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EMBEDDING AND A PRIORI WAVELET-ADAPTIVITY
FOR DIRICHLET PROBLEMS

ANDRÉAS RIEDER1

Abstract. The accuracy of the domain embedding method from [A. Rieder, ModéL Math. Anal
Numér. 32 (1998) 405-431] for the solution of Dirichlet problems suffers under a coarse boundary
approximation. To overcome this drawback the method is furnished with an a priori (static) strategy
for an adaptive approximation space refinement near the boundary. This is done by select ing suitable
wavelet subspaces. Error estimâtes and numerical experiments validate the proposed adaptive scheme.
In contrast to similar, but rather theoretical, concepts already described in the literature our approach
combines a high generality with an easy-to-implement algorithm.
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1. INTRODUCTION

In [33] we proposed and analyzed a domain embedding method for the numerical solution of the Dirichlet
boundary value problem (1.1) of second order:

-d iv(^4Vu)+au = ƒ in ftcld, (1.1a)

u = g on dû. (1.1b)

It was shown that the resulting algorithm:

(i) allows Cartesian grids resulting in simple data structures and fast memory access times;
(ii) requires only little geometrie information, namely, a digitalized version of the indicator function of fi.

Unfortunately, there is a price to pay. As uniform Cartesian grids cannot be aligned accurately enough with the
boundary of SI the accuracy of the obtained numerical solution détériorâtes near d£l. Consequently, optimal
error estimâtes are only available in the interior of fi. In the present paper we introducé an approach to cure this
dilemma by refining the Cartesian mesh near <9fi. The tooi we rely on is a wavelet splitting of the underlying
approximation space.

Systems of elliptic équations closely related to (1.1) naturally arise in simulating incompressible viscous flow
by operator splitting techniques, see e.g. [22]. Such operator splitting techniques are particularly efficient when
combined with domain embedding (see e.g. [23-25]).
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The paper is outlined as follows. In the next section we briefly recall our fictitious domain (or embedding)
approach from [33]. The flrst part of Section 3 collects briefly some facts from wavelet theory which we will
need for our investigations. We are then ready for the Galerkin discretization of the fictitious domain version
of (1.1) using scaling function spaces (Sect. 3.2). Looking at error estimâtes we motivate the need of a flner
discretization near the boundary of 12. The technical details of our static adaptive scheme are presented
in Section 4. Roughly speaking, we sparse the approximation space by removing unnecessary wavelets. A
rigorous error analysis justifies our adaptive strategy, We illustrate our theoretical estimâtes by computational
experiments in Section 5. The paper ends with some concluding remarks.

We freely admit that our obvious technique for the boundary reflnement was already considered before in con-
nection with wavelets and shift-invariant spaces by Jafïard [27] and Oswald [31]. However, JafTard's investigation
was limited to a very delicate wavelet-System (see [28]), which is hard to use in numerical computations (indeed,
Jaffard only presented some numerical 1D-experiments and the author is not aware of of an implementation in
higher dimensions). Nevertheless, we use the very same principle hère.

From a geometrie point of view our and Oswald's [31] approaches are even more related: we both discretize
the underlying domain by cubes getting smaller towards the boundary (the Jaffard-Meyer wavelets are adapted
to the boundary). In a very gênerai framework Oswald studied to which extent shift invariant spaces may be
used to obtain accurate solutions to elliptic problems. This means: we cannot obtain error estimâtes which are
asymptotically better than Oswald's. The accuracy of our scheme is the best possible which, unfortunately, leads
to an efficient algorithm (in terms of accuracy related to the number of unknowns) only for d = 2 and second-
order wavelet Systems. The numerical scheme we propose and analyze hère may be viewed as a realization of
the more abstract concepts of Jafïard and Oswald.

Finally we like to mention other approaches to carry over the wavelet machinery from rectangular domains
to arbitrary shaped bounded domains. We only refer to [5,15]. These techniques are based on domain de-
composition and/or parametric mappings. They share the drawback of having to be adapted very carefully to
the geometry of the underlying domain. On the other side they guarantee optimal convergence rates with an
optimal number of unknowns. In [16] Dahmen and Stevenson construct local wavelet bases for C° Lagrange
finit e element spaces, thus enabling wavelet techniques in the finite element context.

