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A LEGENDRE SPECTRAL COLLOCATION METHOD
FOR THE BIHARMONIC DIRICHLET PROBLEM

BERNARD BIALECKI1 AND ANDRÉAS KARAGEORGHIS2

Abstract. A Legendre spectral collocation method is presented for the solution of the biharmonic
Dirichlet problem on a square The solution and îts Laplacian are approximated usmg the set of
basis functions suggested by Shen, which are lmear combmations of Legendre polynomials A Schur
complement approach is used to reduce the resultmg lmear System to one mvolvmg the approximation
of the Laplacian of the solution on the two vertical sides of the square The Schur complement System
is solved by a preconditioned conjugate gradient method The total cost of the algorithm is O(7V3)
Numerical results demonstrate the spectral convergence of the method
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1 INTRODUCTION

The numerical solution of fourth order problems by spectral methods has been the subject of numerous
studies in recent years A review of various spectral formulations for fourth order problems in one and two
dimensions is given m [1] Spectral collocation methods have been particularly popular m applications to physical
problems smce, m contrast to spectral Galerkm methods, they do not require the évaluation or approximation
of intégrais In [2], spectral collocation methods are studied for the solution of a one dimensional fourth
order problem In [4], a Legendre spectral collocation method is proposed and analyzed for the biharmonic
équation on a square However, no algorithm for the solution of the correspondmg approximate problem is
discussed The improvement m the poor conditionmg of the spectral discretization of the biharmonic équation
is exammed m [10] A Chebyshev spectral collocation method is apphed to the driven cavity problem m [16]
The application of Chebyshev spectral collocation methods with domain décomposition to the steady-state
Navier-Stokes équations (stream function formulation) in complex geometnes is mvestigated m [11,13] In [12],
a fully conforming Chebyshev spectral collocation scheme is developed for the biharmonic équation m two and
three dimensions Fmally, a spectral collocation method has been apphed to fourth order problems m circular
domains m [14] Purther références to the application of spectral methods to fourth order problems can be
found m [7] and [3] The formulation of the biharmonic Legendre spectral collocation problem m this paper
and the method of îts solution are similar to those developed m [15] and [5] for orthogonal sphne collocation
with piecewise Hermite bicubics
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In this study we consider the biharmonic Dirichlet problem

A2u^f'mQ, u = du/dn = 0 on dQ, (1.1)

where A dénotes the Laplacian, fl = (—l,l)x(—1,1), dQ is the boundary of Q, and d/dn is the outer normal
derivative on dQ.

In contrast to [4], we use the mixed formulation of (1-1) to obtain approximations to both u and Au.
Specifically, we set v = Au and discretize a coupled pair of Poisson's équations in u and v using a Legendre
spectral collocation method with polynomials of degree < TV. As collocation points we take the nodes of the
N — 1-point Legendre-Gauss quadrature rather than the Legendre-Gauss-Lobatto points (cf [4]). Employing
a Schur complement approach, we reduce the collocation problem to a Schur complement System involving an
approximation to v on the two vertical sides of dQ and an auxiliary collocation problem for a related biharmonic
problem with v, instead of du/dn, specified on the two vertical sides of dQ. The matrix in the Schur complement
system is symmetrie and positive definite. (This is not the case when the Legendre-Gauss-Lobatto nodes are used
as collocation points). Consequently, the Schur complement system is solved by the preconditioned conjugate
gradient (PCG) method. A preconditioner is obtained from the auxiliary collocation problem. We conjecture
that the preconditioner is spectrally equivalent to the Schur complement matrix. The cost of multiplying the
Schur complement matrix by a vector and the cost of solving a linear system with the preconditioner are O(N2)
each. With the number of PCG itérations proportional to log Ny the cost of solving the Schur complement
system is therefore O(N2 logiV). The solution of the auxiliary collocation problem is obtained with cost O(NS)
using séparation of variables and the solution of a simple generaüzed eigenvalue problem which reduces to two
symmetrie eigenvalue problems with tridiagonal matrices. The total cost of our algorithm is therefore O(N3).
The algorithm is well suited for parallel implementation since many of its steps involve independent matrix-
vector multiplications. Numerical results demonstrate the spectral convergence rate of the approximations to u
and v in the maximum norm. In comparison, the method of [5], the cost of which is O(N2 logN) on an N x N
partition, yields fourth order approximations to u and v.

In Section 2 we introducé three polynomial spaces, the corresponding basis functions, and collocation matri-
ces. In Section 3 we develop an efficient method for solving a 1-d spectral collocation problem. The biharmonic
spectral collocation problem and its solution are discussed in Sections 4 and 5, respectively. Numerical results
and conclusions are given in Sections 6 and 7, respect ively.

2. PRELIMINARIES

For N > 4, let {Çz}^1 an<^ respectively {wz}^1 be the nodes and weights of the iV —1-point Legendre-Gauss
quadrature on (—1,1), and let

D = diag(iüi,... ,Wjv-i). (2.1)

For p and q defined on { ^ j ^ 1 , let

N-l

- (2-2)

It follows from the exactness property of the Legendre-Gauss quadrature that

(P,9> = ƒ {pq)(x)dx, pqeP2N-3, (2.3)
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where Pk dénotes the set of polynomials of degree < k on (—1,1). Lemma 3.1 in [8] implies also that

-(P",Q) = f (pV)(s) dx-p'q\U+CNpWq(
N\ p,qe PN, (2.4)

where C/v dénotes a generic positive constant that may depend on N.
Let

P°N = {pePN: p(±l) = 0}, P°N° = {peP°N: p ' (±l) = 0}.

