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STABILITY OF MICROSTRUCTURE FOR TETRAGONAL TO MONOCLINIC
MARTENSITIC TRANSFORMATIONS *

PAVEL B E U K 1 AND MITCHELL LUSKIN1

Abstract. We give an analysis of the stabihty and uniqueness of the simply lammated microstructure
for all three tetragonal to monochmc martensitic transformations The energy density for tetragonal
to monochmc transformations has four rotationally invariant wells smce the transformation has four
variants One of these tetragonal to monochmc martensitic transformations corresponds to the shearmg
of the rectangular side, one corresponds to the shearmg of the square base, and one corresponds to
the shearmg of the plane orthogonal to a diagonal m the square base We show that the simply
larmnated microstructure is stable except for a class of special material parameters In each case that
the microstructure is stable, we dérive error estimâtes for the finite element approximation
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1 INTRODUCTION

We use the geometncally nonlmear theory of martensite [2, 3,13, 28] to model tetragonal to monochmc
martensitic transformations In this theory, the energy density is mmimized on multiple energy wells SO(3)î/i U

U SO(3)UN where C/"i, , UN for N > 1 are symmetry-related transformation strams (variants) and SO(3)
is the set of ail 3 x 3 real orthogonal matrices with determinant equal to one For tetragonal to monoclmic
transformations, there are four symmetry-related transformation strams (TV = 4) [34, 35] There are three
tetragonal to monochmc martensitic transformations — one corresponds to shearmg of a rectangular face, one
corresponds to shearmg of the square base, and one corresponds to shearing of the plane orthogonal to the
diagonal of the square base For certain boundary constramts or loadmg conditions, the elastic energy of a
martensitic crystal is mmimized only by the fine-scale mrxing of déformation gradients from distinct energy
wells The simplest example of such a microstructure is the lammate m which two compatible déformation
gradients oscillate m parallel layers of fine scale Much recent work has been done to describe more complex
microstructures by usmg the concept of the Young measure [2,3,21,36,37]

The stabihty theory that we use was first used to study the orthorhombic to monochmc transformation
(N = 2) [27] It was then extended to obtam results for the cubic to tetragonal transformation (N = 3) [23]
Most recently, the stabihty theory has been used to analyze a cubic to orthorhombic transformation (N = 6) [6]
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664 P BËLIK AND M LUSKIN

In gênerai, the analysis of stability is more difncult for transformations with TV = 4 (such as the tetragonal to
monoclinic transformations studied in this paper) and N = 6 since the additional wells give the crystal more
freedom to deform without the cost of additional energy. In f act, we show here that there are special lattice
constants for which the simply laminated microstructure for the tetragonal to monoclinic transformation is not
stable.

The stability theory can also be used to analyze laminâtes with varying volume fraction [24] and conforming
and nonconforming finite element approximations [25,27]. We also note that the stability theory was used to
analyze the microstructure in ferromagnetic crystals [29]. Related results on the numerical analysis of nonconvex
variational problems can be found, for example, in [7-12,14-16,18,19,22,26,30-33].

In this paper, we give an analysis of the stability of a laminated microstructure with infinitésimal lengt h scale
that oscillâtes between two compatible variants. We show that for any other déformation satisfying the same
boundary conditions as the laminate, we can bound the pertubation of the volume fractions of the variants by
the pertubation of the bulk energy. This implies that the volume fractions of the variants for a déformation are
close to the volume fractions of the laminate if the bulk energy of the déformation is close to the bulk energy
of the laminate. This concept of stability can be applied directly to obtain results on the convergence of finite
element approximations and guarantees that any finite element solution with sufficiently small bulk energy gives
reliable approximations of the stable quantities such as volume fraction.

In Section 2, we describe the geometrieally nonlinear theory of martensite. We refer the reader to [2.3] and to
the introductory article [28] for a more detailed discussion of the geometrically nonlinear theory of martensite.
We review the results given in [34, 35] on the transformation strains and possible interfaces for tetragonal to
monoclinic transformations corresponding to the shearing of the square and rectangular faces, and we then give
the transformation strain and possible interfaces corresponding to the shearing of the plane orthogonal to a
diagonal in the square base.

In Section 3, we give the main results of this paper which give bounds on the volume fraction of the crystal
in which the déformation gradient is in energy wells that are not used in the laminate. These estimâtes are
used in Section 4 to establish a series of error bounds in terms of the elastic energy of déformations for the L2

approximation of the directional derivative of the limiting macroscopic déformation in any direction tangential
to the parallel layers of the laminate, for the L2 approximation of the limiting macroscopic déformation, for
the approximation of volume fractions of the participating martensitic variants, and for the approximation of
nonlinear intégrais of déformation gradients. Finally, in Section 5 we give an application of the stability theory
to the finite element approximation of the simply laminated microstructure.

2. THE GEOMETRICALLY NONLINEAR MODEL

We use the austenitic tetragonal phase of the crystal at the transformation température as the référence
configuration î l c l 3 , and we assume that ft is a bounded domain with a Lipschitz continuous boundary dfl.
We dénote déformations by functions y : fi —» R3 and corresponding déformation gradients by Vy : Q, —• M3x3

where M3x3 dénotes the set of all 3 x 3 real matrices.
We shall minimize the total energy

Jn

over an admissible class A of déformations, where <fi : R3x3 —>• R is the free energy density per unit volume of
the référence configuration of the crystal at a fixed température below the transformation température.

