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AN UPWINDING MIXED FINITE ELEMENT METHOD FOR A MEAN FIELD
MODEL OF SUPERCONDUCTING VORTICES* **

ZHIMING CHEN1 AND QIANG D U 2

Abstract. In this paper, we construct a combinée upwinding and mixed finite element method for the
numerical solution of a two-dimensional mean field model of superconducting vortices. An advantage of
our method is that it works for any unstructured regular triangulation. A simple convergence analysis
is given without resort ing to the discrete maximum principle. Numerical examples are also presented.
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1. INTRODUCTION

Recently, the mathematical analysis and the numerical studies of the mean field models have received much
attention [3-5,8,11,13,14,17,19, 20, 22]. Vortex simulations based on the mean field models provide possible
alternatives to the popular yet limited simulations based on the Ginzburg-Landau models [6,9,10]. In the two
dimensional setting, the mean field model that we are interested in can be described, after proper scaling, as
follows:

u)t - V • (uVu) = 0 in f i T , (1.1)

-AU-\-U = LÜ müT- (1-2)

Here, u) and u represent the vortex density and the average magnetic field, respectively. The superconducting
sample is assumed to occupy a convex polygonal domain O C R2 wit h boundary F. QT = fi X (0, T).

In [17,22], the existence and uniqueness of solutions and the regularity estimâtes are obtained for solutions
with compact support. In [8,14], some hybrid finite element/finite volume/finite différence approximations have
also been proposée and analyzed. So far, the only complete convergence theory available in the literature for the
two dimensional mean field model is that presented in [8]. However, to apply the finite volume based intégration
schemes as in [8,14], the triangular grids need to satisfy the local equiangular assumption in order to preserve
the discrete maximum principle.

Keywords and phrases. Mean field model, superconductivity, vortices} mixed finite element, unstructured grid, convergence
analysis.
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In this paper, we present a method that can be applied to gênerai unstructured triangular grids. To approx-
imate the hyperbolic équation for the vortex density (1.1), our basic idea is to use the upwinding finite element
method developed in [18] for solving the neutron transport équation

(3 • Vw + aw = ƒ in £7,

where /3 is a constant vector in R2 and er is a given function such that a > a0 > 0 for some constant <TO- For
a given triangular grid, the discretization involves the normal component of (3 on the triangular edges. If the
standard conforming piecewise linear finite éléments on the triangular grids are used to solve (1.2) as in [8,14]
and the upwinding scheme in [18] is extended to solve (1.1), then we encounter the dimculty that the normal
components of VUH across any inter-element boundaries are in gênerai discontinuons. Due to this observation,
we propose in this paper to consider mixed finite element method to approximate (1.2). In particular, the
mixed Raviart-Thomas finite element approximation is used to solve the magnetic field équation (1.2). A
simple convergence analysis of the numerical solutions to the weak solution of the two dimensional mean field
model (1.1-1.2) can be completed for any regular quasi-uniform triangulation of Vt without use of the discrete
maximum principle.

The paper is organized as follows. In Section 2, the weak formulation of the model is provided. A numerical
method using upwinding mixed finite element approximations is presented in Section 3. The main theorern is
stated in Section 4. A number of technical estimâtes on the discrete solutions are given in Section 5. The proof
of the main theorem is given in Section 6. Discussion of the full-discrete approximations is made in Section 7.
Some preliminary numerical experiments are presented in Section 8. Further remarks and comments are given
in Section 9.

2. WEAK FORMULATION

Let (•,•) and (-,-)z> dénote the standard L2 inner products on Q and on any two dimensional domain V
respectively. Let H j ^ ) and H~1(O) dénote the standard Sobolev space and the dual space of functions of the
variable xGH. We also introducé the subspace of L2(Q)2:

H(div;ft) = { qeL 2(f2) 2 : divq € L2(Q) }.

For any Banach space -B, its norm is denoted by || • \\B-
For the system (1.1-1.2), we consider the initial condition

u;|t=o = ^ o > 0 in ÎÎ , (2.1)

and the boundary condition

u = Hext > 0 on dnT , (2.2)

where d^lx — {(x>£) : x 6 dft , £ G (0,T)} and He^t is an external applied magnetic field. For convenience, let
us introducé p = —Vu.