(Note that the dimensions of PN, P$, and PJJP are N + 1, TV - 1, and N - 3, respectively.) Following (2.7) and
(3.4) of [17], we introducé the basis {<f)k}k=2 for P$ and the basis {0fe}£L4 for P£° with

<j>k(x) = ck[Lk_2(x) - Lfc(x)], fc = 2 , . . . , i\T, (2.5)

(ai) = 4 [Lfc_4(x) + afcLfc_2(a;) + bkLk{x)\, fe = 4 , . . . , JV, (2.6)

where Ljt(a;) is the fcth degree Legendre polynomial normalized by f_x L\(x) dx — 2/(2k + 1), and

1 , 1 2k-3 . 2k-5 f .
d 2 b ( 2 7 )

Augmenting the basis {̂ fc}fcL4 for Pjtp by ^2,^3 € P r̂ such that

we obtain the basis {^1^2 for ^N- Since 02,03 £ P$ and since {<pk}^=2 i
s a basis for P$ ,

AT iV

02 W = 5^aik0fc(x), 03(^) = ^0k<f>k(x), (2-9)
fc=2 fc=2

for some {afc}^L2
 a n ^ {Pk}^=2- Later we will consider a particular choice of {a:fc}j[L2 and

0k = (-l)k-1aki fc = 2 , . . . , J V . (2.10)

Using (2.5)-(2.7) it is easy to verify that

0fc(x) = dfc [c^24>k-2{x) ~ 6fcCfc Vfc(«)] , fc = 4, - - - ,N. (2.11)

Thus it follows from (2.9)-(2.11) that

[02(a;),... ,0,v(z)] = [*2(x), - - - , 4>N(X)]M, (2.12)

where the nonsingular matrix M has the structure shown in Figure 1.
Augmenting the basis {fipk}k=2 for P% by

= ^ h W - Ma)], 0iW = ^[Lo(x) + L^x)], (2.13)
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FIGURE 1. Structure of the (N - 1) x (N - 1) matrix M.

we obtain the basis {ipk}k=o ^or ̂ W' where

Let

= 0, ( - l ) = 0,

where Î and fc are the row and column indices, respectively. Clearly, (2.16) and (2.13) imply

It follows from (2.15), (2.17), and (2.12) that

Let

where D is given by (2.1). Clearly, Bf^ is symmetrie and positive definite.

Lemma 2.1. The matrix B^ has the structure shown m Figure 2 and

^ =diag(l , . . . , 1 , x),

where the element x is positive.

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

Proof. Equations (2.20), (2.17), and (2.1), imply that the coefficients of B'^ = (&'M)^=2 and A'^ = {a'kl)%l=2

are given by the formulas

J V - l N-l

bk,i = o' fc i, =
1 = 1
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FIGURE 2. Structure of the (TV - 1) x (TV - 1) matrix B^.

Hence it follows from (2.2), (2.3), and Lemma 2.1 in [17] that in order to prove both claims it suffices to show
that

bNtN-l = °» aN,N

For TV odd (TV — 1 even), we have

-l)(-^%) = 0,

where the first identity follows from the symmetry of {wt}^[1 and the antisymmetry of {Çi}1^1 about 0, and
the second identity follows from {<1>N<J>N-I)(—X) = — {<PN<I>N-I)(X) which is a conséquence of (2.5) and (2.7).

For TV even (TV — 1 odd), using arguments similar to those for odd TV, we have

(N-2)/2 (N-2)/2

1=1

where in the last step we also used <£jv-i(0) = 0 which follows from (2.5) and Lfc(0) = 0 for odd k.
Finally, (2.4) applied to p = q = <j>pf and (2.2) imply a'N N > 0.

Let

Then it follows from (2.19) and (2.20) that

^ - A'+M, B't = B'+M.

Let

D

(2.22)

(2.23)

(2.24)

Then (2.17), (2.1), (2.16), (2.2), (2.3), (2.5), (2.13), and orthogonality of the Legendre polynomials imply that
that B^t has the structure shown in Figure 3. Let

(2.25)
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FIGURE 3. Structure of the (JV - 1) x 2 matrix B^t.

and let

Then it follows from (2.18), (2.24), (2.22), and (2.23) that

(2.26)

(2.27)

3. 1-D SPECTRAL COLLOCATION PROBLEM

Solving the biharmonic problem requires the solution of the following 1-d spectral collocation problem.
For given À > 0, {ff*}^1, {fi}^ïl, a, and ƒ3, consider the problem of finding p € PN and q e PN such that

p ' ( - l ) = a, p ' ( l )=/3. (3.3)

Theorem 3.1. For X > 0, there exist unique p e PN and q G PN satisfytng (S.l)-(S.S).

Proof. Since in (3.1)-(3.3), the number of unknowns, which is 2JV, is equal to the number of équations, we
assume & = /i = 0, i = 1,. . . , 2JV, a — f3 ~ 0 and show that p = q = 0. Taking the inner product {•, •) with q
on both sides of (3.1) and with p on both sides of (3.2), respectively, we obtain

\ n (3-4)

p) = 0.

It follows from (2.4) and p(±l) = p'(±l) = 0 that (p/f,q) = (g",p). Hence (3.4) gives (g,g) = 0, which implies

<?(&) = 0, z = l , . . . , i V - l . (3.5)

From (3.2) and (3.5), we have ç"(&) = 0, i = 1,. . . , N - 1, which yields q" = 0 since q" e PN-2- Thus q e Pi
and hence (3.5) and JV > 3 imply q = 0.

From (3.1) and (3.5), we have

= 0, i = 1,... ,N - 1, which along with
D

Since, by (2.4), -(p",p> > 0, it follows that (p,p) = 0. Thus
= 0 implies p — 0.
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In the remainder of this section we consider a matrix-vector form of (3.1)-(3.3), assuming that { f̂c}£L2
 an<^

{îpk}fr?=0 are respectively bases for Pjy- and Pjv introduced in Section 2. Substituting

N N

into (3.1)-(3.3), and using (2.15), (2.16), (2.25), (2.8), and ipf
k{±l) = 0, fe = 4 , . . . , AT, we obtain

(Bjj, + XA^)p-\- XB^)eqe = g, (B^e + \A$te)qe = / , p2 = a, Ps = /3, (3.6)

where

p = [51,... ,^AT-I]T, / = [A, . . . , iW- i ] T .