We shall assume that the free energy density is frame-indifferent, that is,

<f>(RF) = <t>(F) for ail F e Róxó and R e SO(3). (2.1)
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We also assume that it mherits the symmetry of the austemtic phase of the crystal, so that

(j){R^FR%) = 4>(F) for all F e R3x3 and Rz e Q, (2 2)

where Q = {i?i, ,R%) C SO(3) is the symmetry group of the tetragonal phase given by

Rx - i2(7T, ei), R2 = R(ir, e2), Rs = R{n> e3),

RA = R(TT, ei + e2), i25 = # 0 , ei - e2), (2 3)
#6 = iï(7r/2, e3), #7 = R(3TT/2, e3), R* = I

In the above, {ez} is a right handed, orthonormal basis for R3 given by normahzed lattice vectors for the
tetragonal phase, and R(a,v) dénotes the rotation of a radians about v E IR3, v ^ 0

We assume that the free energy density is mimmized at a transformation (Bain) stram Ui for the tetrag-
onal to monoclmic transformation We shall see that there then exist three other distinct symmetry-related
transformation strams (variants) Ui, Us, t/4 such that

It also follows by the frame indifférence (2 1) and the symmetry (2 2) of the energy density that the energy
density is mmimized on the union U of the four energy wells

U% - SO(3)t/z = {RUX R e SO(3)} for % = 1, ,4

By adding a constant, we may assume that the minimum value of <f> is 0 Fmally, we shall assume that (f> is
contmuous and satisfies the growth condition

(f>(F) >K;||F-7r(F)| |2 for ail F e Rsx3, (2 4)

where K > 0 is a constant and TT R 3 X 3 —> U is a projection defined by

\\F ~ TT(F)|| = mm ||F - G\\ for all F E M3x3 (2 5)

This projection exists for any F G R3x3, since the set U is compact
We now dérive the transformation strams for the three tetragonal to monoclmic transformations The reader

should note that this dérivation îtself is not used m the stabihty analysis given below, only the resultmg
transformation strams described m (2 6), (2 7), and (2 8) will be used

Each of the two-fold rotations Ri for / = 1, ,5m the tetragonal symmetry group détermines a family of
transformation strams that corresponds to shearmg m the plane orthogonal to the axis of the rotation For each
two-fold rotation Ri for 1 = 1, ,5, the transformation strams U[ m the correspondmg family satisfy [3,34,35]

€ G RjU^R, = U?]} = {I, Ri}

The correspondmg symmetry-related variants LQ , ^3 , ^4 are then given by

The two-fold rotations Ri and R2 correspond to shearmg of the rectangular faces and can be analyzed identically
by symmetry The two-fold rotation R3 corresponds to shearmg of the square base and must be treated as a
separate case The two-fold rotations R4 and R$ correspond to shearmg the plane orthogonal to a diagonal
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of the square base and can also be analyzed identically by symmetry. Therefore, we need analyze only the
following three cases corresponding to üfe; ^ 3 ? and R4.

In Case 1, corresponding to R2 and shearing in the plane orthogonal to 02, the transformation strain U\

and the symmetry-related transformation strains L^ > E/3 •> E/4 a r e given by

(2.6)

where 6Z > O for % = 1, 2, 3, 64 ^ 0, and Ö1O3 — Q\ > 0. We shall assume without loss of generality that 64 > 0.
For Case 2, corresponding to R3 and shearing in the plane orthogonal to 63, the transformation strain E/j

and the symmetry-related transformation strains E/g , E/3 , E/Jj are given by

tff = 1 -&
V 0 0 63 I

(2.7)

t/f =

t/f =

/ 01

0

/ e2
0

V o

0

0

0
01

04

04
0

03

0
04

03

t/f =

t/f =

/ 0i

0

V - 0 4

/ 02

0

V o

0
02
0

0
01

- 0 4

- 0 4
0

03

0
"04

03

t/f =

where 8% > 0 for % — 1, 2, 3, £4 ^ 0 and <$i 52 — <5| > 0. We shall assume without loss of generality that Si > ö2

and 54 > 0.
In Case 3, corresponding to R& and shearing in the plane orthogonal to ei + e2l the transformation strain

U[ and the symmetry-related transformation strains E/g » U3 » E/4 are given by

(2.8)
7?1 7?3

771 774 J , U^} = I - 7 7 3 771 -774
774 772 / \ -7 /4 - 7

where 771 > 0, 772 > 0, 774 ̂  0, 771 +773 > 0, and 772(771 — 773) — 277! > 0. We shall assume without loss of generality
that 774 > 0 (Note that it follows from the preceding inequality that 771 -f 772 — 773 > 0 and 771772 — 77! > 0; we will
use these inequalities in the proof of Theorem 3.1).

In what follows, we will omit the super script in the notation for the transformation strain U% since the case
being considered will always be explicitly given.

There exists a continuous déformation y(x) G C°(R3;R3) such that [2,28]

, , _ 1 QU% for ail x such that x • n < s,
V\ ) — \ TT for aj_i x s u c n that x • n > s,« - {t

where Q € SO(3), ! j e { l , . . . , 4 } , n e I 3 , t î / 0, and s € R, if and only if there exists a G M3 such that

QUX = U3 + a <g> n. (2.9)
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Thus, if (2.9) holds for a / 0, then x n = s is an interface plane; and we say that the two wells li% = SO(3)Ul

and U3 = S0(3)C/j are rank-one connected.
The following lemma (which is a special case of Proposition 2.2 in [4]) will be used to construct rank-one

connections for the tetragonal to monoclinic transformation that result from the two-fold rotations in the
symmetry group. This lemma can be verified by direct substitution into (2.9).

Lemma 2.1. Assume that Uti U3 G M3x3 are positive definite and symmetrie, that there exists a unit vector
m G E3, and a rotation R(irim) G G such that

(2.10)

Then there exist exactly two solutions to (2.9), up to the scahng of a and n by any nonzero constant p
given by

2 / U7lm \ ,
a= ~ { , r r - i 12 -ujm) > n = pm, Q = R(TT,U n)R(w,m),p y\U3 ̂ m]2 J 3

and

a = p U3m, n = - I m —
\U3m\

The first solution given m Lemma 2.1 détermines a type I twin and the other solution détermines a type II
twin [2,38]. For either type of twin, we call the planes x - n = s twin planes. If a twin is both a type I twin and
a type II twin, then it is said to be a compound twin. The following easily proven identities give type I twins
and type II twins by the above lemma.