For simplicity, we consider only the case where the solution LU has a compact support throughout the time
interval (0, T) of interests. We also assume that iïext is si constant in time and space. The results of this
paper can be easily extended to gênerai non-constant functions HeyLt. Finally, we assume UJQ is nonnegative and
cüQ G L°°(fi). Note that for a given T and any given initial vortex density that is L°° bounded with a compact
support, if the domain ^ is suitably large, then the vortex density will have compact support in (0, T).
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The weak form is given by: fmd (w,u,p) with u G 1^(0, T jH" 1 ^) ) fl L2(ftT), u € L2(0,T;L2(^)) and
p e L2(0, T; H(div ; fi)) such that

L
L

f oo

Jo °
(d ivp , <p) + (u-Lj,<p)]dt = Oi V(^€L 2(0,T;L 2(f i ) ) , (2.4)

(P , q) ~ {u - tfext , divq)l dt = 0 , Vq G L2(0, T; H(div ; îî)) . (2.5)
o L J

3. FlNITE ELEMENT APPROXIMATIONS

Let Yih dénote a regular, quasi-uniform triangulation of £7, with h being the typical mesh parameter [1]. Let
{K} dénote the triangles and {7} dénote the edges. Let E h be the collection of all inter-element edges (that is,
excluding those on the boundary F).

Let Ph C H(div ; Vt) dénote the lowest order Raviart-Thomas element space and Qh C L2(^) be the space of
piecewise constants with respect to E^. We now approximate u and u) by éléments of Qh and approximate p
by éléments of Ph.

For each edge 7 of a triangle K, we define the outward normal vector by n. It is easily seen that the element
Ph of Ph is uniquely determined by

n(x7) I x7 is the midpoint of some edge 7 of Y>h , n _L 7 } .

Given p/^, we divide the boundary dK of each element K eT,h int o two parts

dK- = U { 7 C dK : Ph(x7) • n < 0 } inflow ,

dK+ = U { 7 C dK : p^(x7) • n > 0 } outflow .

Next, for a fixed p^, we define the upwind value of any rjh € Qh on dK as

— f ^h (interio
l ^h (exteri

and assume 77̂  = 0 on dK- n F. For any 7 € Eh, we define the jump of rjh € Q^ across 7 by

— f ^h ( trace of rjh) on 8K+
l ^ (exterior trace of 77̂ ) on dK-

The numerical method we consider in this paper is based on an upwinding finite element scheme for (2.3) and
the mixed finite element approximation using the Raviart-Thomas element for (1.1), (1-2) and p — — Vu as
follows.

For {euh, Uh, Ph} in Qh x Qh x Ph> f°r e a c n * £ (0, T], we have for each t e (0, T] that

Eh , (3.1)

(div p h , ufe) + {uh - wh , vh) = 0 V ̂  e Qh , (3.2)

(Ph, q^ ) - («h - ffext , divq^) - 0 V qh 6 Ph . (3.3)
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The initial condition is given by:

Vh) = (u)o,vh) , VvheQh. (3.4)

The existence of a unique solution to the discrete problem (3.1)-(3.4) follows from the standard ODE theory
by using the uniform in time a priori estimât e in Corollary 5.6 to be proved later. Here we omit the details.

4. THE CONVERGENCE THEOREM

For brevity, we first focus on the semi-discrète approximation. Fully discrete approximations are considered
later. We now state the main theorem:

Theorem 4.1. (Convergence Theorem for the finite element approximation). Let T > 0, iJext > 0 and CÜQ €
L°°(r2),a;o > 0 a.e. %n ft be given. Then, as h —> 0, there exists a subsequence {h^} such that

uhk -> u strongly m L2(0,T; L2(f2)) and weakly* znL°°(ÜT) , (4.1)

üühk -> uj weakly m H^O, T; H " 1 ^ ) ) and weakly* %n L°°(QT) , (4.2)

-> P strongly in L2(0,T;L2(Q)) , (4.3)

-> divp weakly m L2(0,T;L2(fi)) , (4.4)

where (u}u) is a weak solution of (2.3-2.5) and p = —Vu.

The proof of Theorem 4.1 involves standard steps as similar to that in [8] and it is presented in detail later
in Section 6. The main ingrédients are the estimâtes for the Raviart-Thomas éléments without resorting to the
discrete maximum principle.

Clearly, Theorem 4.1 also implies that if the weak solution for (2.3-2.4) is unique, then the weak limit in
the above theorem is independent of the choice of the subsequence. This in turn implies that, in this case, the
whole séquence {(uh^h)} is convergent to the unique weak solution of (2.3-2.4). For more discussion on the
existence and uniqueness of the weak solutions, we refer to [17,22].

5. ESTIMATES FOR THE NUMERICAL SOLUTION

We start wit h the maximum norm estimâtes.