Multiplying the first two équations of (3.6) by B^D1 with B$ and .D defined in (2.17) and (2.1), respectively,
and using (2.22), (2.26), we obtain

; ^ fl;ifl& - ^ , (^;,e + AA^J^e = ^ , P2 - a, p3 = /?, (3.8)

where

g* = BjDg, U = BjDf. (3.9)

Rewriting $, of (3.7) as

Qe = [qo,qi,q\T, Q = [ Q 2 , - - - ,qN]T,

and using (2.23), (2.27), (2.8), ^ ( ± 1 ) = 0, k = 4,... , N, and (2.12), we obtain

(3.10)

where

PM = Mp, qM = Afg, (3.11)

and

Equations (3.10) can be rewritten as

Sn\pM,qM}T+ Sl2[qo,qi}T = [fr, f*] , (3-12)

S2i\pM,qM}T = [a,(3}T, (3-13)
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where

and

12 = o/ » ^21 = I O^ C I .
±J ƒ f Li" J

Since B^ + AA^ is positive definite, Su is nonsingular. Hence, using (3.12), we obtain

\JPM,QM] = Sïi !#<£, f A — Sfx 5i2 [çcb<?i] » (3.15)

which upon substitution into (3.13) gives

S[qo,q\}T = S2iS^} [gé,U]T ' {&,0}T, (3-16)

where S is the 2 x 2 Schur complement matr ix given by

S = 52i51-1
15i2. (3.17)

Thus we have the following algorithm for solving (3.8), assuming that g<p and f<f> are known. (We focus on (3.8),
rather than (3.6), since it is (3.8) which arises in the solution of the 2-d problem.)

Algorithm I.
Step 1: Compute columns of S using (3.17).
Step 2: Compute the right hand side of (3.16).
Step 3: Solve (3.16) for [<?0,4i]T.
Step 4: Compute [PM,<ÏM]T using (3.15).
Step 5: Compute p* and q using (3.11).

Note that in steps 1 and 2 we can save S^S±2 and S^lg^, f<f>]T which are used in step 4. By (3.14), solving,
in steps 1 and 2, linear Systems with Su involves solving two linear Systems with B^ + XA^ and multiplication
by XB^. It follows from (2.21) and the structure of B^ (see Fig. 2) that solving a linear system with B^ -h XA^
reduces to solving two linear Systems with tridiagonal symmetrie and positive definite matrices. Step 3 involves
solving a linear system of two équations in two unknowns. It follows from the structure of M (see Fig. 1) that
in step 5, Mp — pu (similarly Mq — qu) can be decoupled into two Systems, one for p^ — P3 and pk with even
k > 4, and the other for p2 -\-pz and Pk with odd k > 5. The matrices in these two Systems have the structure
shown in Figure 4 and hence each system can be solved with cost O(N). Since each step of Algorithm I requires
at most O(N) opérations, the total cost of solving (3.8) is O(N). Of course the cost of Computing g<p and f<f> of
(3.9) is O(N2).

4. BlHARMONIC SPECTRAL COLLOCATION PROBLEM

Introducing v = Au in (1.1), we obtain the coupled problem

-Au -f v = 0 in ft, ~Av = - ƒ in f2, u = du/dn = 0 on dü. (4.1)
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FIGURE 4. Structure of the matrices in decoupled Systems for Mp—pw

and

{a,b) = Vy(a,b) = 0, a,b = ±l.

The Legendre spectral collocation problem corresponding to (4.1) consists of finding U G Pjy0 ® P^P and
V e PN ® PN such that

(4.2)

(4.3)

We prove existence and uniqueness of the solution to (4.2)—(4.3) following the proof of Theorem 5.1 in [15]. To
this end, we require an additional notation and two lemmas. For p and q defined on {(x^y) : x,y G {Çz}^1},
let

J V - l A T - l

%=1 3 = 1

and V G PNLemma 4.1. If U

Proof Since Ux(aJy) = O, a = ±1, y G [—1,1], using (2.4), we have

A T - l

((-UXX,V)) =-

(4.4)

QNy

dxN dxN

In a similar way, using (2.4) and U(a,y) = 0, a = ±1, £/ G [—1,1], we obtain

5 = 1

Therefore ((~UXX, V}) = {([/, -T4X)). By symmetry in x and Ï/ we also have {{-Uyy, V)) = ({17, -Vyy)). Hence
the desired result follows. D
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Lemma 4.2. IfV € PN ® PN sahsfies

V (a, 6) = yv(a, 6) = 0, a, 6 = ±1, (4.5)

then

((Vxx,Vyy)) = ((V,Vxxyy)). (4.6)

Proof. Applying (2.4) with respect to y to the left-hand side of (4.6), we have

N-l

((VXX1VVV)) = y ^ wt(VuJ£%, •), V U ( £ n ) •)>
w r xx) y y / / / j M j/y v^"' / ' **\S't) / /

*=i
iV-1 -i

t = 1 J-l V

+ y ^ ^ ( ^ / ^ a ï a : ) ^ , ^ ) ! ^ ! ~ CjV V ] lüt f - ^ - ^ ^ ^ 2 ] (^t,*)-
2 = 1 1 = 1 X *

Applying (2.4) to the second term on the right-hand side in (4.7), we obtain, for y = ±1,

N-l

(4.8)

= -j (VxVyx){x7y) àx + (VxVy){x7y)\lzli-CN [dxN dxNdy) (^)-

Applying (2.4) to the first term on the right-hand side in (4.8), we obtain, for y = ±1,

/

i i V - 1 Ar~1 /8N+lV 8NV

WyxVx){x,y) dx=^2 ^(VyxxV)(tuy) - (y^V^y^^+df ^ w% [dxNdy dx
Substituting (4.9) into (4.8) and using (4.5), we have

N~l N-l

Applying (2.4) with respect to y to the right-hand side of (4.6), we also obtain

N - l

(4.11)

Comparing the right-hand sides of (4.7) and (4.11), and using (4.10), we obtain (4.6). D

Theorem 4.3. There exist unique f / e P ^ F&° and V E PN 0 PN satisfymg (4.2)-(4.3).
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Proof. Since the number of unknown coefficients in U and F , which is TV2 — 4TV + 10, is equal to the number
of équations in (4.2)-(4.3), it suffices to show that if U and V satisfy (4.2)-(4.3) with ƒ = 0, then U = V = 0.

