserved, but not the momentum (8). The probability of such an outcome is described by a suitable rate
function, whose properties have been shown to be significant for the regularity of the solution [9], and for the
study of asymptotic problems [19].

Remark 2.2. The choice of the dependence of the coefficient of restitution on the relative velocity we proposed
in (3) is largely arbitrary, and could be modified in many ways. Numerical simulation could help to flnd different
and more accurate expressions. Likewise, the properties of the rate function are largely unknown. In view of the
analogies, some of these properties can be argued looking at the Kac équation, that has been intensively studied
from many years now. In particular, as remarked in [9], if the rate function 0(8) is integrable, the solution to the
spatially homogeneous Boltzmann équation (5) retains memory (at any time T > 0) of the initial distribution,
while this memory is destroyed (as far as the regularity is concerned) in the non cut-off case. This argument
can be used to conclude that, if the rate function j3{9) is integrable, we can not expect collapse in finite time
for the solution of the homogeneous Boltzmann équation with dissipative collisions. In conséquence of this, in
the remaining of this paper we will consider mainly rate functions f3{0) with a non integrable singularity when
9 —> 0+ (0 = 0 corresponds to elastic collisions). As for Kac model, this can be done requiring

13(8) ~ e~a (9)

when 0 -> 0+ , and a € (1,3].

Remark 2.3. For grains colliding according to (2) the energy lost in a single collision is

v2 + w2 - (v2 + w2) - - i ( l - h2){v ~ w)2. (10)

It is clear that any reasonable kernel has to be such that the mean amount of energy transfer is finite. Since

{ l h ) { v w f \ v w \ \ (11)

this corresponds to impose the condition

f 0(0)0 d0<oo. (12)
JR+

As we shall see later on, (12) is the natural condition under which the quasi elastic limit of the Boltzmann
équation (5) obtained formally in [17] can be rigorously justified.
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3. THE HOMOGENEOUS DÏSSIPATIVE BOLTZMANN ÉQUATION

We will start the theoretical analysis of équation (5) by discussing the main properties of the spatially
homogeneous équation,

%=QMJ){v,t), (13)

when the rate function j3 satisfies conditions (9), (12), and 7 < 1. Within these conditions, the Jacobian J is
well-defined, and the mean amount of energy transfer is finite.

Dénote by A4 o the space of all probability measures in M and by

Mp = j/x G Mo : I \v\pfJL(dv) < +oo,p > o | , (14)

the space of all Borel probability measures of finite momentum of order p, equipped with the topology of the
weak convergence of the measures. Several types of metrics on Mp can be considered (see [25]). For the purposes
of this paper we will introducé a class of the so-called minimal metrics.

Let //, v in Mp> and let il(/^, v) be the set of all probability distributions L in .MP(R x R) having \i and v
as marginal distributions. Let

Tp(ij,, v) = inf \v- w\p dL(v, w). (15)
LeTL(ntis) J

Then rp — Tp
p metrizes the weak-* topology TW* on Mp. We note that 7\ is the Kantorovich-Vasershtein

distance of ji and v [14, 21]. For a detailed discussion, and application of these distances to statistics and
information theory, see [20]. The case of particular interest here is p = 2. This is due to the fact that the
a Maxwellian distribution can not be a solution of the inelastic Boltzmann équation (13), while the Dirac
delta distribution is obviously in the kernel of the collision operator (6). Let ̂  be a probability measure with
momentum M. If we dénote with 5(v — M) the Dirac measure centered on Af, it is immédiate to conclude that

, S) = inf ! \v - w\2 dL(u, w) ~ [ {v - M)V(dv, t). (16)

Hence the study of the time-decay of J(v — M)2//(dt;ït) gives at the same time the decay in the T2-metric of
the solution to (13) towards its equilibrium state. We shall discuss this problem in Section 5.