L e m m a 2 .2 . The two-fold rotations defined m (2.3) act onU\, . . . , U± m the following manner:

Case 1:

Case 2:

Case 3:

R[UiRi = RjUiR3
RlUxR2 = Uu

R^UiRs = £/3,
RjU2R2 = Ü2,

JX^ U\rii — XL2 Ulit2

-Tt̂  U\l\4 = /tg U\R§
RlU2R3 = U2,

T>TTT r> TTJX-^ U\±t\ = C/4,

R%UiR2 = U2,
R3U1R3 = Rl[UiR5

RjUiRi = Uu
RTU2R1 = Us

= u2,

— Ui,

= u3,

= u3,

RjU2R5 = Ui,
RjU2Ri = U3,

TJT T T D T?TTT T>x\2 U3JX2 — -ft3 L/3XI3 —

RTU4R1 - Ui.

R![U2R4 = RjU2R5 =
T>TTT T> TDTTT T>Kx U3K1 = H2 U3K2 —
DT1 TT T> TT

n3 U3K3 = Us,7DJL T T ~D T TSho L/4XX3 — LsA.

RÏU2R3 = RJU2R4 =
RjU2R5 = U%,
R2U3R2 = U4,
RjU3R4 = U3,
X>T TT TD TTlie U^-ttt-, = t/4.

We next use the above lemma to give the following result classifying ail possible rank-one connections for the
tetragonal to monoclinic transformations. We note that for Case 2 there exist rank-one connections that are
neither type I nor type II. The interfaces separating such rank-one connections are sometimes called domain
interfaces rather than twin interfaces [20], and we shall maintain this distinction below.
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L e m m a 2 .3 . For Case 1, Case 2, and Case 3, we have:
1. For each i G {1, . . . ,4} , the energy well U% is not rank-one connected to itself.
2. For any i,j G {1, . . . ,4} , with Ï ^ J , there are exactly two solutions to the twmning équation (2.9). The

characterization of the solutions to (2.9) is gwen m Table 1 where

e l - e \ - e\
1/2' = arctan

Si —

26A

and

£2 =
[(27717/3 - vif + ril (m

1/2

Alternatively,

Proof There

CG

do not

1
2

exist

4<5f-

<54

f ( * i -

SO(3)

-i

*2)2J
with

R

1/2

E

2

.Ri and a,

£n + a (g) n .

n

1
2

G M 3 ,

A2

a, n y

S

+ (

4

<5i -

such

1

52)2_

that

1/2

[2,28]

Hence, for each i G {1, . . . ,4} , the energy well £4 is not rank-one connected to itself.
By Lemma 2.2, all of the interfaces in Case 1 and Case 3 and all but the (i,j) = (1,4) or (iyj) = (2,3)

interfaces of Case 2 satisfy (2.10). Hence, Lemma 2.1 can be applied to obtain the solutions to (2.9).
To compute the interface normals for (z, j) = (1,4) or {i,j) = (2, 3) in Case 2, we recall from Lemma 5 in [28]

that n — (fii, /^2,0), n 7̂  0, is an interface normal if and only if

\Utv\ = \U3v\

for v = (—/X2,Ati,0). •

In the following, we will be interested in a simple laminate. We fix %, j G {1, . . . ,4} with % / j , and Q, a,
and n with a, n ^ 0 that satisfy the interface équation

For any fixed À / 0 ,1, we dénote

Then we have the following lemma.

L e m m a 2.4. For any X G (0,1), we have that F\ £ U.

Proof. It is proved in Lemma 2.3 of [6] that FA ̂  U if (Ï
in Case 1 and Case 3.

We next consider Case 2. If FA G U, then

Qï/ t = 17, + a ® n.

+ (1 - \)U3 = C/j + Aa ® n.

(2.11)

(2.12)

is a type I or type II twin. This proves the theorem

\QUX - RUk
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TABLE 1 Characterization of the solutions to (2 9)

CASE (z,j) TYPEOFTWIN INTERFACE NORMALS

669

CASE 1

(1,2)

(3,4)

(1,3)

(1.4)

(2,3)

(2,4)

compound
compound
compound
compound

I
II
I
II
I
II
I
II

~e2

(eu eu A/1 -2e j )

CASE 2

CASE 3

(1,2)

(1,3)

(2,4)

(3,4)

(1,4)

(2,3)

(1,2)

(1,3)

(1,4)

(2,3)

(2,4)

(3,4)

compound
compound
compound
compound
compound
compound
compound
compound

domain
domain
domain
domain

I
II

compound
compound

I
II
I
II

compound
compound

I
II

n i

ni =

e i

ni =

e i
n i

(cos|,
(sm§,
(cos §

(sm§,-

(£2,0,-
m

n2 =

(0,82,

(0,—e2 .

n i

n 2 =

(£2,0,

= e2

ei - e2

+ e2
ei + 62
- e2

= ei

62

-sin§,0)
,cos|,0)
,sm|,0)
- cos §,0)
62

= e3

ei - e 2

ei

y/l - e%)

) \ / l ~ e2)
= e3

ei + e2

62

for some % ^ j and fc € {1, ,4} Then by the interface équation (2 11) we have

= RUk
(2 13)

If fc = t or k = j , then (2 13) imphes that the energy well U% or U3 is rank-one connected to îtself This
contradicts Lemma 2 3 If k ^ % and k ^ j , then (2 13) imphes that an interface normal for (z, j) is the same
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as an interface normal for (%} k) and (j, fe). This contradicts the table of interface normals for Case 2 given in
Lemma 2.3. •

We shall assume that the energy density (p(F) satisfies the growth condition

4>(F) > CX\\F\\V - Co for ail F e E 3 x 3 ,

where Co and Ci are positive constants independent of F € ]R3x3 and where we assume p > 3 to ensure that
déformations with finite energy are uniformly continuous [1]. We can then dénote the set of déformations of
finite energy by

;M3) : [ <f>(Vy(x)) dx < oo},
Jn

and we can define the set A of admissible déformations as

A={y€W* : y(x) = yQ(x) for all x e dü} (2.14)

where

2/0 (#) = F\x for ail x € Q.

