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CONVERGENCE ANALYSIS FOR AN EXPONENTIALLY FITTED
FINITE VOLUME METHOD

REINER VANSELOW1

Abstract. The paper is devoted to the convergence analysis of a well-known cell-centered Finite
Volume Method (FVM) for a convection-difïusion problem in R2. This FVM is based on Voronoi boxes
and exponential fitting. To prove the convergence of the FVM, we use a new nonconforming Petrov-
Galerkin Finite Element Method (FEM) for which the System of linear équations coïncides completely
with that of the FVM. Thus, by proving convergence properties of the FEM we obtain similar ones for
the FVM. For the error estimation of the FEM well-known statements have to be modified.
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1. INTRODUCTION

In this paper we analyze the convergence of a cell-centered FVM applied to the convection-diffusion boundary
value problem:

-dïv[egmdu + bu] = ƒ in Ü C M2, u = Q on F = ô a (1.1)

The coefficient £ is a positive parameter, b is a given constant vector, ƒ G £ 2 ^ ) is a given function and fl
is an open and bounded domain with a smooth boundary. In order to simplify the présentation we restrict
ourselves to a convex domain £7 and to homogeneous Dirichlet boundary conditions.

For an équation in the conservative form (1.1), FVMs are often used7 because these methods obviously
conserve a significant property of the exact solution (see Rem. 3.2).

The FVM considered in our paper uses Voronoi boxes and is based on a finite différence approximation,
which is exact for functions that solve the ordinary differential équation e uf/ + (eTb) uf = 0 along a straight
line (e dénotes the unit vector in the direction of this straight line). This FVM is well-known and is successfully
used in different applications, e.g. for the numerical solution of the semiconductor équations (cf. e.g. [2]).

Convergence results for FVMs applied to the convection-diffusion équation (1.1) are given in discrete norms
e.g. in [10-12]. In contrast to those papers, we follow another approach and prove the convergence of a FVM
by analyzing a corresponding FEM as e.g. in [23] for the Poisson équation. This gives convergence results in
stronger norms (see Rem. 4.2).

Keywords and phrases. Convection-diffusion problem, cell-centered finite volume method, Voronoi boxes, exponential fitting,
convergence analysis, nonconforming finite element method,
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Furthermore, it is well-known that a FVM can be interpreted as a FEM, if suitable ansatz and test functions
are used. We consider a new FEM, which generalizes that given in [23] for the Poisson équation. The advantage
of this FEM is that it provides an error estimate, if we follow the methodology given e.g. in [6], which consists of
applying the second Strang lemma and usual techniques for the estimation of the approximation and consistency
error terms. Différences with respect to other FEMs for convection-diffusion équations and their analysis are
discussed later.

However, modifications of some well-known statements are necessary to make the approach workable. One
of these modifications concerns the second Strang lemma because we use a Petrov-Galerkin FEM. Furthermore,
because we use exponentially fitted ansatz functions, we substitute the vector space Pi (A) of polynomials of
first degree and the seminorm |.|2 A of the Sobolev space H2(A) by other ones, where A dénotes an arbitrary
finite element or finite volume (see Sects. 6.3 and 6.4). This modification is fundamental for the estimation of
the error terms.

To obtain constants independent of e in the estimâtes, for h in gênerai we assume an upper bound which
dépends on e (see (6.2)). This is a restrictive assumption for singularly perturbed problems, where e is small.
However, we do not need any information about the location or the type of boundary layers in the singular
perturbed case. This information is necessary in the standard analysis of singular perturbed problems.

An overview of discretization methods for the problem (1.1) and the corresponding analysis is given in [14,16].
Hère, we want to discuss only some références in detail which are closely related to our paper.

In [1,17] FEMs are considered which lead to Systems of linear équations whose coefficient matrices are different
with respect to the one discussed in our paper. However, our approach coïncides in some details with those
ones.

In [1] a Galerkin FEM is analyzed which uses triangles and conforming linear finite éléments. The estimâtes
are given in the iJ1-seminorm, which implies a stronger convergence resuit. However, an important conservation
property of FVMs is in gênerai not satisfied by the discretization obtained by Angermann [1] (see Rem. 3.3).
Thus, the results deduced for that FEM cannot be in gênerai extended to FVMs.

Another approach is given by Sacco and Stynes [17]. They point out the well-known fact that good results
are obtained when using a FEM whose trial functions lie locally in the null space of the differential operator.
These functions are the so-called L-splines (cf. [20]). To extend this approach to the two-dimensional case with
a given triangulation, in [17] a new nonconforming Petrov-Galerkin FEM is considered. The test functions are
polynomials. The ansatz functions are L-splines in the direction of the vector b and linear functions in the
direction which is orthogonal to &. A corresponding convergence analysis for that FEM is given in [18].

In the following références FEMs are investigated which lead to Systems of linear équations, where the
coefficient matrices are the same as in our paper.

In [12] a nonconforming Petrov-Galerkin FEM is considered, too. However, as mentioned above, a weaker
norm is used, which only results in an error estimate for the différence between the FEM solution Uh and an
interpolant of the exact solution u.

In [8,25] new FEMs are presented and analyzed, which use triangles and conforming linear finite éléments.
Unlike the present paper, the estimâtes are given in other norms and other techniques are used to obtain those
estimâtes (see Rem. 5.1).

Bank et al. [3] extend the results of Xu and Zikatanov [25] to a FVM, which is the same as that in our paper.
Our paper is organized as follows. In Section 2 a new nonconforming FEM is introduced. The FVM for which

the convergence analysis is presented and its relations to the new FEM are described in Section 3. Section 4
gives the application of the second Strang lemma. The convergence theorem, which is the main resuit of this
paper, is presented in Section 5. In Section 6 assumptions and useful tools are given, which are needed in
Section 7 to estimate the different error terms.