Lemma 5.1. Gtven iïext > 0 and non-negative CJQ G L°°(f2); let

M(t) = ||w/i(t)||Loo(n), L(t) =

Then for a.e. te (0 ,r) ,

0 , (5.1)

M(t) < L(t) . (5.2)

Proof The proof of (5.1) is similar to the argument given in [8] by the fact that ojh(0) > 0. We first notice that
(3.1) can be rewritten in the vector form as

•^w(t) + D(t)uj(t) - B(t)CS(t) - 0

where D(t) has a diagonal matrix form containing nonnegative entries, B(t) has zéros on the diagonal and
nonnegative off-diagonal entries. Since the entries of D(t) is continuons in time, we may take a large enough
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constant À > 0 such that the entries of D(i) is bounded by À for all t € [0,T\. Then, by taking intégration
factor, we get

^t(e
XtCü) = (XI - D(t) + B(t))eXtÜ,

where / is the identity matrix. Now if ü = (uj^KtY.H, multiplying the above equality by extff with ff =
(min(0,o;i<:))x€Sh, we deduce easily that ff = 0, which implies u)h{t) > 0 for any t G [0,T] by the fact that
Wh(O) > 0.

To show (5.2), we first remark that since ^ ( t ) , w^(t) are the solutions of the ODEs (3.1)-(3.4), they satisfy
Lüh 6 C(0,T;<3k) and u^ G C(0,T;Q^), M(t), L(t) are continuous functions in time. For any e > 0, since
M(0) < L(0) + e, we know that M(i) < L(t) + e at least for small t which may depend on e. Now we prove
M(t) < L(t) + e for all time.

By (3.2),

/ ph-nühary = / ph > n (tüh - u)h) dj + ph-nujhd'j
JdK JdK JdK

n

= / ph *n ( ^ -o ; / l )d7+ (w^ -uh,u)h)K .
JdK-

Let

then, we have

/ Ph-n(Wfc-a;h)d7>0. (5.3)
JdK*_

Thus, by (3.1), we have

< 0 o n F

Suppose that M(t) < L(t)+e was not true for all t > 0. Let t* be the smallest time such that M(t*) = L(t*)+e
and M(t) < L(t) + e for all 0 < t < t*. Thus M(t*) > L(t*) and, consequently, tjh(t*) > uh(t*) on K*, so

at

which implies that M ( r ) < M(tf) for some i' < t. But Af(t*) = L{t*) + £ and M(*;) < L(t') + £ < L(t*) + e,
we get L(t*) < L(t*)} a contradiction! Therefore, M(t) < L(t) + e for any time £ > 0 and any e > 0. By letting
e —> 0, we obtain the desired estimât e (5.2) for any t > 0. •

Unlike the scheme in [8], the Raviart-Thomas finite element approximations do not enjoy a discrete maximum
principle in gênerai. To obtain the energy bound on u;̂ , we first consider
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Lemma 5.2. Let M±(t) = ||cj/ï,|iL
1(n); then M\{t) is non-mcreasmg m time. Thus, M\{t) < Mi(O).

Proof. Taking r)h = 1 in (3.1), and noticing the cancellation of terms on the inter-element edges and using (5.1),
we get

d

dt ' ' rïrz JOKJd

< 0.

This proves the lemma. D

Before we proceed to the dérivation of energy estimâtes, let us recall some technical results concerning the
Raviart- Thomas element.

Lemma 5.3. [2,21] For any gzven f € L2(f2), let tp £ Hj(O) be the solution of

-A<p + (̂  = ƒ ,

and {(ph,0h) £ Qh x Ph be the approximate solution of (ip, — V99) usmg the mixed finite element formulation-

, vh) + (<ph , vh) - (ƒ , vh) VvheQh, (5.4)

ft. (5.5)

Then, for h small} there exists a constant c > 0 such that

IIV " W>llL=(n) + llfffc - ( - V ^ ) | | L 2 ( n ) < ch\\f | |L2 ( n ) . (5.6)

Z; consequently, by the triangle inequahty

c/i|| ƒ II^(O) + c\\f | | H - . ( n) • (5 7)

We refer to [2, 21] for detailed proof of the above lemma. Note that throughout the paper, we use c > 0 to
dénote any generic constant that is independent of the discretization parameters such as the spatial mesh size
h as well as r, the time step size used in the fully discrete approximation.

Lemma 5.4. There exists a constant c > 0 independent of h such that, for a.e. te (0,T),

IKIk-cn) < c||u^||L2(Q) + c

Proof. Define u*h to be the solution of the problem

-Au£ + < = ojh inf ï , (5.8)

ui - ffext onT (5.9)

Then from the error estimât e in Lemma 5.3, we know that

\\uh - U*h\\h2(ty < Ch\\tüh - i?ex
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By using the elliptic regularity theory on convex polygons [15] to (5.8-5.9) we know that

Klli^(Q) < 4^h\\mn) + c. (5.10)

Now dénote by I& : L2(Ü) —> Qh the L2 projection operator, then the following error estimate is well-known [1]

\\f - hvWum < cfe||v>||Hi(n) Vy> e H 1 ^ ) .