The potential of wavelets for the adaptive discretization of partial differential équations has been employed
before in different settings (see e.g. [4,9,19,20], and Chap. II of [13]). In these papers a posteriori wavelet-
adaptivity is investigated where error indicators steer a local reflnement of the approximation spaces. Very
recently, Cohen et al. [7] proposed such an adaptive wavelet algorithm for elliptic operators which converges
wîth optimal order (in a Besov scale) and which has optimal computational complexity. Numerical experiments
have been reported by Barinka et al. [1].

2. FICTITIOUS DOMAIN FORMULATION

We quickly recall our fictitious domain formulation of the Dirichlet problem (1.1). For more details and
références see [33].

Beforehand we specify our requirements. Let fl C Rd, d > 2, be a bounded domain with finite perimeter and
Lipschitz continuons boundary. The coefficient matrix A : ft —> M.dxd is required to have smooth entries and to
be uniformly positive definite on Q. Let a be smooth and non-negative.

We further assume that ƒ G L2(fl) and g € H1/2(dQ). For a définition of the L2-Sobolev spaces Hs{Vt) and
Hs(dQ) we refer, e.g., to [35].

Under these hypotheses the boundary value problem (1.1) admits a unique weak solution u G H1 (SI), see
e.g. [21,26],

The point of departure is the same for ail fictitious domain techniques. We embed Q in a larger rectangular
domain D whose edges are aligned with the coordinate axes in Rd. Next we extend the differential équation (1.1)
to a boundary value problem over D. In formulating the extended boundary value problem we have the freedom
to impose boundary conditions on <9O making Galerkin type discretizations as convenient as possible. We will
work with periodic boundary conditions allowing a lucid présentation of our ideas (but the methodology can be
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carried over to Dirichlet boundary as well as Neumann boundary constraints). Further, we restrict ourselves to
the unit box D = (0, l)d as fictitious domain. This means no loss of generality.

Identifying 1-periodic functions (v(- + ft) = v(-) for all k E Zd) with functions defined on the torus Td (and
vice versa) we consider Hr(Td), the rth order Sobolev space on the manifold Td , as a Sobolev space of periodic
functions. _

Let A : D —» Wixd and a : D —> M be extensions of A and a, respectively, that is, A\Q = A and 5|n = OL.
With those we deflne the bilinear form a by

a{v))V) := / ((AVw) -Vv + awv) dx.
Ju

Let 7 : iJ1(fi) —> H^^idQ) be the trace operator. We define the variational problem,

{find u e Hl(Td) with 7S = g such that

a(iï, v) - {ï,v)L2{rd) Vv e H\T*) with 7v = 0,

which is our fictitious domain formulation of the Dirichlet problem (1.1). Here, ƒ : D —• M is an L2-extension
of/.

Remark 2.1. (a) Of course, the fictitious domain formulation (2.1) dépends crucially on the existence of the
extensions A, a, and ƒ. In many applications, however, Ay a, and ƒ are explicitly known as restrictions of
functions defmed on Mrf. Then the needed extensions corne for free.
(b) For a fictitious domain formulation of (1.1a) furnished with a Neumann boundary constraint we refer to [32].

The following lemma relates the fictitious domain formulation (2.1) to the boundary value problem (1.1).
For a proof see Chapter 2 in [33].

Lemma 2.2. Let the extensions A, a satisfy the same restrictions over D as A and a over fL Then, (2.1) has
a unique solution u G H1^**) coinciding with the weak solution u of (1.1) on Q.

In the sequel we will not distinguish anymore between quantities defined on Q and their extensions to D,
that is, u = S, A = A, a = 5, and ƒ — ƒ.

3. GALERKIN DISCRETIZATION

This section is devoted to the non-conforming Galerkin discretization of the variational problem (2.1) in-
troduced in [33]. The required approximation spaces will be generated by translated and dilated versions of a
single scaling function. Following we collect some facts on scaling functions which will be important throughout
the paper.