More details about the partitions of the domain Vt (see Sect. 2.1), the assumption (A) (see Sect. 2.1) and the
affine mapping defined in Section 6.2 can be found in [23].
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2. A NONCONFORMiNG PETROV-GALERKIN FEM

2.1. Box and dual box partition

In the following, let M := {P} be a finite set of given points with P E Cl (fi). Further, we use the notations
Mi := M n O and Mb :— M n F, where m :— card (Mi) > 0 and card (Mb) > 2 have to be satisfied.

Now, for P E M the Voronoi box bp is defined by

bP:={Z e Cl(n): \Z-P\ < \Z-Q\ VQ E M} ,

and the set 1?̂  : = Bh(M) := {6p : P G M} is called box partition of fi.
If for different points P, Q G M the intersection bp D bç> is non-empty, the endpoints of bp n 6Q are denoted

by E1 = ^ ( P , Q) and E2 - ^2(P, Q), ie . £ i # 2 = &P H 6Q .
For P G Mi we use the notations

iV(P) := {Q G M : Q + P, bP H bQ ̂  0} ,

j3PQ := \P - Q\ and lPQ := |^i - JE2| for ail Q G JV(P),

iViV(P) := {Q 6 7V(P) : 7PQ > 0} and NN%(P) := ATAT(P) n fi.

Further, we need another partition of the domain Q,, Therefore, for P E M{ and Q E NN(P) the dual Voronoi
box <i6pQ is defined by

dbpQ := AE1PE2 U A £ i Q ^ 2 ,

and the set tiB^ := dBh(M) := {dbpQ : P E M^ and Q E NN(P)} is called dual box partition of fi,
Henceforth, we assume that the following property is satisfied:

i dF = ^ ƒ dF VP E M,. (A)

2.2. Description of the FEM

A weak formulation of the boundary value problem (1.1) reads as follows:

Find u E V := i?o(îî) such that

= fvdft=:d(v) Vv E V. (2.1)

For the new Petrov-Galerkin FEM we define finite-dimensional vector spaces V̂ 1 and V^ by

^ == {vSVh: v\lnt{dbpQ)€ LK£(P,Q)} (2.2)

and

V? := {^ G Vk : v |mt(d6Pq)€ P(P,Q)} (2.3)

with 14 := {v E L2(fî) : r is continuous at P E M and v(P) = 0 VP E Mb} .
Thereby, LKe(P,Q) and P(P,Q) with P = (xP ,2 /P)T

î Q - (a:Q)yQ)T
) P ^ Q,

^ ^ —
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and the vector

Q-P 1 , ,T

epQ := 777 =T7 = — — (XQ — xp , yq — yp) ,

\Q — f\ PPQ

dénote the vector spaces

LK£(P,Q) := < ' (2.5)

and

P(P,Q):= span {1^2(^2/)}. (2.6)

As degrees of freedom we choose the function values at the points P G M^
Obviously, dim (V )̂ = m and V£ <£V > i = ly2.

Remark 2.1. In Int {dbpQ) the following characterization is true:

{ the function which in the direction of P — Q is the solution of the
ordinary BVP E U" + /3P Q {[ePQ]Tb) uf = 0 , u(Ö) = wP , u(l) = WQ
(L-spline) and which is constant on lines orthogonal to P — Q ,

Let us now consider the nonconforming Petrov-Galerkin FEM:

Find uh = uh(M) e V£ such that

ah{uh,Vh) = x J 3 Vh{R) D(R) =: dh{vh) Vvh^Vh (2-7)

with

/ / (egrad-u^ + bit/l)
:rgradï;/I, dft, (2.8)

dbFQedBh

which is defined on [F 0 V̂ 1] x Vg , and

JJfdtt. (2.9)D(P):= JJ

The nodal basis functions $ and VlJ of V£ and V^ are respectively given by

&PQ{Z) , if Q e AW(P) and Z € Int (dbPQ)
QP(Z) := ^ 1, if Z = P for P G

0, otherwise
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»,*} , Z = (x,y)T
:

1
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1 ,Ê ( a ; iy)] I if

(2.10)

ü[ePQ}Tb = 0

and

(2.11)

Using the nodal basis a System of linear équations arises, which has the form

lEuE = bE. (2.12)

The stiffness matrix LE, the vector uE = uE(M) e Mm and the right-hand side bE are given by

ipQ=ûh(*Qi*p) , Up=«h(P) and 6^ = dh(*p) for P, Q G M*.

3. THE FVM

3.1. Description of the FVM

If we integrate both sides of (1.1) over the Voronoi box bp G Bh7 apply Green's formula and use a relation
like (A), we obtaîn the équations

fJ VP G Mu (3.1)

bpnhQ

where epg and D(P) are defined by (2.4) and (2.9), respectively.
The integrand [epQ]T(egradu + bu) is then substituted on each straight line bp H 6Q by the constant finite

différence approximation

(3.2)

(cf. e.g. [21]), where the Bernoulli function B is defined by

z
if z / 0I '/—\ 7 7

B{z):=l e x p ( z ) - l
( 1, if z = 0.

Remark 3.1. The approximation (3.2) is exact for fonctions u G LKe(P,Q).

(3.1) and (3.2) give rise to the following well-known FVM (cf. e.g. [2]):

Find uv = uv{M) e Rm such that Lvuv = bv,

(3.3)

(3.4)
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where the matrix Lv and the right-hand side bv are given for P}Q G Mi by

if Q G NNi(P)

h\ if n P eind

0, otherwise

Remark 3.2. For convection-diffusion problems in conservative form (1.1) the following property of the exact
solution is significant: We consider an arbitrary polygonal partition 7^ = {t} of the domain fà, i.e. t is bounded
by a polygon for alH G Th and it holds Cl (ft) = [j Cl (t) as well as £i Pi t2 = 0 for all ti, t2 G Th with t\ ^t2.

