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ON THE ASYMPTOTIC ANALYSIS OF A NON-SYMMETRIC BAR

ABDERRAZZAK MAJD!

Abstract. We study the 3-D elasticity problem 1n the case of a non-symmetric heterogeneous rod
The asymptotic expansion of the solution 1s constructed The coercitivity of the homogenized equation
1s proved Estimates are derived for the difference between the truncated series and the exact solution

Résumé. Nous construisons un developpement asymptotique de la solution du probleme d’elasticite
dans une barre non symetrique Nous obtenons des equations homogeneisees unidimensionnelles dont
nous montrons la positivite Des estimations d’erreur permettent la justification de 1 aspect asympto-
tique de 'approximation
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1 INTRODUCTION

The main objective of the paper 1s to construct and justify an asymptotic expansion of a solution of the
3-D elasticity problem for a non symmetric heterogeneous rod The symmetric case has been considered 1n [9],
and 1t was proved that the himit problem when the ratio of the diameter of a rod to its length tends to
zero 1s represented by a diagonal matrix of the ordinary differential operators Thus the construction of the
homogenized equation and the proofs of existence and uniqueness of this solution are substantially simplified
The non-symmetric bar 1s considered below We construct below an asymptotic expansion of a solution of the
problem The limit operator 1s presented by a full symmetric matrix, this expresses the coupling between the
components of displacement (tension, bending, and torsional component) The existence and umqueness of
1ts solution are the consequence of the positivity of elastic energy We give a prior: estimates on the error
Similar questions for amsotropic beams are studied m [11] and for bars in [12] The phenomenon of couphng
appeared imphlicitly 1n the case of plates and explicitly for beams A result of convergence was obtained 1n [5]
for the thin cylinder The equations of the homogenized problem are unidimensional, but their coefficients are
averages of the solutions of auxilhary problems i three dimensional cells Except i particular cases where one
can explicitly calculate these coefficients, the resolution of these equations requires a numerical approximation
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FIGURE 1. An example of a non-symmetric rod.

2. FORMULATION OF THE PROBLEM

Let B be a two-dimensional bounded domain in R?. Assume that its boundary 8B is smooth. Set Z = (2, z3).
Let € be a small parameter (¢ < 1) and let €2, be a rod, I'; denotes its lateral boundary (see Fig. 1).

b
Qe ={z € R3;2; €0, 1],2 € B}.
z
[, ={zeR3 z; €[0,1], = dB}.
The 3 x 3 matrices A,; are 1-periodic functions in &;. Let a,;x; denote the element of A,; in link k& and column .
The functions a,,x;(£) are piecewise smooth: they are infinitely differentiable except on some smooth surfaces

3., these surfaces do not intersect the boundary of £2.. Denote ¥ = UX,. These coefficients satisfy the following
symmetry and positivity relations:

Qkyyl = Gukly = Qiyk, for all k, 4,1, 7,
Ak >0 aguy(§)myme. > & mym,, for each symmetric constant matrix 7;,.

Throughout the paper the convention of summation over repeated indices is used. Introduce the notations

Lt = 5 (4 (5) %)
2D = ()2,

were v, are the components of the unit normal vector to the boundary I'.. We consider the elasticity equations

Leu(z) = f(z), in Q,

Ou(z)

_ = 0’ on 1-‘57 (2'1)
ov

u(z) is 1-periodic in 21,

with the natural conjugation conditions on the interface of discontinuity of the coefficients

{agg/x)} - 0, (2.2)

[u(x)]m =0.
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[[] denotes the jump of a function on the interface of discontinuity. The right-hand side f(z) and the un-
known u(z) are 3-dimensional vector functions. The Problem (2.1)—(2.2) simulates the stressed state of a
non-homogeneous rod. The elements a;;x; are the elasticity coefficients. The right-hand side f(x) is the density
of mass forces. We study the asymptotic behavior of the solution of (2.1)—(2.2) in the case were the bar is
non-symmetric. We construct a formal asymptotic solution (FAS) of the Problem (2.1)—(2.2). We establish the
positivity of the limit problem. We prove that the FAS is an asymptotic expansion of an exact solution of the
problem and establish error estimates for the partial sum of the series of FAS’s. If the ends of the rod are fixed
we must construct the boundary layer corrector. Full asymptotic expansion of the solution to (2.1) with mixed
conditions were constructed in [9,10]. In [6], the error estimates were proved for other norms.