Then by using the above two estimâtes and the inverse inequality [1] we get

\\uh - ()

< cR~l\\uh - u

< c\\iüh - iïext||

2 ( n ) + C.

This proves the desired bound of Uh by Sobolev embedding theorem and (5.10). D

Lemma 5.5. There exzsts a constant c > 0 independent of h, such that

sup || u)h | |£ 2 ( n ) + Tl I I \Ph-n\ [uh]
2 d 7 < c . (5.11)

Proof. Let us take rjh = ton in (3.1), then

On the boundary dK, we have

/ p^ • n ujhLüh dj= ph • n ( G)hu)h - -wjj ] d7 + - / p^ • n ui dj

Noticing that
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we get,

/ 1
Ph • n I üJh^h ~ 7:^

\ 2

KGSh
 JdK~

\ I \Ph
2Jri

Ph - n [u>h]
2 dry + - \ph • n\u>l&r

- 2 M
ipfc • ni i^ ] 2 à^ + \ L lp* • n i ^ d ^2Jrt

n ( ( ^ ) 2 ~ ̂ h "h + (^)2) d7 + \ I \Ph • n\u2
h dj

&h
 2Jri

2

On the other hand, since t^ > 0 by Lemma 5.1, we have

Pfc-nu;£d7 = ^ ƒ divp
dK Ke^h K

= (ujh - uh7

(0) ||ufc||Lco(n)> -

where in the last two inequalities we have used Lemmas 5.1, 5.2 and 5.4. Thus

9 IZ / lph*nl

Using Gronwall inequality, we get the desired estimate. D

Prom Lemmas 5.1, 5.4 and 5,5 we obtain easily the following uniform bound of Uh and LÜ^.

Corollary 5,6. There exists a constant c > 0 such that

uniformly with respect to h.

Next, let us state a simple estimate on p^.

Lemma 5.7. There exists a constant c > 0 such that for a.e. t € (0,T%

Proof. Though there are a number of different proofs, we simply verify it by taking Vh == Uh~ î ext in (3.2) and
q^ — ph in (3.3) and applying the earlier maximum norm estimâtes First, we have
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for some generic constant c > 0, independent of h. Then, by taking Vh — divp/j in (3.2), we get

695

for some generic constant c > 0, independent of h. This proves the lemma. D

Following from Lemma 5.7 and Lemma 5.3, we can get some uniform bound on the time derivatives of the
discrete solutions.

Lemma 5.8. There exists a constant c > 0 such that

< (5.12)

(5.13)

uniformly with respect to h.

Proof. Let <p G C§°(fi), and iph be its L2 projection in Qh- With the notation hx = diam(iif) for any K e Sft,
we consider

, <p)\ = \(wht , <Ph)\

Ph n
JdK

/ P h .

<

z^
/

JdK-
d 7

E / P/l • n <
JdK+

for some constant c > 0 which dépends only on the uniform estimate for u)h- Using a local inverse estimate

— l / 2 t i
l|Pfr||L2(öiC) ^ chK ||p;

we have

for some constant c > 0. By the approximation properties of the L2 project ion, we get

ƒ \tfh ~ ^ |2d7 :
JdK

Thus

, <p)\ <
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for some generic constant c > 0. This gives the bound (5.12) in the lemma. The bound (5.13) can be proved
similarly by noticing that

/ I [^ ] l 2 d 7]
dK+ /

This complètes the proof. D

Now, the équations (3.2-3.3) implies that

(divpht, vh) + (uht -u>ht,vh) = 0, VvheQh , (5.14)

(Phu q/i ) - {uht , divqh) = 0 Vqh e Ph . (5.15)

Thus, we see that {uut, Pht) is the finite element approximation of the solution (y?£, —Vĉ £) of the équation

+ tp*h = u)ht in Q

wit h homogeneous Dirichlet boundary condition.
By applying Lemma 5.3 and Lemma 5.8, we get

Corollary 5.9. There exists a generic constant c > 0; such that

umformly with respect to h.

Combining the above estimâtes, we get

Corollary 5.10. For given T > 0, Hext > 0 and given ÜJQ G L°°(Q) such that LOQ > 0 a.e. in £1, there exists
some constant c > 0 such that

ll«ht||L~(0,T,L2(n)) + IKIIlZ-COr) < C , (5.16)

(div,n)) < c , (5.18)

umformly with respect to h.