We can prove the following lemma by constructing laminâtes with length scale converging to zero whose défor-
mation gradients oscillate with volume fraction À at QU% and 1 — À at U3 [12,28].

Lemma 2.5. Let A be defined as in (2.14). Then the total energy £{y) satisfies

inf£(y)=0.
yEA

3. RÉDUCTION TO THE APPROXIMATE MIXTURE OF TWO STRAINS

Recall the définitions (2.5) and (2.14) of n and A% respectively. For each A; G {1, . . . , 4} and each y G -4, we
define

and the volume fraction with respect to the fc-th energy well Uk to be

measOfc(^)
Tk{y) = measfi '

Since every x e Q is in fifc(y) for some k G {1, . . . , 4}, we have that

4

l for ail y G A. (3.1)
fe=i

By the rank-one connection (2.11) and the définition of Fx

Fx = XQU% 4- (1 - X)U3 = U3+\a®n, (3.2)

we have that

\Fxw\ = \Utw\ = \Ujw\ for all w e M3, wn = 0. (3.3)
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Since det(QC/2) = det U3 > 0, we have that U~xa • n = 0. Hence, we have that

Cof Fx = (CoiUj) (I - XmsU^a) (3.4)

where the cofactor of a nonsingular A G IR3x3 is defined by Cof A = (det A)A~~T. We then obtain from (3.4)
that

\{CoiFx)w\ = |(Cof Ux)w\ = \{CoiU3)w\ for all w G M3, tu • 17" * a = 0. (3.5)

We next recall that since the subdeterminant of the gradient is a null-Lagrangian [17], we have for y G A that

f Vy(x) dx = f Fx dx,

/ CofVy(x)dx= / CofFAdx.
Jn Jn

Finally, we note that it follows from (2.4) that

[ \\Vy(x) -7r(Vy(a;))||2 dx < «"^(y) for ail y e A (3.7)

The following resuit is proved in more detail in [6] for the cubic to orthorhombic transformation. In the estimâtes
below, C will dénote a generic positive constant that is independent of y € A and is allowed to change from
équation to équation.

Lemma 3.1 . Given %,j G {1, . . . , 4 } , Q G SO(3), and a, n G M, a, n ^ 0 satisfymg the twinnmg équa-
tion (2.11), there exists a constant C > 0 such that for any y G A

Pl(y;w) =

< C £ { y ) l / 2 f o r a l l w £ M . 3 , \ w \ = l , w n = 0 , (3.8)

^ | 2 - |(Cof t/fe)u;|2]

< C [é:(y)1/2 + f (y)] /or aZZ w e R3, \w\ = 1, w • U^a = 0. (3.9)

Proof. We have by (3.1) and (3.6) that for any w G M3 with \w\ = 1

Pl(y;w) =J2Tk{y) (\Fxw\2 - \Ukw\2)

\\Fxw\2 - \ir(Vy(x))w\2] dx

2

measfi

JQ

/ [Vy(x) — TT(VÎ/(X))] W - Fxw dx.
Jn
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We obtam from the Cauchy-Schwarz mequality and the above mequality (3 7) that

</ [Vy(a:) — 7r(Vy(x))] w F\w dx

So, it follows from (3 10) that for all w G l 3 with \w\ = 1

- \Ukw\2) < CS(y)^2

fe=l

The result (3 8) then follows from the above mequality (3 11) and (3 3)
Next, we obtam simüar estimâtes for the cofactor We have from (3 1) and (3 6) that for any w G

(3 11)

\w\ = 1,

P2(y,w) =
fc=i

[\(CoïFx)w\2-\(CoïUk)w\2]

[|(CofFAH2- dx

= ^ f [CoïFx - Cof 7r(V2/(x))] •
measSz JQ

f [Cof Vy(x) - Cof 7r(Vy(aO)] w (Cof Fx)w dx
Jn

f [CofVy(x) - CoÎ7v{Vy{x))} w (Cof Fx)w dx
Ja

(3 12)

measfi
2

measft

Letting F(x) = Vy{x) for x G ft, we have that F{x) = {Fki(x)) G L2(ft,R3x3) Now ir(Vy(x)) G U for all x G ft,
so if we set P(x) — n(Vy(x)) for x G ft we have that P(x) = (Pki(x)) is umformly bounded m L°°(ft,]R3x3) for
all y e A We have for any fc, Z, p, q G {1,2, 3} that

-PP*)

(3 13)

Hence, we have by the Cauchy-Schwarz mequality and (3 7) that

ƒ | [Cof VÏ/(Z) - Cof7r(Vï/(a:))]u;| dx < C [s{y)1/2 + S(t/)]

Thus, we have from (3 12) and (3 13) that

[|(Cof FA)^|2 - |(Cof f/fc)

< C \s(y)1/2 + £(z/)l for all w G

The result (3 9) then follows from the above mequality (3 14) and (3 5)

(3 14)

D

We will use Lemma 3 1 to establish the followmg mequality for all material parameters not satisfymg certain
identities

forallfce{l, ,4}\{i,j} and all y e A (3 15)
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We will also give conditions on the material parameters 6%, 5U and rj% under which this inequality cannot be
established. This, in turn, will lead to uniqueness or nonuniqueness of the Young measures associated wit h
energy minimizing séquences of déformations, which we discuss in the next section.