Further, we define the flirx F by F(u) := egradn -f bu and dénote the outer normal direction of t G Th by
n(t). Then for two arbitrary éléments t\, t2 E Th with t\ ^ £2 and r(ii , t2) := 9ti C\ dt2 ^ 0 the outflow of t±
through r(ti,t2)j which is defined by ƒ [n(ti)]T F(u) dF, is equal to the inflow of t2 throughr(ti,i2)» which

r(titt2)
is defined by - ƒ [n(t2)]

T F(u) ÓT .
r(ti,t2)

Obviously, the FVM (3.4) conserves that property for the box partition.

3.2. Relations between the FVM and the nonconforming FEM

Theorem 3.1. The matrices LE and Lv of the Systems of linear équations (2.12) and (3.4) are related by

Proof. We consider points P,Q € Mi and have to distinguish three cases: Q G NNi(P), Q g NNi(P) with
Q =£ P and P = Q. Straightforward calculations for each of these cases prove the statement.

For instance, in the case Q G NNi(P) we obtain

,tfp) = f f
dbpQ

Using (3.3) and B(—z) = B(z) exp (z), easy calculations show

(egrad$Qp + 6$Qp)Tgrad$PQ - - — Î — B ( - ^ [epQ}Tb).
[PPQÏ e

Therefore, in that case we obtain the statement (see also (4.14)). D

Remark 3.3. In [1], where a class of FEMs is studied, the coefficient matrix for the arising System of linear
équations has the form

LPQ = <
PPQ

{ }

0, otherwise

for a suitable function K. The choice K = B is possible, but leads to a method which is different to that
considered in this paper.

Moreover, we notice that in gênerai the FEMs given in [1] do not conserve the property described in Re-
mark 3.2.
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Corollary 3.2. The problems (2.12) and (3.4) are equivalent, i.e. uv and uE coïncide.

Proof. Theorem 3.1 and the relation bE — \bv establish the statement. D

Remark 3.4. A System of linear équations with the same coefficient matrix as that of the FVM (3.4) arises
for the FEM which was studied in [12]. They remarked that such matrices are M-matrices, so that the FVM
(3.4) and, because of Corollary 3.2, also the FEM (2.12) have a unique solution. The uniqueness of the solution
of problem (2.12) is used later in the application of Lemma 4.1.

3.3. The notion of convergence for the FVM (3.4)

We follow the approach given for the Poisson équation in [23].
At first, Corollary 3.2 establishes a bijective correspondence between vectors uv G Mm solving (3.4) and

functions un G V£ solving (2.7). Additionally, the interpolation property is satisfled, i.e. UH{P) = Up for ail
PeMi.

Now, let a séquence {Mn} of sets be given, which satisfy the assumptions of Section 2.1, and let the corre-
sponding maximum stepsize of each set Mn be defined by

hn := hn(Mn) := max /3PQ. (3.5)
dbPQedBh(Mn)

Further, let {uv(Mn)} be the séquence of approximate solutions defined by the FVM (3.4), let {uh} = {uh(Mn)}
be defined by the FEM (2.7) and let ||. 11̂ x be the norm in V̂ 1 = V^(Mn), which is a seminorm on 7 0 V£,
too. We finally assume that lim hn = 0.

71—^OC

Définition 3.3. The FVM (3.4) is called convergent with respect to V} and \\.\\hl , iff lim ||u — Uh\\hl — 0
n—»oo

for the solution u of (2.1).

4. APPLICATION OF SECOND STRANG LEMMA

4.1. A modifiée! second Strang lemma for Petrov-Galerkin FEMs

A standard approach to prove convergence of nonconforming Galerkin FEMs is the application of the well-
known second Strang lemma (cf. e.g. [6,22]). However, for the nonconforming FEM (2.7), which is a Petrov-
Galerkin FEM, a modifled formulation is necessary as it is given in Lemma 4.1.

Let a Hubert space y, a continuous bilinear form a ^ x F ^ M 1 and d G Vf be given.
The variational problem:

Find u € V such that a(u,v) = d(v) Vv G V (4.1)

is substituted by the following family of problems:

ftGVjJ such that ah{uh,vh) = dh{vh) VvheVg. (4.2)

The settings in this context are: V£ with V£ çLV, i= 1,2, are finite-dimensional Hubert spaces, whose norms
\\.\\hl and ||.||fc2

 a r e seminorms in V'0V / l
1 and V ® VĴ , respectively; ah *• [V"© V^] x V£ —» M1 is a bilinear

form; dh belongs to the dual space of V£.
Further, let a linear mapping P% : V^ —• V£ be given which has the property

P£(vh)ÏO V%6 V£ w i t h v h ^ 0 . (4.3)

Additionally, we assume that the variationai problem (4.1) and each problem (4.2) have a unique solution u
and un, respectively.
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Lemma 4.1. Assume that the biiinear form ah satisfies

and

\ah(v,wh)\ < c\v\\hl \\wh\\h2 Vv e V®V£,wh € V*

ah{vh,Pl{vh)) > a \\Pë(vh)\\
2

h2 Vvh € V^

(4.4a)

(4.4b)

with some positive constants c and a independent of h.
Then there exist positive constants Ci and C2 independent of h such that

sup
\\Wh\\h2

(4-5)

Proof. The proof is substantially the same as for the standard second Strang lemma. Therefore, we refer to [24],
where the details are given. O

Remark 4.1. In [12] a different approach is used to prove the convergence of Petrov-Galerkin FEMs. By a
linear mapping the Petrov-Galerkin FEM was transformed into an equivalent Gaierkin FEM, which was analyzed
by the standard second Strang lemma. But an advantage of Lemma 4.1 is that in contrast to the standard
second Strang lemma two different Hilbert spaces can be used, one for the ansatz functions and another one for
the test functions.