3. A PARTICULAR EXAMPLE

3.1. Asymptotic expansion

For the first time, we study the particular case were the right-hand side f(z) depends only on the first
component z1, so the density of mass forces are unvarying on the cross-section, the torsional part of displacement
is zero. Let us present the right-hand side f(z1) as the form:

1 0 0
fé(z) = At f(zy), were A= 0 g1 0
0 0 ¢!
We seek a formal asymptotic expansion as
w(™)(z) = Ze Ny(¢ d A”(“), £ = (z1,8/€), (3.1)

were N;(§) are 3 x 3 matrix functions 1-periodic in &3, and v(z;) is a 3-vector function 1-periodic. Substitut-
ing (3.1) into equations of the Problem (2.1)-(2.2), we obtain

+
L@) ~ A7 o) = Y 21T - A p (o),
1=0
On the lateral boundary we have

) (z) ’i‘f 1 é)d Av(xl) —o

ov —~ x4
The conjugation conditions on % land
oul>) (z) = —1 d'Av(z1)
[ ov ]]E 1=0 G dz '

“+oo
Zfl [Nl(g)]pj = 0,
1=0
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where

Ki(§) = LeeNi(€) +T(8),

1o} 7]
Lee = B—&<Au(€)¥),
T = A(© T+ An(ONa() + 5 (Aa©ONn (),
ON, (&)

0¢,

Gi§) = wn zj(f) + 1, Au (§)Ni—1(€).

Let us require that

{Kl(g) = kl: Gl({) = 0)
[Ni(@)]j =0, [Gi(&)])z =0,

where k; = const. We obtain the following recurrent chain of problem for N;(£).

Lee Ni(€) = ki — Th(£), € €Rx B,

61;[]56) Vz 21 (§)Nl 1(5) on F,

el =0, | 28| = BN @),

N (&) is 1-periodic in &;.

(3.2)

Here, k; are chosen from the solvability conditions for (3.2):

ON—1(§)

by = <A1] o

+ A11(§)Nl—2(f)> .

Thus, the algorithm for constructing the matrices N;(¢) is inductive. Suppose that N;(§) = 0 for each [ < 0 and
No(§) =I3. If I > 1 then N;(§) is the solution of the Problem (3.2), note that the right-hand side is defined by
the functions Ny, (€) with priority m < . This condition may be used for defining N;(£) inductively in terms of
the functions M, of lower priority. We have

ON1 ()

ko =0, ki =0andky= <A1J(§) + A11(§)>

and the following assertion is valid:

Lemma 3.1. The element kil of the matrix ko 15 positwe, all the other elements are zero.

Proof. By substitution into (3.2), we verify that the second (the third) column of the matrix N; (&) satisfies

_és
N = o fors=2,3.
0

b= (o p() 5(‘9 +aRONE(E))

For r, s € {1, 2, 3}, we have
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for s = 2, 3, we have

1s 0 re 1p PS
ky® = < 1) A(;gj(ﬁ) + a7 (915 >
= (=a1;(§) +ai3(9)) = 0.

Now let us prove k3! = 0, we have

aNP1 .
7%t + a1€<s>151>

< ]f;;“ +asl(£>>
<a N”1 +& I"l)>

— P 1\ 9
= <az§’(s)3—5 (M +ar’) 56 >

sl _
k2 -

Applying the integral identity for Problem (3.2) for N;(£), with the function w(€) = &, which is 1-periodic in
&;. This proves the lemma. To prove that k3! > 0 is similar to the proof of Theorem 1 of Ref. [9]. 0