Theorem 3.1, Assume that <fi satisfies (2.1)? (2.2), and (2.4), F\ is defined as in (2.12) with X G (0,1), and
A is defined by (2.14).

Case IA: Suppose ( Ï , J ) %n the définition of F\ détermines either of the compound twms with n — n\.
Then (3.15) holds for all the parameters 0ti except those that satisfy

m which case (3.15) does not hold for X = 1/2.
Case 1B: Suppose (%,j) m the définition of F\ détermines either of the compound twms with n — ri2-

Then (3.15) holds for all the parameters B%% except those that satisfy

05 = 0? + ^ , (3.17)

m which case (3.15) does not hold for X = 1/2.
Case I C : Suppose (i,j) and n m the définition of F\ détermine any of the remazmng type I or type II twms.

Then (3.15) holds for all the parameters 0z.
Case 2A: Suppose (%,j) m the définition of F\ détermines any of the four compound twms with n =• n\.

Then (3.15) holds for all the parameters St.
Case 2B: Suppose (z,j) m the définition of F\ détermines any other twm than those m Case 2A above.

Thèn (3.15) does not hold for any choice of the parameters ö%.
Case 3A: Suppose (t,j) m the définition of F\ détermines either of the compound twms with n = ri\.

Then (3.15) holds for all the parameters rjZ} except those that satisfy

2^773 - vl (3-18)

m which case (3.15) does not hold for X = 1/2.
Case 3B: Suppose (i^j) m the définition of F\ détermines any other twm than those m Case SA above.

Then (3.15) holds for any choice of the parameters r}%.

Proof Case I A . Assume that (z,j) = (1,2) and n = ei. Since this is a compound twin, it follows from
Lemma 2.1 that U^1^ is parallel to e$. Let s , t e M b e such that w = (s,£,0)T has unit length. Then using
Lemma 3.1 we have

P2(y;w) = (s2-1?

ïf (3.16) does not hold, then we can choose s and t such that

(s2 -1 2 ) (el (el + öl) - (ÖIÖ3 - fl2)2) > o.

Therefore,

T3(y) + rA{y) < C [eiy)1'2 + £(y)] for 0\ («§ + 6\) jk (6X9Z - e\f .

Let us now assume that (3.16) holds. We show that if À = 1/2, then we can construct a séquence {yn} C A of
déformations whose energy converges to 0, but the volume fractions rs(yn) and T4(yn) converge to 1/2.
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Usmg Lemma 2 1 and the transformation matrices (2 6), we obtam after a series of calculations that

2*

where

â = 04(0i+03) > 0

Usmg the fact that

we obtain

(2A-1)<7 O

where

cr(A) 0 (2A-1)<7
F?FX = O 01 O

A 2

Recall that R^UiR^ = U3 and R^^Rb ~ U4, so that

QUi — U2 = a 0 ei

is equivalent to

Qt/a — ^4 = —R5CL <g) e2

with Q = R^QRs Setting

/^f x / S r r i / " i \ \ y r r > ^

(jrA == A(^/L/3 ~r ^1 ~~ AJL/4 — JXg

we have

(9l °
\ 0 ( 2 A - l ) a Ö|

and we conclude that

GlGx = F J F A if and only if A = 1/2 and a(X) = &\

However, it is easy to check that a(l/2) = Q\ is equivalent to (3 16) Therefore, if (3 16) holds, then Fxj2 =
QG1/2 for some Q G SO(3), and hence we can construct a séquence of déformations {yn} C A with £(yn) —• 0
such that the volume fractions rs(yn) —>• 1/2 and T4(yn) —>• 1/2 [12,28] This proves that (3 15) cannot be
proven if A = 1/2 and (3 16) holds

The proof for case (2, j) = (3,4) and n = e2 follows by symmetry smce R^UiRs — U3 and RÏ5U2R5 = t/"4
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C a s e 1 B . Consider the case (z, j) = (1,2) and n = e3 . Let s , t G l b e such t h a t w = ( s , £ , 0 ) T has uni t
length Then we have

Pl(y;w) = (s2-t2)(e2
1+el-e2

2

which leads to

rs(y) + r4(y) < C£(y)^2 for B\ÎQ\ + 0|.

Proceeding now as m the previous part, we can deflne GA = RjF\R$ which corresponds to the compound twin
with (z,j) = (3,4) and n — e3) and again we conclude that

GlGx = F[FX if and only if A = 1/2 and (3.17) holds,

leading again to a séquence of déformations {yn} C A with £(yn) —>• 0 and the volume fractions rs(yn) —> 1/2
and T4(yn) -> 1/2.

The proof for case (̂ î j) = (3,4) and n = e3 again follows by symmetry since R^UiRs = t/3 and

Case IC. Consider first the case (z,j) — (1,3) and n = e\ — e2. Let s , t G Ë b e such that w = (5, s, ^)T has
unit length and 5̂  > 0. Then we have since o > 0 that

pi{y\w) =

<

leading to

Next let (ï,j) = (1,3) and n = (—ei,—ei, ^/l — 2ef). Since this is a type II twin, it follows from Lemma 2.1
that U^la is parallel to ei - e^ Let s , t G E b e such that w = (5,s,t)T has unit length and st < 0. Then we
have

P2(y;w) = - 4 sta el [r2(y) +u(y)}

<

leading to

The proof for cases ( Ï , J ) = (1,4), (z,j) = (2,3), and ( Ï , J ) = (2,4) follows from symmetry since
and R$U3R2 = U4, RfUxRx - ?72 and RjU^Rx = t73, and R^UxRs = J72 and RlUzRz = C74.