Taking the inner product ({•, •)) with V on both sides of the first équation in (4.2), we obtain

((V,V))=0. (4.12)

Similarly, taking the inner product ((•, •)) with U on both sides of the second équation in (4.2), we obtain

<<-AV,17»=0. (4.13)

Prom (4.12), (4.13), and Lemma 4.1, we have ((V, V)} = 0, which implies

V & , & ) = 0 , iJ = l,...,N-l. (4.14)

Thus, by the first équation in (4.2),

Using this équation, (2.4) with respect to x and y, and C/ = 0on dfi, we have

N-l N-l

0 = ( ( - , ) )
3 = 1 1=1

N-l f l

/ U$%,y) dy,
fl

J'1

which along with U = 0 on dû implies that U = 0 on the horizontal and vertical lines passing through the
points (&, ̂ ) , Î, j ' = 1, . . . , iV— 1. This and £/ = 0 on 9Q imply further that £/ = 0 on ail horizontal and vertical
lines passing through fi, and hence [7 = 0.

To show that V = 0, we use the second équation in (4.2) (with ƒ = 0), Lemma 4.2 , and (4.14) to obtain

0 = «AV, AV» = ((Vxx, Vxx)) + 2«VXX, Vyy)) + ((Vyy, Vyy))

= {(VXX,VXX)) + 2((V,Vxxvy)) + ({Vyy,Vyy)) = ((VXX,VXX)) + {(Vyy,Vyy)).

Hence

Vizfê., Q = Vyy&, ^ ) = 0, », j - 1, . . . , TV - 1,

which along with (4.14) implies that V = 0 on the horizontal and vertical lines passing through the points
(&>O> M = !> • • • .TV- 1. This and V(a,6) = 0, a,6 = ±1 , imply in turn that V = 0 on <9fi. Therefore, V = 0
on ail horizontal and vertical lines passing through fi, and hence V = 0. D

Let the functions {̂ fcjfcLo ^ e a s m Section 2 with { o ^ } ^ of (2.9) yet to be specified and {0k}^=2 a s m

(2.10). Since {^fc}^, {'0fc}fcL2> anc^ {̂ fc}£Lo form bases for P^°, P&, and PAT, respectively, and since ^OÎ ̂ I
and ^2, ^3 satisfy (2.14) and (2.8), respectively, for U G P^° 0 Pjy° and V G PN ® P N satisfying (4.3), we have

N N

with

u2,i = u3ti = 0 , l = 4 , . . . , TV, (4.16)



648 B BIALECKI AND A KARAGEORGHIS

and

N N IN
\.—"^ v '̂  v *̂  \!—^

~\y ( T 7/1 \ > 7j, 19/jj I T* \il)i f ?/ i I \ > 7), IQ/II \ f ilhi ( 11 1 I 4 1 7 1

Note that in (4.15) we included

3 AT

k=2 1=4,

assuming (4.16) and we did not include

1 3

in (4.17) since (4.3), -02(±1) = ^3(±1) = 0, (2.14), and (2.8) imply that all the coefficients in (4.18) are zero.
Corresponding to (4.15) and (4.17) we introducé the vectors

U= [U2,4,-.. ,^2,JV,--- ,WJV,4,... ,^N,JV]T, (4.19)

«2, = [«2,4» • • • , U2,N]T> «3, = [«3,4, • • • , U3jN}T, (4.20)

v = [v2to> • . . , V2.AT, • • • , vjv.o, . . . , ̂ iv,^]71 , (4.21)

VQ, = [vo,4, - . . » ̂ o,iv]T , vi, = [^i,4,.. . , ̂ i , iv] T . (4.22)

Note that U2, and u3) of (4.20) are the first two subvectors of u in (4.19).
Let A?p7 B^p, Aifrj, Bit),u anQl ^ , e , B^je be the matrices introduced in (2.15), (2.16), and (2.25), respectively,

and let the two additional matrices A^ r , B^yT be defined by

, (^))^,fc=4- (4-23)

Substituting (4.15) and (4.17) into (4.2), using the matrix définitions, (2.18), and (4.16), we obtain

0 Bv.r) N , , vi, ] T = 0, (4.24)

.r) [vb, , ui, ]T = / , (4.25)

u2> =-U3, =Ö, (4.26)

where

ƒ = [ƒ1,1 ) • • • ,/i,jv-i) • • • ) /N-1,1) • • • » / iv - i^- i ] (4.27)

w i t h / t i J = -
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5. SOLVING THE BIHARMONIC SPECTRAL COLLOCATION PROBLEM

In this section we present a method for solving (4.24)—(4.26).

5.1. Formulation of the method

Let Ik be the k x k identity matrix. Multiplying (4.24) and (4.25) by B^D (g> B^D, (4.26) by B^rDB^^r

and using (2.22)-(2.24), (2.26), we obtain

7 + {B^t <g> B^r) [tfo, , vi, f = 0, (5.1)

^,r)[vo^vh]
T = U, (5.2)

= 0, (5.3)

where

(5.4)

(5.5)

Lemma 5.1. The matrix of the hnear System (5.1)-(5.3) is nonsingular.

Proof. Clearly, B^ of (2.15) is nonsingular since p = 0 is the only p G Pjy such that p(&) = 0 , % = 1, . . . ,N — 1.
Hence the rank of the (N — 1) x (N — 3) matrix B^^ of (4.23) is N — 3. This implies nonsingularity of the
f AT Q"\ v ( Af ^\ m a f r i v R ^ D R J oinpo R ^ D R , iTÎ — O ̂ riolHa iHv^ ( T)^-/^1 R , \^ T)^-/^ R , i7t — O Ti^-I^1 R ; i7t —
yl V —OJ A ^1V —Ol l l l d t l l X -LJ^f. T-LJ SDfU f b l i lCc - O ^ UDfU fUu — U yitï lLlo Uu \-*-^ -Dtb v) •*-' -^Wj 7-Ct/ — VJj J-/ £>Wj 7-U/ —

0, B^^w = 0, and w = 6. The desired result follows now from the nonsingularity of B^D, B^ rDB^^ri and the
matrix in (4.24)-(4.26), which is guaranteed by the uniqueness of the solution to (4.2)-(4.3). D

Equations (5.1)—(5.3) can be written as

Su [u, v\T + S12 [v0, , tTi, ] T = [Ö, / 0 ] T , (5.6)

S2l[Ü,Ö\T = Ö, (5-7)

where

Su =

o o

Note that the two blocks £?TrDB^iT in S21 of (5.10) correspond to multiplications by U2, and £3, in (5.3).
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Lemma 5.2. The matrix Su of (5.8) ts nonsingular.