Lemma 3.2. In the matriz k3, k3% = k2 = k3?2 = k33 = 0. In the matriz kq, k32 # 0, k3> # 0.
Proof. Let us prove that k32 =
ONE?
- <af§’(6)72§(§—) IO (§>>
7
ONE?
<aé§’ (5)725@ +aR (N} (§)>
R RPN (3) 20 | 062
- < (az] (5) 8&] +a ( )NP (5) 851 .
Applying the integral identity for Problem (3.2) for I = 2, we obtain
9 INY?
o= - <¥ (aif (O L + el OV (&)) §2>
p2
- <<k¥ - a2 — alro” (g)) 52>
7

<( o2 aii’(f)fgz(ﬁ)) £2>

= ((ai3(&) —a11()) &) = 0.

orky’ =0 k3’

Similarly, we prove that k23 = 0, k32 = 0 and k$® = 0. For k4, we use the proof of Lemma 5 of Ref. [9]. O
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3.2. Homogenized problems

Let us rewrite the equation for the function v(z1) and its derivatives

+00 1
A
251—2 ki d'Av(z1) = A"t f(z1), =1 €(0,1).

l
day

Let us multiply (3.3) by A

Zsl 2 kg SAYE) gy

d a0

According to the previous lemmas, one can write the first terms of (3.3)

11 12 13
k3 kS k3

k&' 0 0
0 0 0 |Ls+e| %3 0 0 §+52Ak4Lz+§: =2 Ak,
0 00 ek 0 0
2 3
d
— ! a1
dw%v (z1) dm?v (z1)
a , a® ,
£ __ -1 — —1
where L5 = | & d_va (z1) |, Ls=]| ¢ d_w‘;’v (z1)
d* 3
s_ldx%v (z1) E_ld =v°(z1)

The v*(z1) (s = 1, 2, 3) are the components of the vector v(z;). Collecting similar terms of ¢, we obtain

+0o
Zelle(xl) = f(z1), =1 €(0,1).

=0

s

Denote % by d*, thus
Eild? kl2d3 k1343
Lo=| k2ad® k3?d* kPa*

K31d3 kRt kB
We seek the function v(z1), solution of (3.4) as

+oo
v(zy) = Z e'vg(z1).
t=0

The functions v:(z1) are periodic and independent of . After substitution (3.5) into (3.4), we obtain

+oo

“+oo “+oo
DALY w(m) = D L) =
=0 t=0

t=0,1=0

(3.3)

(3.4)

(3.5)
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After the following changes of index: I’ =1 + t, we obtain

1=l

Z el ZLﬂ)l’—l(wl) = dvof(z1) | =0.
=0 1=0

By identification of the coefficient of e to zero, we have for I’ > 0

=l

Zlel’~l(xl) — 6l’0f(171) =0, =z € [0, 1]

=0

Thus for I’ = 0, we have
Lovo(z1) = f(z1), =1 €10,1],
for I’ > 1,

Lo?)l/(l‘l) = Fy (xl), 1 € [0, 1],

where
1=

Fy(z) = Z Ly —(z1).
=1

1075

(3.6)

The conditions for periodicity of vy (z1) and its derivatives added to equations (3.6) define the homogenized
problem of v:(z1). The right-hand side Fy/(z1) of (3.6) contains the derivatives of functions v (z1), with ¢ < I/,
thus we define v;(z;) inductively. Now let us prove that this equation has one solution. The proof is based
on the Lax-Milgram lemma. Denote V to be the space of vector functions of H'(R)? 1-periodic. We define in

V x V the bilinear functional

1
a(9) = [ (Labln), a2z,
0
For [ > 0, H; is the linear functional defined in V by

Hi(¢(z1)) =/0 Fy(z1)¢(z)dz; .

The Problem (3.6) is equivalent to a variational problem

findy €V
7 {a(w, ¢)= Hi(9) Ve V.

Lemma 3.3. There erists a positive constant C such that, for each function ¥ (z1) € V, we have

a(1h, %) > Cll(z) 3 o.1p-

Proof. Let the elasticity operator

0 () Ou(z) i
35 (AZJ (6) —8:rj ) , in €,

—V;Ayj (g) du(z) on 0f),.

7
3:1:j

(3.7)
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Let us make the following changes of variables

1 :51:
X9 2652,
z3 = &&3,

we define w(¢)
w1 (§) = wi(z),

wa(§) = euz(x),
w3 (&) = eus(x).