Case 2A. Assume first that (i, j) = (1, 2) and n = 62- We evaluate pi(y; ei) to get

<
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leadmg to

smce we assumed öi > ô2 > 0
The proof for case (i,j) — (3,4) and n = ei follows by symmetry smce RJU1R4 = C/3 and RjU2R^ = U4
Assume next that (z, j) = (1, 3) and n — ei — e2 Let w = (ei + e2)/\/2 Then

Pi(y, w) = [7Ï(y)

<

leadmg to

The proof for case {%, j) = (2,4) and n = ei + e2 follows by symmetry smce R^U\R\ = U2 and R^U^Ri = U4

Case 2B. In this case, the energy wells given by the transformation matrices m (2 7) are essentially two-
dimensional, so the results given by Bhattacharya and Dolzmann m Example 7 3 m [5] give a proof of the
assertion in Case 2B For complet eness, we give a modified version of their proof her e

We set ö = det Uz and consider the set C of symmetrie positive defmite matrices with determinant equal to
52, of the form

C12 0
C — I C i 2 C22 0

V 0 0 51

Then there is a one-to-one correspondence between C and IR2 given by

C ~ (011-022,20x2), (3 19)

and we shall imphcitly assume this correspondence m what follows Under this map,

Ui ^ {&l - ö l -254(<5! + ö2))

Similarly as for the energy wells WXï we define rank-one connections between sets Vi = S0(3) Vi and V2 = S0(3)V2
where VUV2 € M3x3 We say that Vi and V2 are rank-one connected if there exist Q G S0(3), o e R 3 , ^ Ö ,
and n e M3, n ^ O , such that

QV2 = Vi + a (g) n

Note that if detVi = detF2, then Vr
1~

1a n = 0 and det(AQF2 + (1 - A)Fi) = detVi Note also that if Vi
and V2 are symmetrie positive définit e, we can îdentify Vi with V^ and V2 with V2 and, abusing the language
slightly, talk about rank-one connections between V± and V2, and m particular, between éléments of C, or,
correspondingly, between points in M2 under the identification (3 19)

Consider now two distinct symmetrie positive defimte matrices A, B such that A2,B2 G C It then follows
from Lemma 5 m [28] that there exist two rank-one connections

QB = A -h a O n
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FIGURE 1. The rank-one connections in Case 2.

FIGURE 2. The curves of rank-one connections for compound twins with n = n2 must lie in
the mterior of V

such that n • e3 = a • e3 = 0, and Q ~ R(a, es) for some a E R. This implies that A~1a • n = 0, and we can write

QB = A(I + s ^ <g>n)

for some s G l , where n1- = R(TT/2, e3) n. Thus,

= A 2 <g> n Jn(gM (3.20)

and we conclude that two matrices in C are rank-one connected if and only if they lie on a quadratic curve
parametrized by (3.20) for 5 G E.

We define the vertex of a parabola to be lts point of maximum curvature. We also define its axis to be the
half-hne mterior to the parabola that extends from the vertex to infinity. Writing n = |n|(cos0,sin0,O) and
letting Â — A2 and B = B2, we have

s|n|

2B12 =

Â22) sm26^ + s2\n\2\An±\2 cos2(9,

52 |n|2 |An-L |2sin20
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FIGURE 3. There is a curve of rank-one connections through any G E T> that intersects two of
the par abolie curves that bound T>,

FIGURE 4. The curve of rank-one connections for domain interfaces must lie in the interior of V,

where l^n^l2 > 0. It can be seen that in the (Cn — C22,2Ci2)-plane this curve is a parabola with axis in the
direction (cos 29, sin 29) We note that this curve cannot cross any point G G C twice since otherwise G would
be rank-one connected to itself. We can also see that this curve does not degenerate since

(2Â12 - (Â1X +Â22)sin20)sin20^ 2 (Â22 COS2 0 - Ân sin2 0) cos 29,

for any positive definite matrix A G C. Therefore, the four rank-one connections from Case 2A corresponding
to compound twins with n — ni (see Lemma 2.3 for définition of ni) détermine a closed curve through the
C72, % = 1, . . . , 4, in the (Cn — C22, 2Ci2)-plane consisting of four parabolic segments buiging out of the domain
V they are bounding (see Fig. 1).

The other four compound twins with n = n2 détermine parabolas through the corresponding U? with
axes pointmg in the opposite direction to the axis of the curve of rank-one connections corresponding to its
compound twin System for n = m. We claim that their vertices (thus the whole segments joining U? to {ƒƒ for
the corresponding % and j) lie in D. Assume this is not so, that is, assume that there exists a compound twin
determined by U% and U3 with n — n2 such that the vert ex of the corresponding parabola does not lie in V. We
visualize this example in Figure 2 for the parabolic curve of rank-one connections Connecting C/2 and C/| with
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77,2 = ei + e2 corresponding by Lemma 2.1 to

(U3 + Xa2 ® n2)
T(U3 + \a2 <%>n2) eC

where

n2 = ea + e2, a2 = 2 f1
 U2 - L/3n2.

In this case, we suppose that the parabola intersects the curve of rank-one connections Connecting t/2 and XJ%
with u\ — ei + e2 at a point

Gi - ([/3 + Aa2 (8) n2)
T(Us + Aa2 ® n2) G C

for 0 < À < 1. For an admissible space of déformations

A={yeW<f>: y(x) = yo(x) for all x G dû}

where

2/o(a?) = y/o[x for ail m G Q,

we can then construct a séquence of laminated déformations {yn} C A with £(yn) —• 0 such that the volume
fractions ri(yn) —» À ̂  0 and r^y^) -» 1 — À ̂  0. This contradicts the resuit in Case 2A that since Gi lies on
the curve of rank-one connections Connecting t / | and XJ\ with m = ei + e2 we must have that ri(yn) —> 0 and
T3(t/n) ^ 0.