6. PROOF OF THE MAIN CONVERGENCE THEOREM

Based on the uniform bound on the discrete solutions, we first extract weakly or weakly* convergent séquences.

Lemma 6.1. LetT > 0, Hext > 0 andCÜQ e L°°(^) such thattüQ > 0 a.e. m ü be given. Then, any subsequence
°f {whyUhjPh} has a subsequence {whk,^hk,Phk} such that as hk —̂  0?

uhk -> w strongly m L2(0,T;L2(Q)) and weakly* m L°°(nT) , (6.1)

Wfefc -> a; weakly tn H1 (0, T;}!'1^)) and weakly* zn L°°(nT) > (6.2)

p^fc -> p strongly m L2(0,T;L2(Q)) , (6.3)

divp/lfe - • divp weakly m L2(0,T;L2(^)) , (6.4)

some Zï7m£ {ujtZjp} «n tóe appropnate spaces.



A MEAN FIELD MODEL OF SUPERCONDUCTING VORTICES 697

Proof. The existence of the weak or weak* limit {u),uyp} and the weak or weak* convergent subsequence
{w/ifc,w/ifcïP/ifc} follows from the uniform estimâtes in Corollary 5.10. We only need to prove the strong con-
vergence in (6.1) and (6.3). Consider the auxiliary problem (5.8-5.9), we get {u^k} is uniformly bounded in
H^C^TjH^fi)) n L2(0,T; i?2(n))} after possibly extracting another subsequence, we may use the compact
embedding results [23] to get « J converges weakly in H^O, T; Hx(fi)) n L2(0, T; H2(Q)) to some limit u and
the convergence is strong in L2(0,T,H1(ü)), which in turn implies that {—VuHk} converges strongly in L2(0,T;
L2(£l)) to p = — Vu. Then, using the error estimate for the problem (5.8-5.9), we get the strong convergence of
uhk to u in L2(0,T;L2(ft)) and phk to p in L2(0,T;L2(Q)). D

As a conséquence, we can get easily from the équations (3.2-3.3) that the weak limit satisfies the weak form

Proposition 6.2. The limit {ii,p,o;} satisfies Equations (2.4)-(2.5).

Let us now check the équation (2.3).

Proposition 6.3. The limit {u>p,uj} satisfies Equation (2.3).

Proof. For simplicity, we avoid the use of the subscripts for the séquence {/&*;}. First, for <\> e CQ°(^ X [0,T)),
as h —> 0, we have

fT fT
/ (u>hti4>)dt = - («;/>, &)dt + (o;hio, 0(-,O))
Jo Jo

(u>,<l>t)dt+(ujo,<l>(;Q)). (6.5)

Meanwhile, let <j>h be the piecewise constant L2 projection of (j)'vciQh,

Ph-nuhCph
JdK

= "Ï2 ph'n(üjh-u)h)<j)hd<y- ^2 / ph • n u;h<j>h dj
Ke^H dK KeTh ^dK

We also have

^2 / ^2 / divphLüh<j)hdT =

E

/
K

/ ph-nu)h<j)d') = S2 ƒ Ph *n [ujh]<t>dj

and

Moreover,

Ph • n [üjh — uJhï&h C17 — > / Pft, * n

We thus get

:, 4) = (phüjh, V<f>)- J2 [ P^ n K ] ( ^ " ̂ ) d -̂ (6-6)
Ï^^^ Jax_
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On the other hand, by Lemma 5.5 and the finit e element interpolation estimât e

110 ~ <f>h\\h°°(K)

we have

Yl \Vh-n [tüh] (<j> - (j>h)\
JdK~

ME / \ph-n\[cüh]
2dj) (

JdK- } \

2 f

Ja
<ch1/2 f |ph |dx->0

Ju

< c ( E K f

uniformly in h and t G (0,T). So, by the weak* convergence of ivh and the strong convergence of p^, we get
from (6.6) that

f (u)ht , <j>) àt -> / f o; p • V(/>dxd/ . (6.7)

Combining the équations (6.5) and (6.7), we get that (u,cu) satisfies (2.3). D

By Propositions 6.2 and 6.3, we have completed the proof of the main theorem. Note again that if the weak
solution to (2.3-2.4) is unique, then the whole séquence converges.