Denote Qg the bar Qo = [0,1] X B. Let us multiply the second and the third component of the first equation
of (3.7) by e~? and multiply components of the second equation by €2 and multiply the first component of the
second equation by e~!. Then the equations (3.7) take the form

5 (B©%),  man

0¢,
—1By (£)

(3.8)

26)

on 0B,
0¢, ’

€
The matrices B,; satisfy conditions of symmetry and positivity. The following inequality holds for any function

from V that satisfies relation / w(€)d¢ =0

Qo
| (0%, 20 ae > apuiore
o J 2

bEL(E) = (%)%M af; (51 ,52753) where 8,51 = 02, + 83, + 02, + 63, + dor + 831 + dox + O3k

C > 0, where C is the constant form of Korn’s inequality for Qg. Since, we have

/. (50220, 20 e _ 2 [ (Aw(w)agg),ag?) -

= [ (@52, %) x> cpuiee

Applying integral identity, we obtain

= [ (w05 e [ (2 (052 )

thus

Let the function
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where N;(§) are the solutions of Problem (3.2). We can verify by the direct substitution that

4 i
I = /ﬂ(Zf’“hl%ﬁw(xo)dx+0<e3)
€ 1

=2

1/ 4 l
= 52mes(B)/ (Z 51—2AhlgA_¢(IE1_),w(xl)) dz; + O(e?)
0 \i=2 dz}

= e2mes(B) /O (Low(z1), ¥(z1)) das + O@).

Finally

mes(B) /0 1 (Lo(&1), 9(é1)) dér + Ofe) = Cllw (&)
On the other hand, we have
(@)% = lw (€)1} + Oe)-
We obtain
mes(B)a(y,v) > Clly (&)}

O
The bilinear functional a(vy, ¢) is positive, H; is continuous in the norm of V. By Lax-Milgram lemma, we prove
that Problem (P;) has one and only one solution.

3.3. An error estimation

In order to justify the expansion, we replace the formal asymptotic expansion obtained above by partial
sums of u(*®)(z) and de v(z;). We substitute the partial sums into the variational formulation of Problem (2.1),
and derive a prior: estimates on the errors due to these truncations. So we prove that the formal asymptotic
expansion built above is the asymptotic expansion of the exact solution. The following theorem gives a priori
error estimation.

Theorem 3.1. For each integer K, there exists a constant M independent of € such that

1A~ (u (@) — w(2)) [l ey < M.

Proof. We prove this estimation in the general case. For K = 0, we have:

Corollary 3.1. There exists a constant M independent of € such that

B z, d
“A“lu‘(m) - 'Uo(:l:l) - 6N1(E)d—$1vo($1)“H1(Q:) < Me.

lut(z) — vo(z1)ll2 (o) < Me.
leuZ(z) — v3(21) || 20y < Me.

leud(@) — v§(21) | 20y < Me.
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4. A CASE WITH TORSION

4.1. Formal expansion

Now let us suppose that the right-hand side f¢ depends on all components of z and has the following structure:

@) =2 (2) 6 (2) v,

In the above notation ®(€) is the rigid displacement matrix

) 100 0
of)=0 1 0 —a&
0 0 1 a&

a= (ﬁ(ff) /B (¥3 + 3)dy2 dya)

where the constant a is defined by

—1/2

and K is defined by

1 0 0 0
0 ¢! 0 O
K= 0 et 0
0 0 0 1

We assume that the 4 x 4 matrix function é(f) is 1-periodic in &, WY(z;) is a 4-dimensional vector and
¥ € C*°(R). Let us rewrite f(x) as the sum

Fo(@) = @(E)KT10¥(z1) 1 2(E)LTO(E)¥(x1).

where
o= m;uw / 7 (£)2(£)O(€)de,
=, OO =0

and Y = [0, 1] x B. We seek a formal asymptotic expansion as

( 1)

“+o0
W) = 3 et T £= (@,2/0) (a.1)

where N;(€), M;(§) are matrix functions 1-periodic in &, and v(z1) is a 3-vector function. As in the first case,
we obtain

uNa) — f@) = Z - 2H{V(§)d’c”(xl’+2 et o) T2 )