Let TS(R), be the class of all real functions on IR such that gm(v) is Hölder continuous of order 5,

\v — w

the integer m and the number 0 < 5 < 1 are such that m + ö — s, and p(m) dénotes the mth derivative of g.
In this paper, by a weak solution of the initial value problem for équation (13), corresponding to the initial
measure /io(dv) G M2 we shall mean any measure fj, E C^R^, M2) satisfying

— ƒ <p(v)[J,(t,dv) = (Qy(v),<p)

= \ t d9 0(6) f \v~w\ [<p(y') + <p(w') - <p(v) - <p(w)] /x(t, du)/z(t, dw) (18)
1 Jm+ JM*
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for t > 0 and ail <p £ J ^ W , and such that for ail tp G ,F2(R)

f f
lim / ip\v)ji{t^dv) = / < (̂z>)̂ o(di>). (19)
£—»0 Jj^ Jj^

Then, choosing </?(?;) = v into (18) shows that the total momentum is conserved in time. For this reason, and
without loss of generality, we will consider in the rest of the paper as initial values only probability measures
wit h momentum equal to zero.

We have:

Lemma 3.1. Let (p G ̂ ( R ) . Then, ifV\wf are the post-collisional velocüies in (2),

y{vf) - <p(v) = ]~^(w - v)<p'(v) + R(<p)(v,w) (20)

where

Moreover,

|<p(ï/) + (û(w') — <û(v) — ip(w)\ < (v — w) l l ^ l l i . (22)

If in addition for some 0 < 5 < 1, ip G Jr2+ofâ)

<p(vf) + (p(wfy) — (p(v) — (p(w) = • (w — v) / dA 1 — A
1 Jo L l J

f1 (\ 1 - / 1 I r i-h] 1
• / d£<//'<j ^ + (1-2^)A I u + l - £ + ( l - 2 £ ) A «; ̂  • (23)

Proof. By the collision rule (2),

v' — v = w — vJ = (w - v). (24)

Hence, if tp e CX(IR),

<p(vf) — ̂ (v) = (w — v) I (p' \v + A (îi? — u) dA
2 Jo L 2 J

1 -h ( r1 ( [ 1 - ft 1 1 1
y . ^ ) ^ ' ( Ï ; ) + / lip' U; +A ( tu-v) - ^ ; (v ) ^dA> • (25)2

If now tp e ^2(M)7 by (17), (20) follows. On the other hand,

tp(wf) — <p(w) = (v — w) I <pf \w — A (w — v) dA.
2 Jo L 2 J

Taking the sum of (25) and (26), and using formula (25) for the différence ip'(u) — <p'(ui)t (23) follows. D
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Lemma 3.1 has some immédiate conséquences. Since

1 - h(6\v - wp)2 < 26\v - wp, (27)

substituting (27) into (20), we conclude that, if 7 > —3, (<27(/i),<^) is bounded for all functions (p E T<z, and
measures fi € M.^^. Therefore we have:

Remark 3.2. Let —3 < 7 < 1. Then, (Q7(AA), V?) is defined, among others, for functions <p G T<i, and measures
fji G A^3+7. Moreover, let <p € J ^ + a W be convex. Then, for any measure JJL G

(Q7M, ¥0<O. (28)

We prove now an existence resuit for the Boltzmann équation (13).

T h e o r e m 3 .3 . Let the probability measure fj,0 G Mpt where p > 3 + 7 ^ / 7 > 0 ; and p > 3 if 7 < 0. Then,
if - 3 < 7 < 1, and (3 satisfies condition (12), the initial value problem for (13) has a solution ji{t,àv) G
C1(Rf,M2) that satisfies (18) and (19). Moreover, the solution conserves momentum, while the second moment
is non increasing with time,

d6P(0) f (l-h2)\v-w\3^dv)^dw). (29)
JR2R+

Proof The proof is a direct conséquence of Lemma 3.1 and Remark 3.2. A proof of the existence of solutions,
valid for unbounded kernels, can be obtained by using methods first applied to the Boltzmann équation with
intermolecular forces of infinité range [2], by now classical arguments [22]. Existence follows by approximating
the unbounded kernel in the collisional operator with a séquence of smooth kernels and then passing to the limit.
The main différence here is that the classical Boltzmann iï-theorem, which prevents formation of concentration,
does not hold. In the present situation, compactness follows by tightness. D