Proof. With ü and v of the forms (4.19) and (4.21), respectively, the équations

(Aif, ® B^r + 5^,0 Aij,tr)Ü + (B$ <g> B^te)v = Ö, (A^ <g> B^te + B ,̂ <g> A^,e)v = Ö,

are the matrix-vector représentations of the following spectral collocation problem: find U G P%
Pj^ (8) PAT, such that

It can be shown, using an approach similar to the proof of Theorem 4.3, that the only solution to this problem
is U = V = 0 which gives ü ~ v = 0. This and the nonsingularity of B^D imply the nonsingularity of Su. D

Since Su is nonsingular, eliminating [ü>v\ from (5.6)=(5.7), we obtain

S [vo, , t?i, f = S2iS^ [O, U]T , (5.11)

where S is the 2 (TV — 3) x 2(iV — 3) Schur complement matrix given by

5 = S2i5f1
1Si2. (5.12)

Lemma 5.3. The matrix S of (5.12) is nonsingular.

Proof. The matrix S is nonsingular since it is the Schur complement of the nonsingular Su (see Lem. 5 2) in

e/1 r\ (see Lem. 5.1). D
^21 V J

We arrive at the following algorithm for solving (4.24)=(4.26).
Algorithm II.

Step 1: Compute fy of (5.5).
Step 2: Compute the right-hand side of (5.11).
Step 3: Solve (5.11) for VQ} and v±t .
Step 4: Solve (5.6) for ü and v.

In the following subsections we explain how to solve linear Systems with Su (invoived in steps 2,4) and S
(invoived in step 3).

5.2. Solving Systems with Su

Let vectors w, u, and ƒ be of the forms (4.19), (4.21), and (4.27), respectively, and let

9 — bi,i> - • • >£ i ,N- i ) . • • , <?iv-ia? • * • ><?iv-i,JV-i]T. (5.13)

Then, by (5.8), the system

Su[ü,v\T= [gj]T (5.14)

is equivalent to

( A ' 8 B ' + S ; ® A ' ) ( M ® I ) Ü + ( B ' g B ' ) { M ® I ) = g ,

v = f.
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We rewrite (5.15) as

)^ = ƒ, (5.16)

where

S ,2 = [«2,2, ^3,2 • • • , UNt2]
7', S ,3 = [«2,3, ^3,3 • • • , «Ar(3]T, (5.18)

and

3 = [a2, -.. , aNf, P - [ft,. . . , f3N]T. (5.19)

Note that ue in (5.17) is an extension of u in (4.19) with the components of u ̂  and u $ in (5.18) added to ü.
Consequently, (5.16) is obtained from (5.15) by replacing u, A[p r , and B'^ r with ue, A'^, and B^,, respectively,
and by ad ding two additional équations for u ̂  and ü ,3.

Note also that (5.14) (equivalently (5.15)) is a special case of (5.16) with d = (3 = 0.

Lemma 5.4. The matrix of the hnear System (5.16) %s nonsingular.

Proof. The desired resuit follows easily from nonsingularity of B^DB^ and Su. D

Since A^ and B^ of (2.20) are symmetrie and A^ is positive definite, it follows from Corollary 8.7.2 in [9]
that there exists a real nonsingular (AT — 1) x (N - 1) matrix Z and real

À = diag(À2ï... ,XN) (5.20)

such that

ZT^Z = !*_! , ZTB'4)Z = A. (5.21)

Since Z of (5.21) and M of (2.12) are nonsingular, (5.16) is equivalent to

(ZT (g. iN-MA't ® B ; + S ; (S i4^)(Z ® / i v - i X + (^T ® lN-i){B't ® S;>e)(Z «81 J JV+I )^ = $*,

(ZT ® / iv-OC^ O B ; , C + ̂  ® ̂ > e ) ( Z ® /iv+i)^ - ƒ', (5.22)

ZTM-TB^DBi,M-1Zu\2 = a', -ZTM-TB^DBi,M-1Zvfi3 = 0',

where u'e and if are such that

«e = (W®/Jy_i)t2'e, i r = ( W ® J W + i y , tZ,2 = Wfi'i2, W,3=^u ' ,3 , (5.23)

with

W=M~1Z, (5.24)
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and

? = {ZT® IN-x)g, ƒ' = (ZT ® IN_X) ƒ; a' = WTa, 0 = WT£. (5.25)

The vectors ü'e, v', v! 2, u
f
 3, <?', ƒ', and a', /?' have the same forms as ue of (5.17), v of (4.21), u ,2, u ,3 of (5.18),

g of (5.13), ƒ of (4.27), and ö?, /? of (5.19), respectively. In the following, the components of the primed vectors
are denoted by the primed letters corresponding to the unprimed vectors. For example,

Ü'e = [ U 2 , 2 Î U 2 , 3 ) ' • • iu2,iVï • • • » UN,2» uiV,3) • * * > ^iV,Jv] *

Using (2.19), (2.20), and (5.21) in (5.22), we obtain

(Ijv-i ® B ; + A ® ̂ ) £ ' e + (A ® B^J i? = p',

Au')2 = d\~AÜ\3 = P\

which, by (5.20), become

( S ; + AfcA^)^ + A . S ^ X , = ̂ , , (B^e + AfcA^^K, = ?K , < 2 - ^ / A f c , < 3 = -&/A*, (5.26)

for fc = 2 , . . . , iV, where

and

/—iJ

Since 5 ^ is positive definite, it follows from the second équation in (5.21) that A is also positive definite and
hence, by (5.20), Xk > 0, k = 2 , . . . , N. Clearly (5.26) is of the same form as (3.8) with A > 0.

It follows from (2.21) and the structure of B^ (see Fig. 2) that the computation of A and Z satisfying (5.20)
and (5.21) reduces to solving two symmetrie eigenvalue problems with tridiagonal matrices. With the use of the
QR algorithm for evaluating eigenvalues and the inverse itération for evaluating the corresponding eigenvectors,
A and Z can be precomputed with cost O (TV2). Also W of (5.24) can be precomputed with cost O(N2) since
solving a linear System with M requires O(N) opérations.

We are now in a position to formulate the following algorithm for solving (5.16).

Algori thm III .
Step 1: Compute g\ ƒ', cf', and ƒ3' using (5.25).
Step 2: For k = 2 , . . . , JV, solve (5.26) using Algorithm I of Section 3 for solving (3.8).
Step 3: Compute Üe and v using (5.23).