1

S @160 - BEK-16EUe) (42)
u(>) (z = v(zy 141 1
2o L S angpTn) S g (4.3)

ov 4
=0 =0
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HM TM, GM are obtained by replacing N(£) with M (£). Here Ni(§) = M;(¢) = 0 whenever [ < 0. As in the
procedure from the previous case, we require that

for 1 >0, HY(€) = ®()h), for I >0, HM(&) = ®(€)hM, HY (€) = B(E)K10(8),
GN(E) =GM(€) =0 [N(9)] = [Mi(e)) =0, [GF(9)] = [GM(¢)] =0,

where k¥ and hM are constant 4 x 4 matrices. We obtain the following recurrent chain of problems for

Ni(§), Mi(€)

LeeNi(€) = @AY - TN (),  £€(0,1) x B.

6];_1(/5) = _VzAil(g)Nl—l(g)a on F

M@ =0, | | — peaat@Ma(e.

N is 1-periodic in &;.

(4.4)

Here, as previously, h{v are chosen from the solvability conditions for the Problem (4.4):

Y = (070 (O + an@ma©) ).

M, (&) are the solution of the same problems with N; replaced by M;. However Mq(£) is the solution of the
problem

LeeMo(€) = ®(E)K1O(E), £€(0,1) x B.

9 Moe)=0, EeaB.

ov
dMo(§)

[Mo(8)] == 0, [T} |s= 0.

(4.5)

Thus, the algorithm for constructing the matrices NV; and M; is inductive. Suppose that N; = 0, M; = 0 for
1 <0, No(€) = ®(£), and My is the solution of (4.5). If I > 0, then N; and M, are solution of Problem (4.4).
The right-hand side of these problems contains N,, and M,, with indices m < [, which permits us to define
them successively. We have

ON1(§)
9¢;

W =0, =0, =0, 1 = (o7 (4, T + An©0©) ).

For matrices h{v (I= 2, 3, 4), as in the first case, we prove

Lemma 4.1. In the matriz )’ non-zero elements can occupy only the following positions marked by stars: we

have
* 0 0 =
BN 0 0 0 O
2710000
* 0 0 =«

hil # 0, 4t > 0. In the matriz hY, h3% = h3® = h3® = h32 = 0. In the matriz Y, h3> # 0 and h3® # 0.
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4.2. Homogenized problems
After the construction of A} and A}, one can write the equation of v(z;)

+o00
3 el ZIChNd’C” +Z l/Cth‘I’(”l) OU(z1), 1€ (0,1). (4.6)
=0

We seek v(z1), solution of (4.6), as

+oo
v(z1) = thvt(xl)-
=0

The v;(z1) are periodic 4-dimensional vector functions. As in the first case, we obtain the homogenized problems,
for I’ > 0, we have
1=t
> Loy —i(@1) — 6100 (21) + Kh
=0

d'w
MT(I.':,E}')':O, 1'16[0,1]
For I’ = 0, we obtain

LQ’UQ(ZCl) = (:)\I’(Il), 1 € [O, 1}

For I’ > 1,

Lovi:(z1) = Fy(z1), =z €[0,1]. (4.7)
where e - )

Fi(zq1) = ; Liv—p(z1) + KhM L

The algorithm for constructing v:(z1), solution of the Problem (4.7) is inductive. As in the Paragraph (3.2),
we write
h3*d? hi%d® hi%d® A1,d?

h3'd®  hi2d* ha* h3,d?
h3td®  hj2d* h3Pd* h3,d®
h5td®  h$2d®  h3*d3  hg,d

In order to prove that Problem (4.7) has one solution, let us add some conditions. Denote M the matrix
defined by

Lo =

_ 1 T
M= meS(B) /; o (yQ’ yg)@(y27 y3)dy2 dy3

The domain B is non-symmetric, so M is different to the identity matrix I,. We must change the center of

reference to have M = I, then
[ @de=oe [ aaw-o
B B

The Problem (4.7) is equivalent to a variational problem

P find ¥ € V such that
Y a(w, ¢) = Hi(g)  VoeV.