In the application of the second Strang lemma the following inequality is often used to estimate the terms
on the right-hand side

where II dénotes a linear mapping with II : V
To extend this approach to the term

inf \\u-vh\\h<\\u~Ti(u)\\h,
h£Vh

or n : W C V —> Vu •

\u-vh\\hl}

we assume that a subspace W C V and a linear mapping P^ : W —> V̂ 1 are given.

Corollary 4.2. Let beu EW and let the assumptions of Lemma 4.1 be satisfied.
Then there exist positive constants Ci and Ci independent of h such that

(4.6)

h - \h2

4.2. The application to the problems (2.1) and (2.7)

We start by defïning P% and P^ .
If the exact solution of the continuous problem is sufticiently smooth, then in (4.6) the mapping II is usually

chosen as the 14-interpolation operator. Following this approach we assume that for the solution u of (2.1)
there holds u € W with

W := H2(Çl) HV = H2(Q) f] (4.8)
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and we defîne the linear mappings Pl'-W@V£^> V£ and P^ : W © Vg -> V£ by

P*(v + vh) := 53 [V(P) + vfc(P)]*p Vv € W>h = 53 vh(P)$P e V£ (4.9)

and

[v(P)+vh{P)]$P VveWyvh= £ i*(P)tfP € l£ , (4.10)

where $ and ^ are the nodal basis functions in V^ and VĴ , respectively.
Obviously, the mapping P^ satisfies the property (4.3), and, especially, it is such that:

P2
h{Pl{v))=Pl{v) VveW. (4.11)

Further, we define norms ll-lf^! in V£ and | j . | | ^ 2 ^n ^/? ̂ y

I dbpQEo

(4.12a)
dbpQ^dBh

and

I /•/• I 2

\\V\\ho • = ƒ ƒ ([epQ]Tgradt;)2 dQ i - (4.12b)
dbPQSdBh

Obviously, V£ and V* are Hilbert spaces, and ||.||/ll and ||.||^2 are also seminorms on 7 0 V J J and
respectively.

Re mark 4.2. Our convergence resuit given in Section 5 is presented in the form of an estimate for
\u — P£(uh)\ h2- This does not imply that Uh converges to u in any norm in V. However, our convergence

resuit is stronger than that obtained by Lazarov et al [11], by Eymard et al [7] or by Miller and Wang [12].
Because of (4.15), e.g. the estimâtes by Lazarov et al [11] and by Eymard et al. [7] are only estimâtes for

Remark 4.3. In the following proofs, we simplify some notations. Sometimes, (3PQ and JPQ are replaced by
(3 and 7, respectively. Further, e and t are used, which on the dual Voronoi box dbpq have the meanings
defined by (2.4) and tpQ defined by (6.15), respectively.

Theorem 4.3. Let ||.||h2
 an<^ ah be defined by (4.12&) and (2.8), respectively.

Then (4.46) holds with a = 1.

Proof. Obviously, in Int (dbpq) it holds

vWheV>. (4.13)

Hence, because of (4.9) for each Vh ̂  VjJ we obtain

ah{vh,P%(vh))= Yl Tj[MQ)-Vh(P)] JJ
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Using

ƒ ƒ dfi=i/?PQ7FQ (4.14)

easy calculations show (see also proof of Th- 3.1) that

Y, l \B(eb)vh(P)B(eb)vh(Q)] [vh(P) - vh(Q)}-

The proof of Theorem 4.1 in [12] takes advantage of the equality

2[vh(P) - eXp(z)vh(Q))[vh(P) - vh{Q)] = [1 + exp(z)}[vh(P) - vh(Q)}2

+ [1 - exp (z)] {[vh(P)f - [vh(Q)}2} Vz

Using B(—z) = B(z) exp (z) and B(z)[l — exp (z)} = —z this yields

2[B(z) vh{P) - B(-z) vh{Q)][vh{P) - vh{Q)] = B{z)[l + exp (z)][vh(P) - vh(Q)}2

dbPQedBh

Hence, we deduce that

l £ Y ^T [l +exp(^ eT6)j 2 K(P) - vh{Q)}2

7eT6{K(P)]2-MQ)]2}.

Since epQ = — eçp , for all t^ G V̂ 1 it follows that

dbpQedBh P£Mi [ QeNN{P)

Using (A), the fact that n(bp) |&PnbQ= epQ for the outer normal direction n(bp) of the Voronoi box bp and
recalling that b is constant, we have

= f Hbp)fb dr - ff div b dtt = 0

This yields

aUvH.PiivH))^^ E B(^eTb) [l + exp (^ eT&)| ^ [%(P) - vh{Q)}\
dbPQedBh L J P

Further, because of (4.13) and (4.14) we obtain

1 E
2 d 6 €

E :p-[wh(P)-wh(Q)}2 V , ^ e (4.15)
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Observing that

B(z) [1 + exp (z)] > 2 \/z e R1

(which can be proved by easy calculation), the statement follows by (4.15) and (4.9).

1175

(4.16)

D

Remark 4.4. In [12] the inequality B(z) [1 + exp (z)] > \z\ Vz G M1 is applied instead of (4.16) to estimate

Moreover, two restrictive assumptions are used in [12], namely, a quasi-uniform mesh and the assumption

\[ePQ]Tb\>bo>0 VdbPQedBh.

hl, \\-\\h2Theorem 4.4. Let ||.|
Then (4.4a) holds with c = 1.

Proof From (4.13) we infer that

\ah(v, wh)\ < Y, "à \wh(Q) ~ W^P)\
dbpQ^dBh

and &h be defined by (4.12) and (2.8), respectively.

dbPQedBh

By (4.14) we deduce that

(eT [egr&dv+ bv})

Using (4.15) and (4.12) conciudes the proof of the theorem.