3.1. Scaling function spaces

A function (p e L2(R) is called scaling function if it satisfies the following scaling or refînement équation

<p(x) = 2d/2 J2 hk y(2x-h). (3.1)

In the sequel we will only be concerned with compactly supported scaling functions. The séquence of real
numbers {hk} is finite then.
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We further require the standardization j m d ip(x) dx — 1 and that the integer translates {(/?( • — k)\k G Zd}
generate a Riesz system in L2(Rd).

Next we define a family {Vi}ie% of spaces closely related to cp by

Vi := closL2(Rd) (span{ tpitk | k e Zd })

where fi^i') '= 2~dl/2 f (2l • -fc) for ƒ G Z,2(Rd). Obviously, the spaces {Vi} are nested due to (3.1), that is,
Vi C Vi+1. See Chapter 5.3 in [18] for further properties of

Définition 3-1. We say a scaling function <p admits a set of wavelets {ipe\e G E} C L2(Rd)y E = {0, l}d \ {0},
iff:

1. Vi+i = Vi © Wi with Wi = 0 W € ) j where the sums are direct sums and where
e€E

(span{ %}>e^k \ k € Z

2. T h e set {^e^k \j€Z,keZd
yeeE} is a Riesz basis for

We call <p a biorthogonal scaling function if there is another compactly supported scaling function <p (a dual
to tp) with wavelets {^e|e € -B} such that {</>o,fc> £>o,m)z,2 — <5fc,m as well as

We will only deal with scaling functions <p related to a biorthogonal wavelet system {<p, <p, if)e, ipe \ e G E} where
ail functions involved have compact support.

Typical examples for biorthogonal scaling functions are B-splines (see [8]), the Daubechies scaling functions
(see [17]), and tensor products thereof. Further, several kinds of (non-tensor-type) box splines belong to this
category as well, see e.g. [10].

A scaling function ip is of order N if the polynomials up to degree N—1 can be expressed by iinear combinations
of integer translates of ip.

Order N biorthogonal scaling functions allow a characterization of the Sobolev spaces

Hs(Rd) := \feL2(Rd) \\f\\2
HS(ud) '= [ (l + IM|^)S | /M| 2 du < oc) (3.3)

** / TEC d s

by an equivalent discrete norm. In (3.3), ƒ dénotes the Fourier transform of ƒ. We have that, see Dahmen [11]
or [12],

O O

W-) ~ E K/»^O,*)L»I2 + E 2 2 s j ' E E \v^,k)LA2 (3.4)
k£id j=0 keZd eEE

for 0 < s < min{A ,̂ smax} where smax is the maximal Sobolev regularity of ip defined by

5max := sup {t | tp e ff*(Rd) }. (3.5)

Our notation A x B used in (3.4) is equivalent to A ^ B < A where A •< B indicates the existence of a generic
constant c > 0 such that A < c B. The constant c will not depend on the arguments of A and B.

We now introducé a periodic setting due to Meyer [30]. Essential properties of biorthogonal scaling functions
carry over to their periodized versions.
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Let ƒ be a compactly supported square integrable function. We define its periodization [ƒ] e L2(Td) by
[ƒ](") : = Srezd /(* + r)- ^or convenience we set

fi := [ƒ.,*]•

With a biorthogonal scaling function ip we associate the spaces Vf (3.6), l G No, of dimension 2dl
y

Vf := span {tpl
k j k e Zd>1 } C L2(Td), (3.6)

where Zd>1 := Zd/(2lZd). The refinement équation (3.1) is inherited by <pl
k. Consequently, the spaces Vf are

nested, ie., Vf C Vf+1. Furthermore, we have the wavelet splitting

Vf = Vf_x 0 0 ^ V i w h e r e Wh = span{^ifc | k e Zd>j}. (3.7)

The Sobolev spaces Hs(Td) are characterized by a periodic version of the norm équivalence (3.4), see e.g. [12].

3.2. Galerkin scheme for (2.1)

We choose the spaces Vf (3.6) as approximation spaces in our Galerkin scheme. These spaces are subspaces
of H1^01) provided the underlying biorthogonal scaling function tp is in H1(Rd) which we assume.