Let us prove that the Problem (7;) has one and only one solution. Let K be an integer and define the function
u(z)
K+1

UK(JC)—Z iN(ﬁ)d}Cw $1 +Z l+2M i( ) EZ(.’El,:fZ/E).
=0
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The functions N;(£) and M;(€) are solutions of Problems (4.4), as in the Paragraph (3.2), there exists a positive
constant C such that

(Low, )y > Cllwll}n o,

where

V(&)
w(é) = | ¥*(&) — eakst (&)
P2(&) + eaboh* (&1)

in fact, according to the Korn’s inequality, we have

Applying the integral identity for Problem (2.1), we have

- (%50 ) - [ (2 (152) i)

- /aﬂs (ViAij () agzz(:;c) ,u(x)) ds — /E (Vi [Aij (z) agif)] ,u(z)) ds.

u(z) Ou(z)

0 L2
81’]' N W) dzx > Chwnl_p(Qo)

As in Paragraph (3.2), we obtain

1
mes(B) [ (Lov(6), 9(61)) déa + O() = Clu(©) .
Taking into account the previous conditions, we have for s = 1,2, fQo £t (€1)dE = 0, then

[92(&1) — eatsp* (€)I3r (00 = 192 (EDN (o) + €70 129" (€)1 (0o

l4°(&1) + ea&a¥* (60171 (o) = 10° (€N (o) + €70 1€3%* (€)1 %1 (o) -

On the other hand,

Ou(z) Ou(z) 4 2 2 2
‘/ﬂe (Az](-'l})-———'8x7 y axz dz > C (6 |IVU”L2(CS) +e€ |IU|IL2(QE)) .
Finally, we obtain

(Lo, ¥)qo + O(e) 2 [ VullFz(c.y + lullfzc.)

Then
(Lo, ¥) = 10" (€)1 31 (o)-
There exists a positive constant C such that

(Lo, ¥)go = CllY 12 0u-

The bilinear functional a(%, ¢) = (Lo, ¢) defined in V is positive. H;(¢) = fol(Fl (z1), ¢(z1))dz; is continuous
in V. By Lax-Milgram lemma, we prove that for each [ the Problem (7;) has one and only one solution in V.
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4.3. Justification of the asymptotic

In order to justify the expansion, we replace the formal asymptotic expansions obtained above by partial
sums of series u® and v. First, we prove some lemmas on the properties of the functions v:(z1), Ni(€) and

M, (8).

Lemma 4.2. For each integer k, there exists a constant C dependent on t but independent of € such that

[ve(z1)llex o,y < C-

Proof. All functions v4(z1) are solutions of the ordinary Equations (4.7) with mixed boundary conditions. We
can prove by induction using the form of the right hand-side functions that these solution are infinitely smooth.

O
Lemma 4.3. The functions Ni(§), solutions of Problems (4.4), satisfy the followng nequalities:
N (B 2V dz < M,
=z — <
L (wem G« w ()] ) as < 0,
where M, 1s a positwve constant independent of €.
Proof. Is analogous to that of Lemma 3.2 of [3].
[
For functions M;(€), a similar lemma holds. Consider the partial sum u¥)(z) of the expansion (4.1)
K+1 K) K+1 v
W@ = 3 e O S 9T, € aie) (48)
1=0
where
v (z Zs ve(21).
Lemma 4.4. The function u'5)(z) 1s the solution of the following problem
( 0
L (u®)(z)) = f(z) 4+ eXHF(z) + 5K+1$F’"(x) m Qe,
(%) "
a_ua_(x) = U e® T F™(z)  onT,
v
ou'K) (z) ~0 (4.9)
ov I o
[u(K)(x)]|E =
(w15 1-perrodic . x4,

where ||F™||1,(0.) < M and M s a constant independent of €.
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Proof. The substitution of (4.8) in (2.1) leads to

K+1

_ dt dK-+3]C,v(K) (x
LE(U(K)(x)) — Z & 2thd_xllK:,U(K)(x1) +6K+1A11(§)1\ +1(€)__K;3—1)
=0