Next, we let G € C be a point in the interior of X>, and we then construct a séquence of déformations {yn} C A
for

A={yeW* \ y(x) = yo{x) for all x e dQ,}

where

yo(x) = vGx for ail x € Q,

such that £(2/n) —̂  0 and Tk(yn) ~h 0 for each k € {1, . . . , 4}. This resuit then provides a proof of Case 2B for
the four compound twin families with n = n2. We define F = VG and let

for some v G E3, v ^ 0. This détermines a rank-one curve passing through G that intersects the boundary of
V at two points Gi and G2. If we choose v as in Figure 3 such that the axis of the parabola is in the direction
U^ — G for some i = 1, ... ,4, then we know that the two intersections G\ and G2 lie on different parabolic
segments of the boundary of D. We can now construct a séquence of déformations {yn} C A such that S(yn) —> 0
and Tk(yn) /» 0 for those k for which JJ\ participâtes in the rank-one connections for the parabolic segments
on the boundary of T> corresponding to Gi and G2. By rotating v we see that we can construct a séquence
{yn} C A such that £(yn) —> 0 and rk(yn) ~h 0 for every fc 6 {1, . . . , 4}.

Finally, if we show that the parabolic segments of rank-one connections extending from JJ\ to JJ\ and from
C/| to [/f also lie in P, the proof will be complete. However, if this were not so, there would exist a curve of
rank-one connections passing through a point G on a parabolic segment of the boundary of V, a point G\ in
the interior of T>, and a point G2 on one of the parabolic segments of rank-one connections extending from Uf
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to Ui or from U2 to U2 (see Figure 4) However, we can see as above that this violâtes the result m Case 2A
for the boundary segment

Case 3A. Assume that (z,j) = (1,3) and n = €3 Let w = (s,£, 0)T for ^ t e t b e o f unit length Then we
have

Pi(y,w) = 4st (2771773 - 774)

Choosmg the sign of st to be the same as that of 2771773 — 77I, we conclude that

T2(y) + rA(y) < CS(y)1/2 for 2^773 + ril

Assume now that 2771773 = 77I Aft er a series of calculât ions, we then find that

2è

and

(771+773)2 O (2A-1)<7
O (771 + 773)2 - ( 2 A - l ) a

(2A-1)(T -(2A-1)(T a(X)

where

and

a(X) =r72 + 2772 + 8A(A-l)-
+

Recallmg that R^UiR2 = U2 and B^UzRi = t/4, we define GA = R%F\R2 as in the pioof for Case 1 and
conclude that Gj,2Gi/2 = -^r/2^1/2 when (3 18) holds Therefoie we can construct a séquence of déformations
{yn} C A with £(yn) ~^ 0 and the volume fractions T2(yn) —> 1/2 and r±(yn) —> 1/2
The proof for case (Ï, J ) = (2,4) and n = es follows by symmetry since RJU1R2 = U2 a-nd RJU3R2 = U4

Case 3B. Consider flrst the case (z, j) = (1,3) and n = ei — 62 Smce this is a compound twin, we have that
C/3~

1a is parallel to e3 Let s, £ G E be such that w = (5, £, 0)T has unit length and st < 0 We then have that

) = - 4 s i (2(771772 - 772)(772r73 + 77I) + T ? 2 ^ + 77s)2) [r2(y) -f r4(y)]

Smce we have 771772 — 774 > 0, it follows that

The proof for case (2, j) — (2,4) and n = ei +62 follows by symmetry smce if^t / i i^ ~ ^ 2 an(^
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Consider the case (1,3) = (1,2) and the type I interface n — e2- Let s,£ e R be such that w = (s,0,£)T has
unit length and st > 0. We then have since à > 0 that

Pi(y\w) =

<

leading to

Consider next the case (t,j) = (1,2) and the type II interface n = (£2,0, —y/l — e | ) . Since this is a type II
twin, we have that [/2~

1a is parallel to 62- Let s,t G IR be such that w = (s ,0,£)T has unit length and st < 0.
We then have that

P2Ù/; w) = - 4 stà (771 + T?3)2 [r3(2/) + T4(y)}

<

leading to

T h e p r o of for t h e i n t e r f a c e s for c a s e s ( Ï , J ) == ( 1 , 4 ) , ( Ï , J ) = ( 2 , 3 ) , a n d ( x , j ) = ( 3 , 4 ) fo l lows b y s y m m e t r y s i n c e

RjUxRï = t/i and RJU2R4 = U^ R%UiR7 = C/2 and RjU2Rr = C/s> and R^U^s = C/3 and R^U2R^ = C/4.
D

4. THE STABILITY AND UNIQUENESS OF THE MICROSTRUCTURE

In the previous section, we proved the estimate

Tk(v) < C [£(y)V2 + £{y)\ for fc e {1, . . . ,4}\{i,3} and all y e A, (4.1)

for all of the tetragonal to monoclinic transformations except when the lattice parameters satisfy the identities
given in Theorem 3.1. We recall that

: y{x) = yo(x) for x G

where

yQ(x) - [XQUX + (1 - X)U3]x for all x e ft.

The results in this section for the tetragonal to monoclinic transformations can be deduced from the inequality
(4.1) by the identical arguments used to deduce the results from (4.1) for the cubic to orthorhombic case [6]
by making the obvious modifications in the argument to change N = 6 to N — 4. For this reason, we state the
results given in this section without proof.