4. THE QUASI ELASTIC LIMIT OF THE BOLTZMANN ÉQUATION

In [17] McNamara and Young considered a simplification of their Boltzmann équation for rigid sphères,
derived formally from the Boltzmann équation itself in what they called quasi elastic limit. This équation, they
defined the test-particle équation, reads

x r r i
(30)

dt

In (30), g is a positive constant linked to the coefficient of restitution of their Boltzmann équation. The same
équation was derived independently some year later in [4, 5] in a suitable scaling limit from a one-dimensional
system of N particles colliding inelastically. In such a model, the collision rule between two particles, which
move freely between collisions, is

v' = w + e(v — w); w/ = v — e(v — w). (31)

If one considers the limit N —> oo, e —+ 0 in such a way that iVe —» <?, a formai analysis shows that the spatially
homogeneous évolution of the one-particle distribution satisfies (30). Equation (30) can be generalized in many
ways, one of which we will consider here. Let us introducé the nonlinear friction équation

df{v,t) _ X d

dt
= ~ [ƒ (v, t) jf \v - H 1 + > - ti>) ƒ (tu, t) du] , (32)
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where —2 < 7 < 1. Equation (30) is included in (32), and corresponds to the choice 7 = 0. In this section,
we show that (32) can be deduced rigorously by (5), in a suitable quasi elastic limit. As briefly discussed in
the introduction, for any microscopic collision satisfying (2) there is a loss of kinetic energy, given by (10). If
we impose that the mean amount of energy transfer is finite, we need to consider only kernels which satisfy
condition (12).

Condition (12) gives a mathematical meaning to the quasi elastic collision limit of the Boltzmann équation
for dissipative collisions considered in [17].

We will call it quasi elastic asymptotic of the Boltzmann équation. It consists simply in letting the rate
function (3(8) concentrate on elastic collisions, while the mean amount of energy transfer stays bounded.

The quasi elastic asymptotic considered in [4] can be easily reconsidered in our framework. Indeed, the
energy lost in a single collision of (31) is

v2 + w2 - (v2 + w2) = -2e(l - e)(t; - w)2. (33)

Hence, their asymptotic Ne —> À exactly means that in the limiting procedure one maintains finite the total
amount of energy loss, while the collisions are close to be elastic.

The quasi elastic asymptotic has many aspects in common with the grazing collision asymptotic of the
Boltzmann équation, which is obtained when the effect of those collisions that are grazing, Le. collisions which
resuit in an infinitésimal angle deflection of the particles trajectories, prevails over the eflFect of other collisions. In
this latter case, the limiting procedure consists in letting the angular cross-section of the non cut-ofï Boltzmann
équation concentrate on grazing collisions while the mean amount of momentum transfer is maintained finite.
This problem has recently studied mainly by Villani [22-24] (see also [1]). What is shown is that in this limit
the collision operator is given by the action of a nonlinear Landau-Fokker-Planck operator [15].

Let us now give a précise mathematical meaning to the quasi elastic asymptotic.

Définition 4.1. Let {(3n{6))n>i16 G M+, be a séquence of rate functions. We say that (/?n) concentrate on
elastic collisions if
(i) For ail 0O > 0, 0n(0) -» 0 as n -> 00 uniformly for 0 > 0O.

f {3n(9)6d6 = A < 00. (34)
JR+

lim f
JR+

We prove:

Theorem 4.2. Let the probability measure ^0 G Mp, where p > 3 + 27 if 7 > 0, and p > 3 if 7 < 0. Let
(fîn(Ô))n>i,6 £ M+, be a séquence of rate functions concentrating to zero in the sensé o f Définition 4-1- Then}

if — 2 < 7 < 1? for ail t > 0 the solutions (tin(dv,t)) to the dissipative Boltzmann équation converge, up to
extraction of a subsequence, to a probability measure fj,(dv^t). The measure /i(t,dv) is a weak solution of the
nonlinear friction équation (32).