7. FULLY DISCRETE SCHEME

In this section we discuss briefly the further discretization in time of the semi-discrete scheme (3.1-3.4) of
section 3 and thus obtain a scheme which can be directly implemented on computers. For n > 1, let rn be
the time step size and dénote by tn — X f̂c=i Tk> Let W° = u^,o € Qh be given according to (3.4). For n > 1
and given W71'1 G Qh which is known as the approximation of LÜ at the (n — l)th time step, we first further
discretize (3.2-3.3) in time according to the following prescription

^ ) + (Un,vh) = (Wn~\vh) \/vh e Qh, (7.1)

(P n , qfc) - (ir - ifext, divq^) - 0 Vqh G Ph. (7.2)

It is clear that (7.1-7.2) admits a unique solution ([ / n ,P n ) G Qh x Ph which we take as the approximation
of (uyp) at the nth time step. With P n G Ph being known, we can divide the boundary dK of each element
K G E/j into two parts

7! = U { 7 C dK : Pn(x7) • n < 0 } inflow ,

l = U { 7 C dK : Pn(x7) - n > 0 } outflow ,

and introducé the upwind value of any rjh G Qh on dK as

~n __ / Vh (mterior trace of rjh) on dK™
1 % (exterior trace of rjh) on
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and assume rj^ = 0 on dK™ H F. Now we define the fully discrete approximation of (1.1) as follows

fWn-Wn~1 \ f

The existence and uniqueness of Wn is considered in the following proposition.

Proposition 7.1. Dénote An = ||t/n||L°o(^). Then under the conditions that Wn~1 > 0 a.e. m ft and r^K71 <
1, Equation (7.3) has a unique solution Wn G Qh saüsfymg Wn > 0 a.e. m fl.

Proof. We observe first that (7.3) can be rewritten in the vector form as

AWn = W71-1, (7.4)

where A is a matrix with positive diagonal and non-positive off-diagonal entries. For any K G S^ such that
^ n F = 0, the corresponding diagonal entry of A is

-l + w\[ pn'nd7

\K \ JdK™
and the sum of the off-diagonal entries is

Since a^K ^ 0 for any L G S^, L ^ K, we have

= - ^2 aLK (7-5)

= -w\l
I-K I JdK™

= ~w\l
\K-\JdK»

^- f P"-nd7

< a n + ^ i / Pn-nd7

<

where we have used (7.1) and the assumptions Wn~l > 0 a.e. in Q and r^K71 < 1.
If dK7!: H F / 0, we still have (7.5) since now the sum of the absolute values of the off-diagonal entries is no

greater than

/ P T i -nd 7

due to the définition Wn~ = 0 on dK* n F.
This proves that A is an M-matrix. By the well-known property of M-matrices, we know that (7.3) has a

unique solution Wn G Qh. Since Wn~l > 0, we deduce from (7.4) that Wn > 0. •
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Now we can use the method in 5 to dérive uniform stability estimâtes for the full-discrete solutions (Wn, Un, Pn)
and thus prove the convergence of the scheme (7.1-7.3). Here we omit the details.

Finally, we remark that in practical computations the condition rnA
n < 1 is not very restrictive since we

have ||Wn||L°o(f}) < c for some constant c independent of h and the time steps r^, k < n — 1.

8. NUMERICAL EXPERIMENTS

To test the mixed finite element approximation scheme presented in this paper, we implemented the algorithm
(7.1-7.3) on a square domain Q = [0, L]2. A simple triangulation is obtained by dividing each cell of a uniform
cartisian grid of grid size h along the x = y diagonal. The step size is taken to be min{a/i, l/^jjuljoo)} for some
properly chosen constant a (say a = 0.5 or a = 2). As our main purpose is to demonstrate that the numerical
schemes presented in this paper indeed work, we only present a few simple cases. Results of more extensive
simulations and their physical relevance with the motion of the superconducting vortices as well as numerical
studies of the convergence rate of the numerical algorithms are to be reported elsewhere.

For any pair of two neighboring triangles that occupy the same square in the cartisian grid, we calculate the
averaged values of the vort ex densities u>h and the averaged values of the magnetic field Uh in the two triangles.
Then, we use MATLAB to draw the surface plots of these averaged quantities.

FIGURE 1. The steady state vortex densities (top) and the magnetic fields (bottom): h = 1/8,1/16,1/32.

Case 1. We first let L = 1, we take the initial vortex density as

0 elsewhere (8.1)

The applied field i/€xt = 1 is taken to be a constant field on the boundary.
As t gets larger, the vortex density is approaching to a steady state. In Figure 1, the steady state vortex

densities and the magnetic fields are shown for mesh with grid sizes h = 1/8, h ~ 1/16 and h = 1/32. The
convergence of the numerical solutions as h —> 0 is evident from the pietures.
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FIGURE 2. The steady state vortex densities (left) and the magnetic fields (right): h = 1/10,1/20,1/40.