Corollary 4.5. Let u G H2(ft) n HQ (Q) be the solution of the continuons problem (2.1) and let Uh G
solution of the FEM (2.7).

Then, with \\.\\hl, \\.\\h2>
 Ph an<^ ^h defined by (4.12), (4.10) and (4.9), respectively, it holds

•

be a

\h2

Proof The statement is an easy conséquence of (4.11), Corollary 4.2 and Theorems 4.3 and 4.4. D
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5. THE CONVERGENCE RESULT

Corollaries 4.5, 7.5 and 7.9 result in:

Theorem 5.1. For a séquence {Mn} of sets satisfying the assumptions of Section 2.1 let {uh} := {uh{Mn)} be
the corresponding séquence of FEM solutions defined by (2.7).

Additionally, let (6.1) and (6.2) be satisfied.
Furiher, we assume that lim hn = 0 wüh hn defined by (3.5).

n~s-oo

ƒƒ u E üT2(O) fï HQ{Q) is the solution of (2,1), there exist positive constants Ci and C^ independent of n, €
and b, such that

\\u - P2
h{uh)\\h2 < y/i (d hn \u\2,n + C2 l £ {{3PQ}2 « 2 f d b p Q l ) - (5.1)

V {dbPQedBh(Mn) J

Thereby, P^, [|.||̂ 2
 and \-\e,24bPQ &re defined by (4.9), (4.126) and (6.14), respectively.

Because of (6.18a), Theorem 5.1 states the linear convergence of the FEM (2.7) for each fixed e.
Moreover, using Corollary 3.2 and Définition 3.3 the estimate (5.1) as well as the resulting convergence

properties of the FEM (2.7) can be extended to the FVM (3.4).

Remark 5.1. In [25] a new FEM is presented for convection-diffusion problems. This method uses Delaunay
triangulations and conforming linear éléments.

In the two-dimensional case and for the problem (1.1), the coefficient matrix of the arising system of linear
équations coincides with that of the FVM (3.4) and the estimate obtained by Xu and Zikatanov [25] has the
for m

where {Tn} is a séquence of Delaunay triangulations and IIn dénotes the interpolation operator. Since the FEM
in [25] is a conforming one, they use other techniques to prove their results.

At flrst sight, the estimate (5.2) seems to be better than (5.1) as far as the dependence on e is concerned.
However, this is not clear, since the constant C in (5.2) may depend on e.

In [8] a new FEM for convection-diffusion problems which is based on Delaunay triangulations and con-
forming linear éléments is presented and analyzed, too. Under the additional assumption of a quasi-uniform
triangulation, they can prove estimâtes which are comparable to (5.2).

6. P R E L I M I N A R I E S

6.1. Assumptions concerning the partition

To obtain estimâtes for the terms on the right-hand side of (4.17) we make the following assumptions:

There exist positive constants Q, i = 1,2,3, such that

C l < ^ < c 2 and lEl{P>Q) Pl < ca WbPQedBh. (6.1)
PPQ PPQ

(6.1) guarantees that for a séquence of dual box partitions all constants which depend on dbpq have an upper
bound independent of dbpg (see e.g. proof of Corollary 7.5).
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Remark 6.1. Assumption (6.1) can be weakened at the price of a more complicated mapping F in (6.3)
(cf. [23]). In order to simplify the présentation we restrict ourselves to the simple mapping.

We also notice that (6.1) is nearly the same as the minimal angle condition for a séquence of corr esponding
Delaunay triangulations (see again [23]).

To obtain estimâtes independent of e we additionally assume that:

There exists a positive constant C such that (3PQ \[epQ]Tb\ < Ce Vd&pç G dBh- (6.2)

Remark 6.2. Obviously, for each fixed e the assumption (6.2) is not restrictive. However, in the case of
singularly perturbed problems, where the parameter e is small, it requires meshes of the size h = O(e) in the
whole domain.

6.2. The affine-equivalent référence element dbpq

To obtain uniformly bounded constants in the error estimâtes, for each dbpq we define bijective affine
mappings F : R2 -* IR2 and F : R2 -^ R2 by

Z = F(Z):=GZ + g and Z = F(Z) := F~1(Z). (6.3)

The matrix G and the vector g are given by

( COS(t> - s i

and g \— ~(P + Q), respectively, with the angle <p :—^.(Q — P7Ey), where Ey = (0,1)T dénotes the unit vector
in the y-direction.

Now, the référence element dbpQ , which corresponds to the Voronoi box dbpg, is defined by dbpQ :=
F(dbpq). In the following, dbpç and dbpQ are called affine-equivalent domains, too.

There holds F (Ei) =.: [xu 0)T, i = 1,2, as well as

^ (6.5)
PPQ

where E\ = E\(P,Q) and E^ — E<i(P,Q) are the points defined as in Section 2.1, but henceforth such that
i(E2PE1) >0.

We have that

det(G) = -A [0PQ]2 (6.6a)

and that the spectral norms |.| of G and G"1, respectively, can be estimated by

\G\<\(3PQ and \G-*\<\-±-. (6.6b)
2 2 (3pQ

These affine transformations also yield an unique correspondence between functions v : dbpq —» M1 and
v : dbpQ —» M1, which is defined by

v(Z) = v(Z) with Z = F(Z). (6.7)
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In particular,

v G LK€(P,Q) <^> v G LK£(P,Q) and v G P(P,Q) <=> v G P := span{1,y}

with

span{l,F3)£(^)} , if [e

span {1, y} , if [ePQ}Tb = O

and

Further, we obtain e.g. (with Z = (x,y)T)

1

i-y

^ 2 '

We conclude this subsection by noting that

- 1 + exp ( ^ [ePg]T6) F3,e(y) I , if [ePQ]Tb ± 0

if [ePQfb = 0.

i o - 7P(^ and ƒ df = : 7 P Q

db'PQ

with SP := F{bp) , SQ := F(6g) ,

and dbpQ := F{db^Q),

^ P Q : ~ ^P ̂  ̂ Q?