K425, (K)
+e¥ ((%Aﬂ (6)Nk+1(8) + A11(§) Nk (€) + A1 (&) 5 3, NK+1(§)> %ﬁ
7 1

K+1

1
+ Z etnM d—d—\IJ(z )+ Xt AL () Mi41(8)
1=0

dK B\I/(.'Bl)
dl’K+3

dK+2\I/(ﬂC1) .

e (5 Aa N (6 + An(OMr(€) + Ais(©) 3 Micea(©)) g

9€;

We replace the terms between parenthesis respectively by h% 12 — LeeNgy2(€) and hi¥. s — LeeMrc12(€), we
obtain

K+2 K42 i

d d
L(uf(a) = Y e~ ZhNd Ko () + > & th—\p(xl)Hsg, (4.10)
=0 =0
N dK+2/C’U(K) T dK+3K,U(K) P )
where (3. = —EK'1L€§NK+2——dIW(—1—) +5K+1A11(§)NK+1(§)—W+3—(L

. dK+2\II(,’1; ) dK+3\I/
_5K ' 3L§€MK+2—W‘—1- + 5K+3A11(€)]VIK+1 (é) dxiK+3 ’

In (4.10), we set
RN =hN forl<K+2, =0 ifl>K+3,
M =hM forl<K+2 =0 ifl>K+3.

then
K+2 K K+2
Le(u(z)) = Z sl_zh Z (z1) + Z elnM —\I’ (z1) + Be
1=0 =0
2K +2

> "‘22<hl — Koy _y(z1) + thd \If(:c1)>+,85.

1'=0

As in the construction of the homogenized equation, we obtain

=1 =1

K 4
Lu®(z)) = flm)+) " (Lov{(azl) +> Lm,_,(m)) + eEHLFO () 4 K+ a%nFm(w),

where

ONg 42(£) d¥+20 ) (2) A ‘(g)aMK‘F?(g) d¥+20(x,)
agj dK+2g, mj agj dE+2g,

dK+3,U(K)(x1) d +3\Il(a:1)

K
AnONen)— 7w+ Au(OMicn (O
L 1

1F™ (@) 12ge,) < H Ay (€)

L2(Q) ’

||F0(5'3)”L2(95) <

L2(2%)
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Analogously we have

@) _ NS g e $K0 O (@) | . dw(m
—a— = GN &) —————=+ ) MG
PP e et
dK+2ICv(K) x dE+2¥ (g
+VmEK+1Am1(€)NK+1(€)—dmmg(—l)' + vme P A, (E)MKH(Q*EHCTE#‘
1

In the other hand, we have

AN
G12(6) = U Ams O T2 1 A OV 6),
oM
Gi.2(6) = vmAms© P 4 (©OMcia (6
then
u(z) TR L A0 () K41 ONx 42(€) d¥ 2 K0 (z,)
o ;0 G (f)T — VUm€ Amj(§) B¢, de+2
paie a' ¥ (z1) OMipc42(€) AET2T (z,)
+1 M _ K43 ) +2 1)
+ ; paRver (g)——dxll vme A () — 3 P s

The matrices G (¢) and G (¢) are zero, we obtain

AuF) (x)

5 = UmeETYE™ () onT.

Taking into account inequalities of functions N;(£), M;(§) and v:(x1), we prove the inequality announced
for F™(z).

O
Introduce
a)(z) = u*(2) —uO(x)
where u¢(z) is the solution of (2.1)—(2.2). The function 4(*)(z) is the solution of the following problem
( _ b
L (@) (x)) = XK+ FO(z) + ak‘”ﬁF’”(m) in Q,
m
4(K)
_(%a_(m_) = UpmeBE P F™(z.€) onT,
1%
[oa)(z)] 0 (4.11)
ov = o
[ﬂ(K) (.’II)] IS =0,
&) is 1-periodic in z;.

where || F™|| ..y < M and M is a constant independent of e.
Using Theorem (1.6) of [3] we prove the following theorem:

Theorem 4.1. For each integer K, there exists a positive constant C independent of € such that

| (@) - u@)]

< ek,
HY(Q:) —




(1]
(2]

(3]
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