We also recall that the energy density <fi is minimized on the union U of the four energy wells

U% = SO(3)C/Z = {RU% : R G SO(3)} for % = 1, . . . , 4 ,

and that <p is continuous and satisfies the growth condition

(f>(F) > K \\F - TT(F)\\2 for all F G M 3 x 3 .
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We shall also assume that the lattice parameters do not satisfy the identities given in Lemma 3.1 so that the
inequality (4.1) holds.

Our first theorem in this section gives estimâtes for the derivative of the limiting macroscopic déformation
y in any direction tangential to the parallel layers of the laminate, for the L2 approximation of the limiting
macroscopic déformation, and for the weak convergence of the limiting macroscopic déformation.

Theorem 4.1. (1) For any w GM? such that w • n — 0 and \VJ\ = 1, we have

f \[Vy(x) - Vyo(x)\ w\2 dx < C [s{y)1/2 + £(y)] for ail y G A.

(2) We have

J \y(x) - yo(x)\2 dx<C [£(y)1/2 + £(y)] for ail y e A.

(3) For any Ltpschitz domain co C O,, there exists a constant C = C(u>) > 0 such that

[ [Vy(x) - Vt/oW] dx < C [£(y)1/s + £(y)l/2} for ail y G A.

The following corollary shows that the déformation gradients of energy-minimizing séquences of déformations
must oscillate with a length scale that converges to zero.

Corollary 4.1. There does not exist any y G A such that

£(y) = min£(z).

For fixed z, j G {1, . . . ,4} with % ^ j , we can define a projection TÏ%3 : M
3x3 —>UtUU3 by

11^-71^(^)11= min \\F~G\\ for ail F G M3x3.

We also define the operators 9 : M3x3 —> SO(3) and H : R3x3 —» {QU%, U3} by the unique décomposition

nt3(F) = 0(F)n(F) for ail F G M3x3.

The following theorem proves that the déformation gradients of energy-minimizing séquences of déformations
must oscillate between QU% and U3.

Theorem 4.2. We have

J \\Vy(x) - U(Vy(x))\\2 dx < C [s(y)1/2 + £(y)] for ail y G A.

For any subset iv C Q, p > 0, and y G A, we define the sets

u>%
p(y) = {xGu: U(Vy(x)) = QUZ and \\Vy{x) - QU%\\ < p} ,

x)) = U3 and \\Vy(x) - U3\\ < p} .

The next theorem demonstrates that the déformation gradients of energy-minimizing séquences of déformations
must oscillate with local volume fraction À at QUX and local volume fraction 1 — À at U3. It also demonstrates
that the Young measure for this problem is unique [3,28] and is given by

V =
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Theorem 4.3. For any Lipschitz domam
/or all y G A

messuUy)

measu;
- A

measo;

and any p > O, there exists a constant C = C(CJ, p) > O

-(1-A)

We now dénote by V the Sobolev space of ail measurable functions ƒ : Q x M3x3 -^ M such that

wl - / \ esssup||Vjr/(:r,F)|| + \Vzf{x)n\2 -h zf(x)2 \ dx < oo,

where Zf : Q, —> M is defined by

zf(x) = ƒ(z, Q170 - ƒ (x, U3) for ail a; € îî.

The final theorem in this section gives an estimate for the weak convergence of nonlinear functions of the
déformation gradient.

Theorem 4.4. We have

Di)]} dx

r all f eV and ail y e A,

5. THE FINITE ELEMENT APPROXIMATION OF MICROSTRUCTURE

The simplest finite element approximation of the variational problem

inf £{v)
veA v J

inf £(vh)

is given by

where Ah is a finite-dimensional subspace of A defined for h G (0, ho] for some ho > 0. The following approxi-
mation theorem for the energy can be proven for the most widely used Pk or Qk type conforming finite éléments
on quasi-regular meshes, in particular for the Pi linear éléments defined on tetrahedra and the Q\ trilinear
éléments defined on rectangular parallelepipeds [6,12,23-25,27,28].

Theorem 5.1. For each h G (0,/IQ], there exists yh G Ah such that

£{yh) = min £{zh) < Ch1'2. (5.1)

For the remainder of this section, we again recall that the energy density <\> is minimized on the union ÎA of
the four energy wells

Ut = SO(3)Ut = {RU% : R G S O ( 3 ) } for i = 1, . . . , 4 ,

and that <j> is continuons and satisfies the growth condition

<t>(F) > K \\F - TT(F) | | for ail F G M3x3.
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We shall also assume that the lattice parameters do not satisfy the identities given in Lemma 3.1 so that the
results of the previous section hold. In this case, the following corollaries for the finite élément approximation
follow directly from the above estimate for the approximation of the energy (5.1). We assume below that
Uh € Ah is a finite élément approximation satisfying the quasi-optimality condition

S(zh) (5.2)

for some constant a > 1 independent of h.

Corollary 5.1.
(1) There exists a positive constant C such that for any yh E Ah satisfying (5.2) we hâve

\yh(x)~y0(x)\2dx<Ch1^[
n

and

\\Vyh(x)-U(Vyh(x))\r dx <

(2) For any wGM3 such that w - n = 0 and \w\ = 1, we hâve

[ \[Vyh(x)~Vy0(x)}w\2 dx <
Jn

for any yh G Ah satisfying (5.2).
(S) If u C Q is a Lipschitz domain, then there exists a constant C = C{u) > 0 such that for any yh G Ah

satisfying (5.2) we hâve

dx <

Corollary 5.2. (1) If UJ C Vt is a Lipschitz domain and p > 0, then there exists a constant C = C{uj,p) > 0
such that for any yh E Ah satisfying (5.2)

measu; measo;
- ( l - A ) <

(2) We hâve

I / {/(*, Vyh(a:)) - [Xf(x, QUi) + (1 -
Un

/or any / G V and any y^ G .A/i satisfying (5.2).

dx
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