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

6.3. Suitable Hilbert spaces and relations with Sobolev spaces

For our purpose, it is useful to substitute the Sobolev space Hl(dbpQ) by the space Hl(dbpQ) defined by

H1{dbPQ) := {q € L2(dbPQ) : [ePQ]Tgrad^ G L2(dbPQ)} ,

which is a Hilbert space with respect to the norm and the seminorm

\\H1{dbpQ)^ a n d

respectively (cf. [23]). Besides, we will also use some other norms and seminorms in H1(dbpq) and H2(dbpQ),
which depend on e and [epQ]Tb. Those ones are defined by

ll̂ lle î̂ PQ) '~ | '
1 2

ƒ »
1 2

1
€

(6.13)
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and

[ePQ\THq tpQ

[epQ]THqepQ
[ePQ]Tb

2 r
O,dbpQJ

Thereby, Hq dénotes the matrix of weak second derivatives of q and the vector tpq is defined by

= E2(P,Q)-E1(P,Q) = 1

(6.14)

(6.15)

such that there holds [epo\TtpQ = 0 .
Obviously, H-H^i^p ) and H-llê dbpQ a r e based on scalar products, such that H1(dbpq) and H2{dbpQ)

with these norms are Hubert spaces, too.

Remark 6.3. In the case [epQ]Tb = 0 the seminorms defined by (6.13) and (6.14) are independent of e.
Then there even hold \\q\\e^(dbPQ) = \\Q\\w(dbPQ) f o r a11 Q € H1(dbPQ) and \\q\\£i2,dbPQ = M\2,dbPQ

 f o r a11

q£H2{dbPQ).

Since we want to follow standard techniques for error estimations it is necessary to introducé corresponding
spaces, seminorms and norms on the référence element

The space Hx(dbpQ) is defined by

Hl(dbPQ) ;= | ç G L2(dbPQ) : q$ G L2(dbPQ)} ,

the norms and seminorms in Hl{dbpq) and H2(dbpq), respectively, are defined by

i L̂

: = {M\\2l,dbPQ+ \iï2e,2,dbPQ}2
WetfUdbpo) \1\E,H1 (dbPQ) f

etW(dbPQ) •" (6.16)

and

:= \\\q*

Lemma 6.1. It holds

+ 2

< 2\v\lidbpQ + 4

,. ÊE9.

\v\ldbpQ Vv

and

(6.17)

(6.18a)

(6.18b)

(6.18c)
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Proof Due to inequalities like

HVt + \fï\ tTgTadv\ < 2 {fHvtf + 2 1^1

we obtain

^ l tTgradt;

Using (2.4) and (6.15) easy calculations show that

( i V a d v) 2 + (eTgrad v)2 = v2
x + v2

y and (tTHv tf+2 {eTHv t)
2 + {eTHv e) 2=v2

xx + 2v% + v2
yy ,

which proves (6.18a). In the same way (6.18b) and (6.18c) can be proved. D

L e m m a 6 . 2 . Assuming ( 6 . 2 ) ; then the norms | | - | | e 2 d 6 P
 an<^ Wm\\2 dbP

 are eQu^va^ent independently of e and

P
Proof. To obtain the desired norm équivalence we have to show that

V« 6 H2(dbPQ)

for some constants Ci — Ci(dbpQ), i = 1, 2, independent of e and
The left inequality is an easy conséquence of (6.18b) and (6.2).
To prove the rest, we use inequaiities like the following one

which is true for all positive constants a.
If we choose a = C2/[2 + C2} with C from (6.2), there hold 0 < a < 1 and, since (6.2),

Altogether, this implies

with a positive constant C% independent of e and PPQ-
From this and analogous considérations the statement follows. D

6.4. Statements for the case [epQJT & # 0

To dérive error estimâtes it is necessary to generalize some well-known results in the space H2{dbpo) for the
seminorm |,|2 dhp and the vector space Pi := span{l, xyy} like the statement

v\2tdbpQ Vv e H\dbPQ)
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(cf. Th. 14.1 in [6]) and the Bramble-Hilbert lemma (cf. Th. 28.1 in [6]) to the seminorm | . | e 2 dbp and the
vector space

RiAdbpQ) := sPan i1 ' F^e{y) i £*3ïe(Ô)} (6-19)

with F3t£ defined by (6.9).
The basis is the following lemma, which extends the well-known statement

For all f e H2(dbpQ) it holds: \r\2jbpQ = 0 <=̂ > r G P\{dbPQ), (6.20)

which is a statement for the pair M.|2 ^hp } P\(dbpo) J, t o the pair f |-|£ 2 dbP
 ! ̂ i ,e(d&PQ) ) •

L e m m a 6 .3 . Wïtfi JRI,E(dftpQ) rfe/ïned by (6.19) «i /ioZds /o r all f G H2(dbPQ)

Proof. Easy calculations show that f € R\te(dbpQ) yield |r|e 2 d-b = 0 .

(A) f G C2{dbPQ).

Let \r\£ 2 (£bp — 0 be satisfied, i.e. we have

+ ^^eTö|IO]£i-6p(3=0 and | | 2 e % + ^ /3e T b | | O | f e Q = 0.

The last two conditions imply that 2ery + r (3eTb is constant, so that f has the form

r(x,y) = d + C2(x) F3,e(y).

Hence, ll^âîllo.dtp = 0 results in C2(x) — C3 +C4X and, therefore, in f € R\,s{dbpo).

(B) f G H2(SPQ).