Case 2. Next, we let L = 2, and take the initial vortex density as

_ ƒ 0.8 (x,y) e {\\(x,y) - (L/2, L/2) |U < L/6}
) elsewhere

(8.2)

We take a non-uniform applied field

ix, y) = L25 - 0.5x(L - x)/L2

for any point (rc, y) G dVt,
As t gets larger, the vortex density is approaching to a steady state. In the Figure 2, we present the steady

states computed on grids with h = 1/10, h = 1/20 and h = 1/40 respectively. Note that the région with nonzero
vorticity becomes more elliptical due to the annisotropic applied field.
Case 3. Fmally, we let L = 1, and take the initial vortex density as
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The applied field is taken to be a non-uniform field given on the boundary by

H^tfay) = 3 - lQ(x{L - x) + y(L - y))/L2

for any point (x, y) G d£l Note that the initial condition does not have a compact support However, with the
assumption that the vortex density is zero at all the in-flow boundary, the implementation of the algorithm is
the same as in the compactly supported case

The steady state vortex densities calculated on gnds with ft = 1/10, ft = 1/20 and ft = 1/40 respectively are
given m Figure 3

FIGURE 3 The steady state vortex densities (left) and the magnetic fields (right) ft = 1/10,1/20,1/40

As implied by the zero m-flow boundary condition, while no vorticity is allowed to be nucleated at the
boundary, vorticity may exit the domain through the out-flow boundary

To mdicate how the total vorticity

V(tn) = f Wn dx
Jn

decreases as time mcreases due to the exit of vorticity, we present a plot of values of —log (V(tn)) with respect
to the time changes m Figure 4

The out-flow boundary, as determmed by values of P n n on the boundary, are centered near the mid-points
of the four sides of the square which can be observed from the plots given m the Figure 5
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10 20 30 40 50 60 70 80
time

FIGURE 4. The plots of — \og(W) in time (solid line) vesus the its steady state value (dotted line).

0 01 02 03 04 05 06 07 08 09 1

0 01 02 03 04 05 06 07 08 09 1

0 01 02 03 04 05 06 07 08 09 1

0 01 02 03 04 05 06 07 08 09 1

FIGURE 5. The steady state values of the normal derivatives P n • n on the four sides of the square.

Case 4. Finally, we conduct a simulation for the annihilation of signed vortices. Although the model we have
studied in this paper is only for the case of nonnegative vorticity, its generalization has been given in [3] to allow
vorticity with sign changes. In this case the velocity field is given by — Vu sgn (o;) where sgn is the standard
sign function. We have implemented the non-conforming finite element scheme with this extension. At the
time step tn, the extra term sgn (u) is taken to be sgn (Wn~l). This leaves a linear System for Wn once Un is
computed.

In the experiment, we let L = 10, and take the initial vortex density as

vofay) = sin(27Tx/L) sin(27ry/L) , V (x,y) e ü .

The applied field is taken to be zero on all parts of the boundary.
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In Figure 6, we present the time évolution of the vorticity OJ and the magnetic field u computed using a grid
size h = L/40.

FIGURE 6. The time évolution of the vorticity OJ (left) and the magnetic field u (right).

As t inereases> we calculate the total vorticity

V(tn) = ƒ Wn dx
Jn
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and find that it remains as zero for all times. However, the magnitude of the vorticity

M(tn) = HW ÎIoo

starts to decrease due to the annihilation phenomena (see the simulation based on the Ginzburg-Landau models
given in [12]). These results are shown in Figure 7 The solution eventually reaches the steady state for which
both the vorticity and the magnetic field are zéros uniformly.

0.5 •

-0.5 -

100 200 300 400 500 600
time

700 800 900

100 200 300 400 500 600 700 800 900
time

FIGURE 7. The conservation of V(t) and the decay of the M(t) in time.

We have repeated the above experiment on grids with grid size h = L/80 and h = L/160 and the convergence
of the numerical solutions have been observed although our convergence theory does not apply to this case.

Remark 8.1. (Remark on the numerical experiments) The above numerical experiments indicate that the
implementation of the numerical schemes presented in this paper is very successful. One may also observe
the interesting phenomena concerning the finite time exit of vorticity on the boundary and the annihilation of
signed vorticity. More simulations on the solutions of the mean field model for superconducting vortices and
their comparisons with the convent ional Ginzburg-Landau simulations will be car ried out in the future.