It will prove convenient to use the following notation. We define the index set

Bi := {m G Zd>1 | int(supp<^ R • ) R 9ÎÎ + 0} . (3.8)

which contains the indices of basis functions whose supports intersect the boundary of Q (B for boundary). Next
we introducé the approximation 7* : Vf —• Vf to the trace operator 7:

7 (vi) *.— y vikipfci 11 vi =

Our last ingrediënt is the function

whose trace jgi approximates the boundary value g, cf. (1.1b). In (3.9), <p is a dual scaling function to cp and g
dénotes a smooth extension of the boundary data g (here again we rely on the existence of such an extension,
compare Rem. 2.1).

Now we are ready to discretize (2.1) by the variational problem (3.10),

{ find ui E Vf with rffui) = 7Z(<ft) such that
(3.10)

a{uuvi) = {f,vi)L2{rd) \/vi € Vf with 7 (vt) = 0.

Under our hypotheses problem (3.10) has a unique solution m.
The error estimâtes for u\ proved in Chapter 4 of [33] are non-optimal for u G Hl+t(ft) with t > 1/2 (see (4.8)

below). This happens because the boundary constraint in (3.10) limits the flexibility of ui on the strip

dft1 := ( J supp^i,m. (3.11)
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The width of dft1 is proportional to Si = 2~l which dénotes the discretization step size related to V^p. We
therefore expect a higher accuracy of the numerical solution when resolving the boundary of O on a finer scale.
The technical details will be elaborated in the next section.

4. A PRIORI ADAPTIVITY

The plan of attack is the following: we start with a full approximation space V^ where l is large enough to
guarantee a small H1 (f2)-error of ui. Then we construct a subspace by coarsening V̂ p 'away from the boundary
ofîî'.

4.1. Boundary resolution

Let (pbe & biorthogonal scaling function and select an integer À such that 0 < À < l - 1. According to (3.7)
we have the multilevel splitting (4.1) of V^\

v? = v? e ® © ^ , (4.1)

Denoting by Sj k and S?k the smallest cubes in W1 containing the supports oîipej^ and Tpej,!^ respectively, we
define the sparse wavelet spaces by

Wl3 := span{v£fc | k e X]}, A < j < l - 1,

where

J | - Zf U JJ'2 (4.2)

with

2J'1 : - {m G Zd'J" | i n t ( ^ m ) H dQl ̂  0}, if := {m G ZdJ \ mt(5|>m) H OU ̂  0} •

The sparse wavelet spaces essentially contain only those wavelets whose supports intersect the boundary strip
dft1 (3.11). The sparse approximation space

^ : ^ A P ® 0 0 ^ (4-3)
j=X

obviously résolves the boundary of fl with a higher accuracy than the interior. Since Zj'1 C 2J we are able to
realize the boundary constraint from (3.10) on VjsA. The additional index set J j ' 2 is included in the définition
of Xj for technical reasons which will become clear in Section 4.2 below. If the size of SjtTn is not too large
then Xe- ~ Xe'1. Such a situation is considered in Figure 4.1 which gives an impression on a typical sparsity
pattern of V*x.

Next we estimate the degrees of freedom in V*x. Since 90 is (d — l)-dimensional compact manifold the
cardinality of 2J grows like 2^d~^j which yields

2dX < dim V£x •< 2dX + 2(d"1)l.
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FIGURE 4.1. Sparsity pattern of Vg 4 with respect to the biorthogonal wavelet System used
for the computational experiment s in Section 5 below. The underlying domain Cl C M2 is a
circular disk with a re-entrant corner. Each basis function in F8

P = V£ © © 7
= 4 (Be<EE ^ej *s

uniquely represented by a pair (fci,fe2) with 1 < ki < 256. The pixel {ki,k2) is colored black
if the corresponding wavelet function belongs to V8

S
4, otherwise, it remains uncolored. The

dependence of X| on e can be observed. The 16 x 16 black square in the lower left corner shows
that V± C Vgs

)4. The full space V8
P would be indicated by a black box of size 256 x 256. Please

note that dimF8
s
4/dim V^ «0.11.