We define the variable transformation Z — (a;,t/)T = F(Z) with Z = (x^y)T by

x :=x, y : -exp(^ — e b) ^=^ x - ar, y = — -^ In (y),

which maps dbpq into dbpq := F(dbpq).
Now, corresponding to f we define the function r by

, t/) := f(x, y) exp (y — eTb) <̂ => f (*, y) = r(x, y) -•

Easy calculations prove that

fxx = TÏÏ exp(y — er6),— e 6 ) , r^^ = — ^

and

{2 e r ^ + ffi ^eT6} exp ( - y —
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from which we get

f G H2{dbPQ) *=> f e H\dbPQ) and \r\e^dbpQ = 0 «=* \r\2jbpQ = 0.

The above transformation and (6.20) prove the lemma. D

R e m a r k 6.4. Part (B) proves Lemma 6.3. Part (A) only motivâtes the choice of Ri7£(dbpQ).

L e m m a 6.4. Assuming (6.2), then with R\^£(dbpo) defined by (6.19) there exists a constant c = c(dbpQ)
independent of s and (3PQ, such that

inf \\v + r\\£i2ÀbpQ < c \v\£i2A Vô G H2(dbPQ).
(dbpQ)

Proof Using Lemmas 6.2 and 6.3, for a fixed e the proof follows that of Theorem 14.1 in [6], where P\{dbpQ)
has to be replaced by R\^{dbpo) defined by (6.19). Because of assumption (6.2) the constant c is independent
of e and (3PQ . D

L e m m a 6.5. Let le be a linear form on H2{dbpo), which is continuons with respect to the norm \\-\\£2dbP

and which satisfies

le(f)=0 W£Rhe(dbPQ),

where Ri^idbpq) is defined by (6.19).
Assuming (6.2), then there exists a constant c— c(dbpQ) independent of e and PPQ, such that

i

where | | . ] | e 2 j b p is the norm in the dual space of H2(dbpo) normed by ||.||e 2Proof. The proof is substantially the same as for the standard second Bramble-Hilbert lemma. Therefore, we
refer to [24], where the details are given. D

We conclude this part with the following result. The change of variables Z = GZ + g and the related
correspondence between functions #, q given in Section 6.2 result in

dÜ = det(G) dû, (6.21)

^ , G~HPQ = ~EA , gradç = [G^f grad q and Hq = [G^f Hq G~l

PPQ
^ E y , GHPQ =

PPQ PPQ

(where E& — ( l , 0 ) T and E% — (0,1)T dénote the unit vectors in the x- and y-direction), from which it follows
that

\T gradç = q$ and [ePQ]TH[ePQ\T gradç = — q$ and [ePQ]THq ePQ = q$$. (6.22)
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7. ESTIMATIONS

7.1. Estimation of the approximation error

In this section we deal with the estimation of the approximation error ternis

and \\u-P2(u)\ h2

with a function u G H2(fi) n HQ(SÏ) and, at first, we consider \\u — P^(u)\\hl.
In the following II = TldbpQ dénotes the restriction of P£ to dbpg, Le. there holds II : H2(dbpQ)

LK£(P,Q) with LKe{P,Q) defined by (2.5). Hence, we have

\\u-Pl{u)\\hl=\- Y, If {[epQ]T[eg™d(u-ndbpQu) + b(u-ndbpQu)}}2 dû] • (7.1a)
\̂  dbPQedBh

 J
dh

J
pQ j

With the seminorm in the Hilbert space H1{dbpo) defined by (6.13) we can also write

dbPQedBh

Since we want to follow standard techniques for error estimations we introducé the mapping tl : H2(dbpQ)
LK£(P,Q) by tlv = (UvJ with v and v from (6.7), whereas LK£{P,Q) is defined by (6.8).

Lemma 7.1. Let dbpq and dbpq be two affine-equivalent domains.
Then it holds

Proof. Using the change of variables Z = GZ + g , (6.21), (6.22) and (6.6a), we get

which is the statement, D

Lemma 7.2. Assuming (6.2), then there exists a constant c = c(dbpq) independent of e and j3pg, such that

Proof. The proof follows that of Theorem 15.3 in [6].

First step:

\f ~ Ö f L.HM&FQ) = ° W € RIA&PQ)' (7-2)

Easy calculations prove the statement of the first step.
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Iv

tlv

< c2(dbPQ) \\v\\£^âbpQ VU e H2(dbPQ) and

< c2{dhPQ) \\v\\e>2t&PQ Vf) G H2{dbPQ).

At first, because of Lemma 6.2 and the imbedding H2{dbPQ) <-* C°(dbpQ) there holds v G C°(dbpQ) for ail
v e H2(dbPQ).

Further, by easy calculations it can be deduced that

e,Hl(dbFQ)

Now, using tlv — V(P)$PQ + 'Î)

îiv

2 K€

the continuity of v we obtain

e,m{dbPQ) e

This, together with (6.2), Lemma 6.2 and the imbedding used above, results in

with a constant ci — oi{dbpo) independent of e and f3 PQ, which proves the statement for IL
For the identity mapping / the statement follows from (6.18c) and (6.2),

Third step:

reR inidb "^ + f | l e ' 2 ^ « - C3^bp^k2,dbPQ Vt> G H2(dbPQ).

This is equivalent to Lemma 6.4.

Now, because of the invariance (7.2), we obtain the identity

v — tlv (î-tl)(v Vf E RUe{dbpQ).

As for the remaining part of the proof, we refer to the proof of Theorem 15.3 in [6].

Lemma 7.3. Let dbpq and dbpq be two affine-equivalent domains.
Then it holds

^ VÏ; E H2{dbPQ).