Proof The proof is easily obtained applying the same strategy as in [22] for the grazing collision asymptotic
of the Boltzmann équation. In some detail, let (/xn)^° be the séquence of solutions to the Boltzmann équation
with rate function j3n and initial datum fiQ. By (20),

Pn(0)d9 f \v

= f 0n(O)d

/
R+

0n(O)dO f \v-w\R((P)fMn(tidv)tJLn(tidw). (35)
JE2
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If the hypotheses of the theorem are satisfied, for all tp E T<i we obtain

lim
t 1 h C

lim / f3n(0)^—d6 \v-w\(w-v)iP
/(v)fin(

^°° JR+ 2 JR2

-7; f \v ~ H 1 + > - w)ip'(v)vn(t,dv)vn(t,dw)} (36)

while the remaining intégral in (35) vanishes in the limit. Then the result follows by tightness. D

Remark 4.3. The analogy between the quasi elastic asymptotic of (5) and the grazing collision asymptotic of
the Boltzmann équation is evident if we consider the grazing asymptotic of the non cut-off Kac équation (7). This
problem has been studied by the author in [19]. In the grazing collision limit Kac operator is well approximated
by a one-dimensional linear Fokker-Planck operator. By this analogy, a séquence of rate functions satisfying the
hypotheses of Définition (4.1) can be obtained simply taking some rate functions of the grazing collision kernels
of the non cut-off Kac équation. For example, we can consider, for 1 < p < 2, the rate functions [19]

f3n(9) = n—, if 0 G O, —TTTT;—r ; Pn(O) = O elsewhere. (37)

5. THE COOLING PROCESS

As discussed in the introduction, the study of the collapse phenomenon is mainly the most important phe-
nomenon we need to verify. When a spatially kinetic homogeneous équation is concerned, the main effect to
study is referred as the cooling process. This concentration phenomenon can be studied simply by following the
time évolution of moments. The decay of the second moment given in (29) shows that there is a cooling effect
for any value of the parameter interaction 7. By Remark 2.2, we will assume that the rate function satisfies
both conditions (9) and (12). Moreover, for the remaining of this section we suppose the rate function satisfies
the additional condition

C fi
I R(f)\ r\A n ^ rv-\ ClSi^

JR+ 1 + ö

Let E{t) = JRv2fji(dv,t). We have:

T h e o r e m 5 . 1 . Let the probability measure JIQ G AiPf where p > 3 + 7 if 7 > 0, and p > 3 if 7 < 0. Then} if
—3 < 7 < 1, and (3 satisfies condition (38), E(t) converges to zero at least as t~l for 7 > — 1, and at least as
t~2 for 7 < — 1 .

Proof If 7 > — 1, by Schwarz inequality we obtain

/ /3(ö)- -^dO \v — w\2fi(dv)t)fM(t,dw)
JR+ 1 + 0 JIR2

-L
e ^

,1/2

~ UR+ Ju? 1 + 0\V - W\I ' ' J
1 4. fi\ _ 17 1 1 / 2

I Ï ; -^ ! 1 " 7
 n a fj,(t,dv)ti(t,dw)\ . (39)

J
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ƒ \v — w\ ~ 7 fj,(t,dv)fj,(tydw) < ƒ /x(t, dv)//(£, dw) + ƒ |Ü — W\(JL{Ï, dv)n(t,dw)
JR2 1 -\~ U J\V—W\<1 J\V-W\>1

<l+\[ \v-w\2»(

Considering that E(t) is non increasing, we get

f 2

Finally

= / P(0)- z d ^ / \v-w\2{i{dv,t){i{t:dw)

(40)

(41)

, dti;) (42)

Applying inequality (42) into (29), we get

dE
~dt=~

f \v —

— w\'

AC ' ;E(tf
~ l + (2£:(0))1/2J

which implies that E(t) converges to zero at least as t~l. The constant À in (43) is defined by

/ P(6)ôd9 = \.