9. CONCLUSION

In this paper, a convergence analysis is given for both semi-discrete and fully-discrete upwinding mixed finite
element approximations of a mean field model in a simple situation. The theory can be successfully applied
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to cases where an unstructured triangular grid is required to solve the model in irregular domains (domains
other than rectangles). Results of some preliminary numerical tests seem very encouraging. We also remark
that the upwinding scheme proposed in this paper to solve the vortex density équation (1.1) is of first order
since the vortex density is approximated by piecewise constant élément. However, by combining with the high-
order Runge-Kutta local projection discontinuons Galerkin method proposed for conservation laws on gênerai
triangulation [7], one might construct high order schemes for (1.1) by solving the elliptic équation (1.2) with
high order mixed finite éléments such as Raviart-Thomas élément RT^ or Brezzi-Douglas-Marini élément BDM&
which hâve been extensively studied in [2].

An advantage of using the mean field model in simulating vortex dynamics in superconductors, compared to
using the Ginzburg-Landau models, is the ability to consider large scale vortex interactions without resolving
the fine structures of individual vortices. Hère, we hâve also only considered a simplified model for which the
pinning efFect and the vortex nucleation are neglected. In the more gênerai case, the velocity of the vorticity
transport also dépends on the pinning forces and the critical current. The mathematical understanding of the
more gênerai models is very limited so far, moreover, there are still gaps in a rigorous justification of the formai
dérivations of the mean field model from the asymptotic limits of the Ginzburg-Landau équations. Thus, we
expect to conduct more numerical simulations that would provide some comparison with the Ginzburg-Landau
simulations as well as possible numerical justification of the mean field models in the future.

REFERENCES

[1] S.C. Brenner and L.R. Scott, The mathematical theory of finite élément methods. Springer-Vërlag, New York (1994).
[2] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Elément Methods. Springer, New York (1991).
[3] S.J. Chapman, A mean-field model of superconducting vortices in three dimensions. SIAM J. Appl. Math. 55 (1995) 1259-1274.
[4] S.J. Chapman and G. Richardson, Motion of vortices in type-II superconductors. SIAM J. Appl. Math. 55 (1995) 1275-1296.
[5] S.J. Chapman, J. Rubenstein, and M. Schatzman, A mean-field model of superconducting vortices. Euro. J. Appl Math. 7

(1996) 97-111.
[6] Z. Chen and S. Dai, Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity.

(Preprint, 1998).
[7] B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinues galerkin finite élément method for

conservation laws IV: The multidimensional case. Math. Com. 54 (1990) 545—581.
[8] Q. Du, Convergence analysis of a hybrid numerical method for a mean field model of superconducting vortices. SIAM Numer.

Analysis, (1998).
[9] Q. Du, M. Gunzburger, and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity.

SIAM Review 34 (1992) 54-81.
[10] Q. Du, M. Gunzburger, and J. Peterson, Computational simulations of type-II superconductivity including pinning mechanisms.

Phys. Rev. B 51 (1995) 16194-16203.
[11] Q. Du, M. Gunzburger and H. Lee, Analysis and computation of a mean field model for superconductivity. Numer. Math. 81

539-560 (1999).
[12] Q. Du and Gray, High-kappa limit of the time dépendent Ginzburg-Landau model for superconductivity. SIAM J. Appl. Math.

56 (1996) 1060-1093.
[13] W. E, Dynamics of vortices in Ginzburg-Landau théories with applications to superconductivity. Phys. D 77 (1994) 383-404.
[14] C. Elliott and V. Styles, Numerical analysis of a mean field model of superconductivity. preprint.
[15] V. Girault and -A. Raviart, Finite Elément Methods for Navier-Stokes Equations. Springer, Berlin (1986).
[16] Grisvard, Elliptic Problems on Non-smooth Domains. Pitman, Boston (1985).
[17] C. Huang and T. Svobodny, Evolution of Mixed-state Régions in type-II superconductors. SIAM J. Math. Anal 29 (1998)

1002-1021.
[18] Lesaint and P.A. Raviart, On a Finite Elément Method for Solving the Neutron Transport équation, in: Mathematical Aspects

of the Finite Elément Method in Partial Differential Equations, C. de Boor Ed., Académie Press, New York (1974).
[19] L. Prigozhin, On the Bean critical-state model of superconductivity. Euro. J. Appl Math. 7 (1996) 237=247.
[20] L. Prigozhin, The Bean model in superconductivity: variational formulation and numerical solution. J. Com Phys. 129 (1996)

190-200.
[21] Raviart and J. Thomas, A mixed élément method for 2nd order elliptic problems, in: Mathematical Aspects of the Finite

Elément Method, Lecture Notes on Mathematics, Springer, Berlin 606 (1977).
[22] R. Schatale and V. Styles, Analysis of a mean field model of superconducting vortices (preprint).
[23] R. Temam, Navier-Stokes équations, Theory and Numerical Analysis. North-Holland, Amsterdam (1984).