Proof. Using the change of variables Z = GZ + g , (6.21), (6.22) and (6.6a), we get

ƒƒ

D

Easy calculations for the other terms prove the statement. D



CONVERGENCE ANALYSIS FOR AN EXPONENTIALLY FITTED FINITE VOLUME METHOD 1185

Remark 7.1. Theorem 15.1 in [6] is comparable with Lemma 7.3., where the equality in Lemma 7.3 is replaced
by an inequality.

Moreover, a direct application of Theorem 15.1 in [6] is impossible, because in H2(dbpQ) the norms iU|2,d6PQ

and ||.||e 2 dbp are equivalent; but this is not the case for the seminorms |. 2dh^ and |.|e 2 ri& .

Obviously, the Lemmas 7.1, 7.2 and 7.3 yield:

Theorem 7.4. Let dbpç and dbpq be two affine-equivalent domains through the mapping F defined as in
Section 6.2.

Assuming (6.2), then there existe a constant c = c(dbpq) independent of e and {3PQ, such that

Vt; G H2(dbPQ).

Thereby, II = ïidbPQ dénotes the restriction of P^ defined by (4.10) to dbPQ.

Corollary 7.5. Let a séquence {Mn} of sets be given which satisfy the assumptions of Section 2.1 and let
{dBn} :— {dBh(Mn)} be the séquence of corresponding dual box partitions.

Additionally, let (6.1) and (6.2) be satisfied.
Ifu G H2(Çl) Pi HQ(Q), there exist positive constants Ci and C2 independent of n, e and b, such that

\\u - Pk(u) hl < [
\dbpQedBn

and

\\u-P%(u)\\h <C2y/ë max f3PQ

Thereby, \\.\\hl, \\-\\h2, \'\e,2,dbPQJ Ph ®nd P2 are defined by (4.12), (6.14), (4.10) and (4.9), respectively.

Proof Theorem 7.4 and (7.1b) result in

/ \ 2

\dbpQedBn

(6.1) yields sup ^ m a x „ c(dbpq) = c < oo and therefore

] WPQ}2 l<2,dbpQ

which is the first estimate.
Since b — 0 implies V̂ 1 = V£, P^ = P2> l-|2,döPQ = \-U,2,dbPQ and ||. |(hl = ||.||^2, the second estimate

obviously follows from the first one. D

7.2. Estimation of the consistency error

In this section we deal with the estimation of the consistency error term

\ah(u,Wh) -dh(wh)\
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where u is the solution of (2.1) with u € H2(Ü) n Hjj(ft).
Therefore, for Wh £ V£ we study

6h(u,wh) := ah(u,wh) - dh(wh).

Remark 7.2. The approach in this section is substantially the same as for the Poisson équation in [23]. There-
fore, we give only the main ideas. For the reader who is interested in more details we refer to [24].

Since u is a solution in a weak sense, we obtain with (A) and Wh(P) — 0 for P E Mi

wh(P)JJfdÜ = £ [wh(P)-wh(Q)] f
bp dbpQedBh bPnbQ

Further, from (4.13) we infer in Int (dbpq) that

u + bu] &*dwh = W f t V% * w j [ e p Q ]T [ £ g r a d u + bu]
PPQ

Hence, using dbXpQ defined by (6.12) we have

ôh(u,wh) = ^2 àdbpQ{u,wh) := ^2 lwh(Q) - Wh(P)]r]dbPQ(u) (7.3)

with

VdbpQ^) •— -5— / / [epQ]T[egvsidu-\-bu]dft / [epg]T[egradw + bu] dF. (7.4)
PPQ JJ 2 y_

Further, we define 7?d"6p by

dbp*Q

1 J f f - - 0PQ T f
2 1 yy y 2 J

 y

Lemma 7.6. Let dbpq and dbpç be two affine-equivalent domains.
Then it holds

VdbPQ{v) = r}ibpQ{v) Vv e H2{dbPQ).

Lemma 7.7. Assuming (6.2)? then there exists a constant c = c(dbpç) independent of e and PPQ, such that

Proof. To prove the statement, we define a linear form l£ on H2{O%PQ) by

Uv) := \ VibpQ (v) = 11 (iy+v~f [epofb) du - j (vy + v ̂ f [ePQfb) df. (7.5)
r, 12
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Easy calculations show for the basis functions in R\i£{dbpo) that

2e

and

from which it follows that 4(f) = 0 Vf G Riy£{dbPQ) with (6.11).
Therefore, using (7.5) and Lemma 6.5 we get the desired resuit. O

Obviously, the Lemmas 7.6, 7.7 and 7.3 result in:

Theorem 7.8. Let dbpq and dbpQ be two affine-equivalent domains through the mapping F defined as in
Section 6.2.

Assuming (6.2), then there exists a constant c = c{dbpq) independent of e and fipq, such that

H2(dbPQ),wh e P(P,Q).

Thereby, SdbPQ is defined by (7.3).

Corollary 7.9. Let a séquence {Mn} of sets be given which satisfy the assumptions of Section 2.1 and let
{Bn} := {Bh(Mn)} and {dBn} := {dBh(Mn)} be the séquence of corresponding box and dual partitions, respec-
tively.

Additionally, let (6.1) and (6.2) be satisfied.
Ifu G H2(£l) n //"o(f2) is the solution of (2.1), there exists a positive constant c independent of n, e and b,

such that

2

Thereby, ah, dh, V^7 \\-\\h2
 an^ l'|e,2,d&PQ ^re defined by (2.8), (2.7), (2.3), (4.126) and (6.14), respectively.

Proof Using Theorem 7.8 and (6.1), for a solution u of (2.1) and all Wh in V2 in the same way as in the proof
of Corollary 7.5 we obtain

<ce 2 ^ [3pQ \u\e>2,dbpQ \WH(P) ~ Wh(Q)\-

The rest is easy to prove and results in the statement. Thereby,

[wh(P)-wh(Q)}2

is used, which holds because of (6.1) and (4.15). D
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