Let now 7 < — 1, and let a = —7. By Hölder inequality we get

/ \v -w\2^{dv,t)ii(t,dw) = ƒ -—

JR2 Jm? \y '

(43)

(44)

\V — W\

v -
|

V

(0 + |v -

\V —

2/3

(9 t, dv)fi(t,dw)

Since a > 1, t5 d^) is non increasing. Hence

f {0

where cCT is a suitable positive constant. Let us substitute (46) into (45). We obtain

0 + ca fR\v\

1/3

(45)

(46)

(47)
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Applying inequality (47) into (29), we get

f (i + ft) ̂ 'w? ni
JM2 0 + \ v - w\a

< ~\ f miTL r ,g.2g f A ^ [ 2 £ ( £ ) ] 3 / 2 . (48)

This implies that E(t) converges to zero at least as t 2. •

Let us investigate in more details the decay of E(t) for 7 > — 1. It is immédiate to conclude that in this case
there is no cooling in finite time. In fact, let us consider the situation in which the initial measure has bounded
support, say f\v\>RIJ>o(dv) — 0- Then, since the support is non increasing with time,

f (3{6)d9 [ \v~~w\s(l^h2)fi(tydv)fi(t,dw) < (2Rf^ f (3(0)6dO f \v - w\2fj,(t: dv)n{t,dw)
JR+ JR2 JR+ JR2

Hence, E(t) satisfies the inequality

— > —(2R)l+^XE(t): (50)

and this implies that the convergence to zero can not be more than exponential with time. Hence we proved
the following

Theorem 5.2. Lei 7 > —1. Then, if the probability measure ^o is compactly supported, the convergence to zero
of the second moment E(t) is at most exponential in time.

Remark 5.3. The result of Theorem 5.1 can easily be extended to nonlinear friction équations. In this case,
for 7 > — 1 the précise decay to zero of E(t) can be recovered by estimâtes similar to that used in [4]. In
addition, by using the technique developed in [4], when 7 > — 1, Theorem 5.2 can be extended to initial data
of unbounded support. From a physical point of view, the importance of the result is linked to the fact that
for a widc range of values of 7 in the expression of the coefficient of restitution, including anomalous granular
materials, there is no finite time cooling even if the support of the velocities is initially a small interval like
[—e, e]. Finally, the result of Theorem 5.2 remains valid for any value of the parameter 7, provided (3(0) is
integrable.

The previous analysis can not be pushed easily further, and the possibility of finite time cooling for 7 < — 1
remains an open problem. In the next section finite time cooling will be investigated for the nonlinear friction
équations (32), by means of a detailed study of their similarity solutions.

6. SIMILARITY SOLUTIONS OF NONLINEAR FRICTION ÉQUATIONS

To understand the grouping of particles, both [17] and [4] considered self-similar solutions to the test-particle
équation (30). Here we face the same problem for gênerai nonlinear friction équations by means of the classical
methods developed in [3].

Let f(vA) be a solution to (32). Then: for a = a(t) > 0 and r = r(t) > 0, let g be defined through the
relation

-Z9(V',T). (51)
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Then. since

ifM = T-l9(v',r)-^{v'9(V',r)), (52)

by the position

r(t) = - log a(t) (53)

we obtain

(54)

(55)

which implies

we obtain at once that g{v\r) satisfies

(57)

Finally, for ail —2 < 7 < 1,7 ^ — 1, setting

1/(1+7)

•77-g(vf,r) = 7— \g{y\r)~- I \vf — wf\1Jrl{vf — w/)g(w/,r)dw/ — vfg{vf,T) ,
UT öv L 2 Ju j

with a(t) > 0 decreasing, r(t) increasing from 0 to 00, with r(0) = 0. We remark here the different behavior of
a(£), for different values of 7. If 7 > — 1, a(t) decreases from 1 to 0, and tends to zero as time goes to 00 at
a rate £1/(1+T). If 7 < — 1, a(t) decreases from 1 to 0, and becomes equal to zero in finit e time, a(t) = 0 for

Let us look for stationary solutions to équation (57). The existence of stationary solutions different from
concentration are made possible by the structure of the right-hand side of (57). This right-hand side represents
a balance between a nonlinear friction and an anti drift that are responsible of opposite effects. Stationary
solutions to (57) solve

v) \^ f \v - w|1+7(v - v>)g(w) dw - v\ = 0.g(v) \^ f \v - w|1 + 7(v - v>)g(w) dw - v\ = 0. (58)