The quantity on the right represents asymptotically the correct dimension of Vfx. Considering 5\ — 2~'
principal discretization step size related to Vt

s
x we obtain the optimal relation

dim V£x x ôx
d iff l < d/{d - 1) A.

Now we discretize (2.1) by the variational problem (4.5) using sparse spaces,

f find uiy\ E V£x with Y^i.x) = ll{gi) s u c n that

Of course, (4.5) has a unique solution u^\. We bound its error in the following theorem.

as the

(4.4)

(4.5)

Theorem 4.1. Let <p be a biorthogonal scaling function of order N > 2 with smax > 1- Assume that u, the
weak solution of (1.1), is in tf 1+t(fi) for a 0 < t < N - 1. Then,

(4.6)

,) \\u-u^\\HHQ). (4.7)

Before we are going to prove the above theorem in Section 4.2 below let us discuss some of its implications. For
simplicity we assume that u 6 HN(Çt). If g is sumciently smooth in a neighborhood of Q (g is an extension to

!" 5X \\u\\Hi+t(Q)-

If the homogeneous (g — 0) boundary value problem (1.1) is additionally H2-regular then

1 /2
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D of the boundary value) then

j ~ s / 2 \\u\\HN(to) 5 = 0,1 (4.8)

(the proofs of Ths. 4.5 and 4.9 from [33] can be modified to yield the above estimate). Relating l and À by
l — 2(N — 1) • À yields the optimal error bound (with respect to Sx)

\\u-u2(N-i).\t\\\H°(n) ^ $x~s \\v>\\H**(n), 5 = 0,1. (4.9)

We achieve this optimal error estimate under dim V^N-I)-A A ~ ^d + ^ -i)2(iv-i) j n v-e w Q^ ^ ^ ^ . g

number of degrees of freedom is optimal iffd — 2 and N = 2, This was to be expected due to results by Oswald
(Chap. 5.2 in [31]).

An implementation of the above described adaptive scheme requires the knowledge of the index set 2J
(see (4.2)). Hère one can rely on a technique introduced in Chap. 5.2 of [33] to classify the indices in B\
(see (3.8)).

Remark 4.2. We will comment in some detail on the différences between our and Oswald's boundary modifi-
cations. Especially, we argue that Oswald's convergence resuit (Lem. 5 of [31]) does not imply our Theorem 4.1.

The spar se approximation spaces Vt
s
x of Oswald are spanned by scaling functions on différent levels, that is,

^ f c e O j , j = A,... ,Z}.

The index sets Oj C Z ^ are determined geometrically by a cube partition of Q and contain - roughly speaking
- the indices of level-j scaling functions which live "near" to the boundary of fi. For l > À + 1 there are
geometrie settings possible where we have v^'s in V*^ which are not in VjsA. The reason for this is simply that
V̂ S

A does not contain enough wavelets to span all scaling functions on intermediate levels which intersect the
boundary of Q. Though bot h approaches are very similar in nature they are far from being equivalent.

4.2. Proof of Theorem 4.1

This section is completely occupied with the proof of Theorem 4.1. By a simple triangle inequality it suffices
to estimate ||i^ — U^\\\HS^ for s = 0,1.

First, we will verify that

\\ui -uitx\\m<n) ^ ö% \\u-ui\\Hi+K{n) -j- ô{ ||u||jyi+t(n) (4.10)

where 0 < K < min{smax — 1, t}. Clearly, (4.10) implies (4.6). Following the line of proof of Theorem 4.1 in [33]
we obtain

=< inf wt e

which is a variation of Cea's lemma, see e.g. p. 327 in [21]. Since ui e VJP we have the expansion

i-i

j=X e£E

see (4.1), where cXtk = ( ^ , ^ ) L 2 ( T ^ ) and dejtm = (wz,^,m
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Using the above expansion coefficients of ui we define

i-i

^ == 5Z °^k <Pk + ] b £ Yl d^,m i>im
k£Zd>x j=X eeE melj

which is in Vt
s
x satisfying jl(wi) = jl(ui) = ll(gi)- Thus, (4.11) leads to

1197

Wn-u^Wm
i-i

(4.12)

The définition of XJ (see (4.2)) justifies to replace the periodized wavelets in the right-hand side of (4.12) by
their original versions:

with the index set

{m G Zrf | int(5?m) C

In our calculations below we will frequently use that 5J>m is a subset of ft for m G J?. To guarantee the latter
inclusion we added X®'2 to the définition of XJ, see (4.2).