Steps 1 and 3 require O(NS) opérations each while the cost of step 2 is O(N2). Hence the total cost of
Algorithm III is O(N3),

In the remainder of this section we discuss the cost of Algorithm III for two special cases of (5.16).
In the first special case we assume that a = (3 = 0 and that g, ƒ are such that

9k,i = ƒ*,« = 0, k = 3 , . . . , N - 1, l = 1, . . . , N - 1. (5.27)

Also we assume that only components {^2,;}^4 &nd {^3,;}^4 °f ̂ e need to be computed when solving (5.16).
Let

9,i = bi,*)--- ,£iV~i,/]T, fti = [/i,f,... JN-IAT> Z = 1, . . . , i V - 1.
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In this case, in step 1 of Algorithm III, for each Z = 1,. . . , TV — 1, ZTgyi and ZT f j are obtained by computing
the corresponding liner combinat ions of the first 2 rows of Z. This can be done at a cost O(N2) for all L As in
the gênerai case, the cost of step 2 remains O(N2). In step 3, for each l = 4 , . . . , TV, u2,i and usti are obtained
by computing the inner products of the first two rows of W with [vf2 z, • - • , V>'N I\T • This can be done at a cost
O(N2) for ail L Hence in this special case, the cost of Algorithm III is O(N2).

In the second special case we assume that g — ƒ = 0 and that only components {vk,o}^=4 a n ( i {̂ fc,i}j=4 °f v
need to be computed when solving (5.16). In step 1 of Algorithm III two multiplications by WT are performed
to obtain af and ƒ?' at a cost O(N2). As in the gênerai case, the cost of step 2 remains O(N2). In step 3 two
multiplications by W are performed to obtain {t^ojfcL^ a n ( i ivk,i}^=2 w ^h c o s t O(N2). Hence, in this special
case, the total cost of Algorithm III for computing the desired components of v is O(N2).

5.3. Solving Systems with S

First, following the proof of Theorem 4.1 in [5], we show that the matrix S of (5.12) is symmetrie and positive
definite. We start by proving the following lemma.

Lemma 5.5. Assume U G P& ® P™ and V £ PN<8PN. Then

N-l

where {(•, •)) is defined m (4-4)-

Proof. It follows from (2.4) and (2.2) that

N-l N-l

Hence, using (5.28) and U(a,y) = 0, a = ±1, y G [—1,1], we have

N-l N-l

i=i i=i

In a similar way, using (5.28) and U(xi b) = Uy(x, b) = 0, x G [—1,1], b = ±1, we obtain

N-l N-l

X&>&), i = l , - . . , i V - l . (5.30)

Multiplying (5.29) by w3, j = 1,... ,N — 1, and summing with respect to j , and then multiplying (5.30) by wz,
Î = 1,... , AT — 1, and summing with respect to z, we obtain the desired resuit. D

Theorem 5.6. The matrix S of (5.12) is symmetrie and positive definite.

Proof. By (5.12), S = ST is equivalent to

for any

_ r («) (n) iT -j(n) _ r (n) (n) i
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For n = 1,2, let

(n) _ r (n) (n) (n) (n) i T

— ["2,4' * ' * •> a 2 ,N ' ' ' * i aN,4î • • * i aN,N\u

and

,7(n) _ r (n) (n) (n) (n) i T
v — 1^2,0 ) • • • ï ̂ 2,AM * ' ' » ^ , 0 ' * * * ' ^N,ivJ

be such that

Su [ f i ^ , ^ ] T + 5i2 [4n ) .4^+i , f = O- (5.32)

Then (5.31) becomes

1K*1>]TM*\%)]T) = - (s2l \^\
By (5.10), the last équation is the same as

where, for n = 1,2,

^(n) _ ru(^) yin) iT -(n) _ r (n) ^(n) iT

To prove (5.33), we note, using (5.8) and (5.9), that (5.32) multiplied on the left by

O
O

is the matrix-vector form of the spectral collocation problem

- A t / ( " ) ( & , ^ ) + y ( " ) ( ^ ) = 0, - A V < " > ( & , 0 = 0, t,j = l,...,N-l, (5.34)

where C/̂ n^ and V^ are given by (4.15) and (4.17), respectively, with u^i replaced by u^ and Vkti replaced

by v$- Since t/(n> € P& ® P^° and V^ G PN 0 PN} it follows from (5.34) and Lemma 5.5 that

In a similar way, we also have

and hence
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Using représentations of UM and V^ (cf. (4.15) and (4.17)), (2.8), and (2.14), it is easy to verify that (5.35)
is the same as (5.33). This complètes the proof of S = ST.

To show that S is positive definite, we observe, using the first part of the proof with v^ = VQ^ and t^ * = v[t\
that

which shows that 5 is nonnegative definite. Since 5 = ST and 5 is nonsingular (see Lem. 5.3), it follows that
5 is positive definite. D

It follows from Theorem 5.6 that the PCG method is a good candidate for solving the linear system with
S. Therefore, in the following, we discuss matrix-vector multiplications involving 5, the sélection of a precon-
ditioner, and the solution of a linear system with this preconditioner.

It follows from (5.12) that in order to multiply by S, we have to first multiply by Si2, then solve with Su,
and finally multiply by S21. Let vb, and vit be of the forms given in (4.22) and let

where g and ƒ have the forms given in (5.13) and (4.27), respectively. Then, by (5.9),

9 = (Bfi,,t®lN-i){l2®B^r)[vQ, ,vlt]
T (5.36)

and

ƒ = (B^t ® ÏN-iKh ® A^r)[vOi ,€Xi }T. (5.37)

Hence the computation of g and ƒ requires 2 multiplications by B^r, 2 multiplications by A^ r , and 2(7V — 1)

multiplications by B^v It follows from (2.22), (2.15), (4.23), (5.4) that A^ = [::|A^r] and B^ = [::|B^r], where

the symbol :: dénotes the first two columns of the matrix appearing on the left-hand side. Hence the products
of A^ r and B^r with a vector can be obtained by computing the products of A^ and B!^ with the augmented
vector whose first two components are set to zero. By (2.23), (2.21), and the structures of M and Bf^ (see Figs.
1 and 2), all the required multiplications by A^ r and B[p r involve O(N) opérations. It also follows from the
structure of B^ t (see Fig. 3) that all the required multiplications by B^ t take O(N) opérations. Hence the
total cost of multiplying by S i2 is O (AT).