Following the idea of [17] and [4], we look for solutions which are sums of Dirac masses. The simplest of these
solution with zero momentum, is clearly given by two masses located symmetricaliy with respect to the origin

9oo(v) = cS(v + VQ) + cS(v - VQ), C>0,V0>0. (59)

For any s m o o t h function ip s u p p o r t e d in (—a,a)> wi th a > VQ, and for any 7, — 2 < 7 < l,g / — 1 , we verify
t h a t poo is a solut ion of

vg(v)ip(v) dv = — g(v) \ \v — w\2+yg(w) dw — \v — w\2+1 g{w) dw\ y>{v) dv.
2 J U'-a Jv J

(60)
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It is clear that

ƒ vgoo{v)<p(v) dv = -cv0<p{-vo) + cvo<p(vo). (61)

Let us set

One obtains

G{v)= f \v-w\2^g^(w)dw- f \v~w\2^goo(w)dw. (62)
J — a Jv

{— c\v H- t;o]2+'7 - c\v

c\v + vo\2+J - c\v - vo\
2+i if -VO<V<VQ (63)

c\v -f Ï^O|2+7 + c\v —
Whenever - 2 < 7 < —1, or - 1 < 7 < 2, G(u) is continuous in —VQ and VQ, and

G(-T;O) = -c(2^o)2+7; G(vQ) - c(2^0)2+7. (64)

Finally,

ƒ G(«)floo(t;)v»(«) dt; = - C 2 ^ ( 2 T ; O ) 2 + ^ ( - Ï ; O ) + c2±(2vo)
2+Mvo). (65)

Let us choose c and i?o such that

v0 = c^(2^o)2 + T . (66)

Then (61) and (65) coincide, and g^ is a solution to (60). The values of c and vo are easily determined
considering that 2c is the total mass. If we impose that #oo is a probability density, c = 1/2. Consequently,

1/(1+7)

(èO • (67!

So we proved:

Theorem 6.1. Let — 2 < 7 < 1,7 ̂  —1, and Zei 3oo(w) be the probability density

1 / ( 1 + 7 ) \ 1 / / 1 \1 /( l+7)\

j ^ ( ) j . ( 6 8 )
Then, goo{v) is a stationary solution of équation (58).

Theorem 6.1 has interesting conséquences. It is immédiate to conclude that any stationary solution to (58),
reverting to the old variables, is a similarity solution to (32). This solution, given by

(69)

represents a homogeneous cooling state of the nonlinear friction équation. Looking at the form of the function
a(t), we conclude that, while for 7 > — 1 there is no cooling in finite time, when 7 < — 1 we have cooling in
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finite time, and the solution concentrâtes at time tc = 1/1 + \j\. This fact is in favor of the conjecture that
any solution to the nonlinear friction équation corresponding to 7 < — 1 ceases to exist after a finite time, but
a gênerai proof is still missing.

We end this section by showing that the case 7 = — 2 which was excluded from the previous analysis, can be
treated in a direct way. As usual, let us suppose that the stationary state is a probability density, and let us
define, for a > 0,

9oo(v) = —I(-a,a), (70)
2a

where /(fî) is the characteristic function of the set Q. Then

/ vgoo(v)(p(v)dv = — ƒ v(p(v)dv (71)

while

Therefore one obtains

G(v)= / goo(w)dw- / goo(w)dw = - • (72)

\ f G(v)9oo(v)ip(v) dv = A ƒ v<p(v) dv (73)

which implies that (61) and (65) coincide, provided À = 2a. Thus

o-w-ï^-hb' (74)

is a solution to (60), with 7 = —2. Reverting to the old variables, we obtain the homogeneous cooling state of
the nonlmea,r friction équation with 7 = —2. We remark hère the différence between the case 7 > - 2 , where
the homogeneous cooling is represented by two masses located symmetrically with respect to the origin, and
moving towards the origin itself, and the case 7 = — 2, where the homogeneous cooling is a continuous uniform
distribution symmetrie with respect to the origin, concentrating in finite time.
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