The norm équivalence (3.4) yields

(4.13)

For m € Jf we have deïj>m = (ui ~ u,^ejt
s o t n a t

(4.14)

As a direct conséquence of (3.2) we state that

/ x13 ipe(x) dx = O for all ƒ3 G N^ with |/3| < JV - 1 and for all e ^ .

Since the diameter of S?m is proportional to 5j, the vanishing moments of ^ e immediately imply the estimate

is, v 0<s<iV, (4.15)

whenever the right-hand side is finite (see Th. 2 in [3]).
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Due to our assumptions on dQ there exists a bounded linear extension operator Fçi : Hl+K(£l)
with FQ ƒ = ƒ a.e. in iï, (see e.g. Chap. VI in [34]). Because ui is in H1+K(Q) we may estimate as follows

E
l-l

i=A

E
j=X

By (4.13), (4.14), and the latter inequality we get

j=x 3

It remains to estimate the rightmost term. From (4.15) we infer that

E*72E E K^-Wej 2 * E*f E E iHiUd
j=A eeE m€J? j=X

l-l

j^X

Thus, we have established (4.10) and (4.6) thereupon.
Now we turn to the proof of (4.7). We consider the auxiliary homogeneous problem (4.16) with e = ui—u^x E

j find w € H£(iï) such that
\ b(w,v) = {e,v)L2{Q) V ^ e ^ t n ) . ( -1 ]

In (4.16), b is adjoint to a, that is, b(w,v) = a{v,w) (hère a and b are restricted to fi). Due to the assumed
if 2-regularity we have for the unique solution w of (4.16) that

< \\e\\mn)- (4-17)

By the duality argument of Aubin-Nitsche (see e.g. Chap. 3.2 in [6]) we get

\\e\\h(Q) =< ll

We have already bound the infimum (see the proof for (4.6)) so that

\w~wi\\Hi{n) +

\h =< l l e l l i ( ) inf {||ÎU - ziiX\\m(n) \ *i,\ e V;"A with supp^,A C
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where wi e Vt
p is the solution of (3.10) with a and ƒ replaced by b and e, respectively, and with g = gi = 0.

By (4.8) and (4.17) we finally find

which finishes the proof of (4.7).

5. NUMERICAL EXPERIMENTS

We illustrate the error estimâtes proved in the previous section by computational results. The implementa-
tional details and further examples can be found in [32,33].

We solve the 2D-elliptic problem (A = YM=\ ̂ 2&i is the Laplace operator)

-0.01 Au + u = 1 in O, (5.1a)

u = 0 on dfi, (5.1b)

with respect to the disk

= lx eR2\xj-\-xl < 1/16}

The box D =]— 0.3,0.3[2 serves as fictitious domain. This example is considered because we know its exact
solution u given by

joCiiov^ + x! ) r -
J ( Ï 5 / 2 )

where Jo is the Bessel function of the first kind of order 0. We are thus able to compute the error u — u^\ on Q.
In Chapter 6.A of [8] Cohen et al. constructed univariate biorthogonal wavelet Systems {&jv, N j^(f: N N^^

N jy^}, N + N even, where bjsf is the cardinal B-Spline of order N (except for bjy we adopted the notation
of [8]). Tensor products of those four functions can be used to create a bivariate biorthogonal wavelet system of
order N (see e.g. [18] or [29]). The corresponding scaling function is the tensor product B-Spline BN — 6;v® &;v,
that is,

BN(x) = BN(xlyx2) = bN(xx)bN(x2).