With u and v of the forms (4.19) and (4.21), it remains to solve (5.14) and then compute S21P, v\T. Note
that only the subvectors u^^ and t ^ of u are needed for multiplication by S21 of (5.10). Moreover, (5.36),
(5.37), and the structure of B^t (see Fig. 3) imply that the components of g and ƒ satisfy (5.27). Hence, it
follows from the discussion in Section 5.2 of the first special case of (5.16) that computing u2) and ust requires

O(N2) opérations. Finally, (2.15) and (4.23) imply that B^DB^ = [: : |^> r]
TD[:: |^, r] . But (2.19) and (2.20)

give B^DB^ = MTB^M. Hence B^ rDB^^rU2, and B^ r D ^ ) r u 3 ) can be computed with cost O(N) by taking
advantage of the structures of M and B^ (see Figs. 1 and 2).

Thus the total cost of multiplying a vector by S is O(N2).
In the remainder of this section we select a preconditioner for S and discuss the solution of a linear System

with this preconditioner. First, interchanging the rôles of the x and y coordinates and replacing ue, û ,2, u ,3,
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and v with ü;, t?2, , ü>3, , and z, respectively, we rewrite (5.16) with g = f = 0 to obtain

M)z = Ö,
^ ^ = 0, (5.38)

i = a , ~B^DB^w3> = 0,

where

(Of course solving (5.38) is equivalent to solving (5.16) with g = ƒ = 0.) We split the vector z of (5.39) int o
two parts,

- — r )T

and

(The vector £r can be viewed as a restriction of z with the components of z0,
 a n ^ ^i, being removed from z.)

Then (5.38) can be written as

Pil K Zrf + Pl2 [5ö, ,*1 . f = Ö,
T r - i T (5.40)

P2i[ö,^]T=[5,/3] , V ]

where

_
11

Pi2 is the block multiplying [zo, ,<?i, ] T , and

P 2 1 = [ O - B ^ D ^ o ] " (5-42)

Note that the two blocks B^DB^ in P2i correspond to multiplications by w2t and ws, .

Lemma 5.7. T/ï,e matrix Pu of (5.41) ŝ nonsingular.

Proof. With #e of the form (5.17), the équation (A^ ^B^-\- B^ ® B^)üe — 0 is the matrix-vector représentation
of the following spectral collocation problem: find U e P^ ® Pjy such that

It can be shown, using an approach similar to the proof of Theorem 4.3, that the only solution to this problem
is U = 0 which implies the nonsingularity of (A^ ® B^ + B^ ® A^,). Hence this, (2.22), (2.20), (2.19), and the
nonsingularity of BTD imply the nonsingularity of Pu. D
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Since Pu is nonsingular, eliminating [w, zr]
T from (5.40), we obtain

[], (5.43)

where the 2(N — 1) x 2(N — 1) Schur complement matrix

P = P2iPrilPi2- (5.44)

Theorem 5.8. The matrix P %s symmetrie and positive definite.

Proof. The proof of this theorem is similar to that of Theorem 5.6. First we observe that P is nonsingular since

it is the Schur complement of the nonsingular Pu (see Lem. 5.7) in the nonsingular n
u }? (see Lem.

L -nn u \
5.4). Then we prove that P = P T and that P is nonnegative definite. This and the nonsingularity of P imply
that P is positive definite. D

For arbitrary a and /3, the solution of (5.43) can be obtained by solving (5.40) for z*ot and z\y or, equivalently,
(5.16) with g = f = 0, for the components {vkto}k=2 an(^ ivk,i}k=2 °^ v.

As a preconditioner for S we take the 2(N — 3) x 2(iV — 3) matrix P which arises from eliminating 20,2, 20,3 >
2^2) and z\$ in (5.43). Clearly such a P is symmetrie and positive definite, being the Schur complement of a
symmetrie and positive definite submatrix in the symmetrie and positive definite P. Moreover, for arbitrary
{a&}£L4 and {[3k}k=4i t n e solution of the System

^ 0 , 4 , • • • , ZO.N, ̂ 1,4, • • • , ̂ I ,N] T = - [«4, . . . , ajv, Ai, • • • , PN}T (5.45)

can be obtained by solving (5.43), with a2 = 0:3 = (32 = /?3 = 0, for {^0,^)^4 and {̂ i,fe}fcL4. Hence, we find the
solution of (5.45) by solving (5.16) with g = ƒ = 0 and 0:2 = ^3 = P2 — P3 = 0, for the components {^^,0)^4
and {ffc,i}fcL4 of v. It follows from the discussion in Section 5.2 of the second special case of (5.16) that the
cost of Computing these components is O{N2).

Finally, we explain how to select the funetions ^2 and ips of (2.9) and (2.8). This sélection is motivated by
making

independent of TV, where for symmetrie and positive definite A, K2(A) = Xmax(A)/Xmin(A). Equations (5.12)
and (5.10) imply that

s - [ o *.
where

R(3) R{4) \ = [ 0 _IN_3 O

In a similar way, using (5.44) and (5.42), we have

Q(4) I . (5-47)
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TABLE 1. «2(P-1/15.P-1/2)

N K2

10
20
30
40
50
60
70

1.56
1.63
1.65
1.66
1.67
1.67
1.67

where

| Q(3) Q(4)

It follows from (2.15), (4.23), (2.1), and (2.2) that

O -IN-I O

where

_
11

If \Er12 = 0, then substituting (5.47) into (5.43) and eliminating [̂ 0,2, ̂ o,3]T5
form

w e s e e ^na^ -P n a s

O

Therefore, by (5.46) and (5.48), the block

(2.8) and

O

(5.48)

is canceled in P 1S. For ^2 and fo of (2.9) satisfying

= 0, = 0 , k - 4 , . . . , TV, (5.49)

the results of Table 1 show that n2{P l^2SP 1^2) is bounded from above by a positive constant which is
independent of N. For the simpler choice

[ {x) - Lo(x)},

grows rapidly as TV —» oo since the block J" is not canceled in P~1S' and

grows rapidly as iV —> oo.
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X X X

X X X X

X X X

X X X X

X X X

X X X X

FIGURE 5. Structure of the matrices in decoupled Systems for (5.50).

It follows from (2.9), (5.49), (2.8), (2.11), {fa.fa) = 0, k,l = 2 , . . . ,7V, l ^ fc, fc ± 2, and ^ ( - 1 ) =
(—l) f c~1^(l), k = 2 , . . . ,7V, that finding {atk}k=2 is equivalent to solving the System

X

X

X

X

X

X

X

X

X

X

— X

X

X

X

X

X

X

X

X

X

— X

X

X

X

X

X

X

— X

X

X

X

X

X

X

— X

X

0

(5.50)

0
1
0

For {Pk}^=2 the last two components on the right-hand side are to be switched which implies (2.10). System
(5.50) can be decoupled into two Systems, one for a h with even k and the other for au with odd k. The matrices
in these two Systems have the structure shown in Figure 5 and hence each System can be solved with cost O(N).

5.4. Cost of solving the biharmonic spectral collocation problem

We now give the cost of solving (4.24)-(4.26) using Algorithm II of Section 5.1.
As discussed in Section 5.2, we precompute A and Z of (5.20) and (5.21) and W of (5.24) with cost O(N2).

Also, as discussed in Section 5.3, we precompute {&k}^2 m (2-9) with cost O(N).
Step 1 of Algorithm II involves Computing fy of (5.5) and it requires O(NS) opérations since B^ is full.
Step 2 involves solving (5.14) with g = 6 and then computing S2i [u, v\T. Only the subvectors u2, and w3) of

ü are needed when solving (5.14). These subvectors are computed with cost O(N3) since the cost of computing
ƒ' in step 1 of Algorithm III is O(7V3). (Note that <f, a', j3f need not be computed in step 1 of Algorithm III
since they are 0. Also, in step 3 of Algorithm III, #2, and ûs, can be computed with cost O(N2).) Then, it
follows from the discussion in Section 5.3 that the cost of computing S21P, v\T is O(N). Thus the cost of step 2
is O(N3).

Step 3 is carried out using the PCG method with P as a preconditioner for S. It follows from Section 5.3
that the cost of each PCG itération, involving multiplication by 5 and solution with P, is O(N2). Hence with
the number of the PCG itérations proportional to log TV the cost of step 3 is O{N2 log AT).
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TABLE 2. Maximum absolute error for numerical example.

TV
12
16
20
24
28
32

\\U-U\\oo
O.ll(-hl)
0.25(-l)
0.26(-3)
0.16(-5)
0.45(-8)
0.71(-ll)

\\V-V\\oo

0.11(+3)
0.44(+l)
0.59(-l)
0.36(-3)
0.11(-5)
0.16(-8)

TABLE 3. CPU times.

TV
16
32
48
64

CPU time (secs)
0.52
3.09
9.59
21.23

In step 4, we first compute 5i2po, , #i, ] T and then solve with Su. It follows from Section 5.3 that the cost
of Computing Si2[vo, ,^i, ]T is O(N). The cost of solving with Su is O(TV3) since the cost of Computing ƒ' in
step 1 of Algorithm III is O(TV3). (Note that in step 1 of Algorithm III, g* can be computed with cost O(N2)
since it follows from (5.36) and the structure of B^ t (see Fig. 3) that the components of g are as in (5.27). Of
course af = /?' = 0 and hence they need not be computed.) Hence step 4 costs O (TV3).

Therefore, the total cost of solving the spectral collocation problem is O(N3).

6. NUMERICAL RESULTS

We solved (1.1) with

f(x,y) = 1287r4[cos(47rx)cos(47ry) -sin2(: COS(4TTT/) - sin2(27ry)].

The exact solution of this problem, which was also considered by Shen [17] and Bj0rstad and Tj0stheim [6], is
u = sin2(27rx)sin2(27rï/). The number of itérations in the PCG part of our method was taken to be 2 log TV.
In Table 2 we present the maximum absolute error in u and v = Au on a uniform (0.02) x (0.02) grid for
different values of N. The exponential convergence achieved is shown in Figure 6 where we present the graph of
the logarithm of the maximum absolute error versus N. In Table 3, we present the CPU times required for the
solution of the problem on a RS6000-250 workstation for various values of N, including the cost of precomputing
the matrices A, Z, W, and the coefficients {<^k}^=2- ^om the table it is clear that the CPU times grow roughly
like TV3.

7. CONCLUSIONS

In this study we considered the numerical solution of the biharmonic Dirichlet problem on a square by
a Legendre spectral collocation method. A mixed formulation approach was used to rewrite the biharmonic
équation as a System of two coupled Poisson's équations for the unknown solution and its Laplacian. The solution
of the Legendre spectral collocation problem for the two Poisson's équations was reduced to the solution of a
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FIGURE 6. Logarithm of the maximum absolute error versus N.

Schur complement System for the Laplacian of the approximate solution on two vertical sides of the square.
Since the Schur complement matrix is symmetrie and positive defimte, the Schur system was solved by the PCG
method with the preconditioner obtained from an auxiliary problem. The total cost of the proposed algorithm is
O(N3) which is comparable to the cost of state-of-the-art spectral Galerkin methods. An important advantage
of the mixed formulation approach is that in addition to an approximation of the solution, we also obtain
automatically an approximation to its Laplacian. The spectral convergence of these two approximations is
demonstrated numerically on a test problem from the literature.

The extension of the proposed method to complex geometries is present ly under investigation. So f ar we have
examined the application of the domain décomposition approach to the formulation and solution of a Legendre
spectral collocation problem for Poisson's équation on a X-shaped région decomposed into three rectangles. The
approximate solution is continuous throughout the région and its normal derivatives coincide at the collocation
points on two interfaces. Firstly, the self-adjoint and positive definite approximate problem on the interfaces
is solved usmg the PCG method. Subséquent ly, three independent approximate problems on three rectangles
are solved efficiently using a matrix décomposition technique similar to the one described in this paper. We
hope that a similar domain décomposition approach will allow us to formulate and solve a Legendre spectral
collocation problem for the biharmonic équation on a L-shaped région and, in gênerai, on régions which are
unions of rectangles with sides parallel to the coordinate axes.
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