Our computations below will be based on the linear (N = 2) B-spline biorthogonal wavelet system. The maximal
Sobolev order of BN is smax = N — 1/2. As the periodization (-Bjv)l of (BN)I^ is 1-periodic the re-scaling
(£?iv)fc(z/0.6) gives ansatz functions periodic with respect to D.

We wish to illustrate the estimate (4,9). We therefore need a computable approximation to IMIi/s^) where
D C R2 is a bounded domain. In view of (3.4) we define

3 / 2

- 3=2 meZ2 e=l

with c^k =^{v,(B2)2,k)L2(D) and de,j)T7l = {v7if>ejjr

Above, B2 = 2,2^ ® 2,2^ is the dual to B<z and ^e,-e = 1,2,3, are the three corresponding dual wavelets.
The coefficients c2ik and de j\m (only finitely many are non-zero) can easily be obtained from v by a fast wavelet
décomposition, see e.g. [18,29]. Hence, a numerical value for normes(i?)^ can be calculated.
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X (coarse level) X (coarse level)

FïGURE 5.1. Left: norni2A,s(^ — ^2A,A)H as function of À for s — 0 (solid line with o) and s = 1
(dashed line with o). Right: dim V£x x.

Lemma 5.1, Let v be in Hr(R2) with supp^ c D. Then, for 0 < s < 3/2 and s < r, we have that

Proof. The left inequality is an immédiate conséquence of the norm équivalence (3.4). The inequality on the
right hand side results from a combination of (3.4) with (4.15). D

Let e\ — u — U2A,A be the error of the solution of (4.5) with l = 2À and with respect to the linear
B-spline wavelet System (the technique for preconditioning problem (3.10) (see Chap. 6 in [33]) applies to (4.5)
in particular). Since eA is in HQ(Q) HHr(Q) for any r < 3/2 we expect, in view of (4.9), that

norm2\>s(e\)n < s = 0 , 1 .

Moreover, according to Lemma 5.1 the above decay rate of norm2A,s(eA)f2 ^s s n a r P as À —> ce. Figure 5.1
displays norni2A,s(eA)fi for s = 0,1 as a function of À on a logarithmic scale. The predicted decay is clearly
visible. On the right of Figure 5.1 we plotted dim V^ A to illustrate (4.4). The dimension of F2

S
A x increases by

factor 4 with À.
Figure 5.2 gives a graphie impression of (4.6) and (4.7) for fixed À = 2. As l grows we first observe the decay

rates (4.8) and then a saturation of the error due to fixed À.

6. CONCLUDING REMARKS

The stiffness matrix relative to (4.5) is not sparse in gênerai. It possesses the typical "finger structure" as
there is a coupling of wavelets to different resolution levels.

Two ways are known in the literature to overcome this drawback. First, one may apply matrix or operator
compression techniques as investigated, e.g., by Dahmen et al. [14]. Second, the so-called non-standard (NS)
operator représentation in a wavelet basis (see [2]) leads to an decoupling of different resolution levels. Con-
sequently, the corresponding stiffness matrix has a kind of band structure. In case of a constant coefficient
differential operator only 2d coefficient vectors have to be stored (their dimensions and hence the band width
depend on the scaling function). From those the matrix entries can be retrieved by simple scaling. Moreover,
the NS approach can even be enhanced by matrix compression (see [2,14]). The price to pay is a doubling of
the dimension compared to the standard représentation.
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FIGURE 5.2. normf)S(it - ui$)n as function of Hor 5 = 0 (solid line with o) and 5 = 1 (dashed
line with o).

The boundary treatment proposed here (and before in [27,31]) for wavelet-based discretizations is not so-
phisticated enough to compete with traditional finit e element discretizations. (With one exception: d = 2
and linear splines where the handling of complicated boundaries is even simpler.) To take full advantage of
the waveiet machinery smart er techniques are required. Ideally these techniques provide accurate boundary
resolution without depending too much on the geometry of the domain to retain (more or less) the issues (i)-(ü)
from Section 1. Right now we do not know whether we will accomplish our goal, however, the potential gain
justifies a further exploration of the proposed scheme.
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