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EXISTENCE FOR AN UNSTEADY FLUID-STRUCTURE
INTERACTION PROBLEM

CELINE GRANDMONT! AND YVON MADAY!?

Abstract. We study the well-posedness of an unsteady fluid-structure interaction problem. We con-
sider a viscous incompressible flow, which is modelled by the Navier-Stokes equations. The structure
is a collection of rigid moving bodies. The fluid domain depends on time and is defined by the position
of the structure, itself resulting from a stress distribution coming from the fluid. The problem is then
nonlinear and the equations we deal with are coupled. We prove its local solvability in time through
two fixed point procedures.
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1. INTRODUCTION

The problem we study deals with fluid-structure interaction in the case where the fluid domain is time
dependent and the structure is a collection of rigid bodies. For related works on this type of problems we refer
to [6-8,15] and to [11] for numerical simulations. We consider a 2D or 3D, viscous, incompressible flow satisfying
the Navier-Stokes equations. We denote by v the fluid viscosity. We suppose that the fluid fills, at time ¢t =0, a
smooth domain of R%,d = 2, 3. In this cavity denoted by Q, we consider a collection of rigid but moving bodies
B,,1 <i < N with density p,, mass m, and matrix of inertia J,. We denote by B,(t), the position of the t"
body at time t. Their motion is thus described by three or six degrees of freedom: translations and rotations. If
we denote by G,(t) the position of the center of mass at time ¢ of B,(t), and 6,(t) its rotation angle with respect
to the rotation axis represented by the element _ﬁz(t) on the unit sphere (if d = 2, }—%)Z(t) is a constant vector
orthogonal to the plane where the motion takes place), so that

x(t) € B,(t) & G.a(t) = exp(6,(t)[ B .(t)\)) Gz (0), 1)

where [R,(t)A] is the operator “exterior product”. In order to be more explicit, we rewrite (1) as follows: in
2D

cos(6.(t)) —sin(6,(¢))

2(t) € B.(t) & Gia(t) = (m(ez(t)) cos(8,(t))

) G.z(0), (2)
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610 C GRANDMONT AND Y MADAY
whereas in 3D
z(t) € B,(t) & Gz(t) = My (t) M, (t)M,(t)Crz(0), (3)
where
1 0 0

Mz(t) = | 0 cos((R.)z0.(t)) —sin((R.)z0.(2)) |,
0 sin((R,)z0.(t)) cos((R,)z0.(t))

cos((R,)y8:(t)) 0 —sin((R,)y0.(t))
M, (t) = 0 1 0
sin((R.)y0.(t)) 0 cos((R.)y6.(t))

cos((R.)z6:(t)) —sin((R.):6.(t)) 0
M,(t) = | sin((R.).0.(8))  cos((R.).6:.() 0],
0 0 1

and where R,;, R,,, R,, are the three components of —R),(t) in a fixed given coordinate system. The Navier-
Stokes equations are then set in Q(t) = Q\ UY, B,(t) which is an unknown domain depending on time. The
boundary 'y of €2 and the boundaries 08, of the various bodies are assumed to be regular enough in all what
follows.

The equations for the fluid part are

Su+ (uVi)u—-vAu+Vp="f in Q(t)

divu=0 in Q(2)

ut,.)=0 on Ty (4)
d(0. R\ « A

u(t, z(t)) = weg, () + T(t) A Gz(t) on 0B,(t)

u(0,.) =up in ©(0),

where u denotes the fluid velocity, p its pressure, wg, the velocity of the center of mass; the applied exterior
force f is given together with the initial velocity ug. For the structure part, recalling that for each point of the
1th body we have

#(t) = C.(0) + < (OR)() AT3(),
so that \
#(1) = G0) + SO R)(0) A TR0 + ORI A (SOR)0 ATED),

and applying the conservation of linear and angular momentum we obtain

de«,, _
- 2dt—f{ R /6’131(t)(p = v(V + VT)u).n,(t)dz,
d“6, R, d d .
Ju a2 T /%m pza(()zl_%’z)(t) A (E(O,ﬁ,)(t) AGz(t)) = (5)

/ G (t) A ((p — V(¥ + VT )u).n, (£))dz,
8B,()
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where n,(t) denotes the exterior unit normal of B,(¢t). Note that in the general 2D and in the case of a 3D
sphere the last term on the left hand side cancels. The velocity wg, depends on the resulting stress coming
from the fluid and the rotation velocity is determined by the resulting moment of the fluid forces.

We have to impose also initial conditions for the bodies

0 — o Rl g, (6)
G0) = G,  Wa(0) = Wi

In order to ensure the well-posedness of the coupled problem, we impose, moreover, compatibility conditions
over the initial conditions

divug = 0, u0|r0 =0, 1101331 =W,;g t+ —'ll)zo A G—zlé(o)lal’9‘1~ (7)

Remark 1. The standard compatibility condition between the fluid incompressibility and the boundary con-
ditions is satisfied here. This condition is derived from the fact that diva = 0 in €(¢) implies necessarily that

/ un =0, z.e. here
aQ(t)

N
;/«981(0 u.n,(t) =0. (8)

But u over 0B,(t) is equal to a velocity associated to a rigid body motion which is the sum of a translation
velocity and a rotation velocity. Thus (8) is satisfied.

We have an unsteady coupled problem. Since the fluid domain is an unknown of the problem and depends
on time, we rewrite, in a first step, the Navier-Stokes equations on ©(0), by using the Lagrangian variables. We
denote by v the Lagrangian velocity of the fluid and set:

Xol(t6) = €+ /0 v(s,€)ds. (9)

So that,
u(t, xv(t,€)) = v(t,§).

Making use of this change of variables we obtain — at least formally —

Ov—v(Vy)2v+Vyg=Ffoxy in ©(0)
Vyv=0 in Q(0)
v=_0 on I'y
— (10)
v=wg, + d(ep (g;[Rz/\]))m(O) on 9B,
v(0) = ug in ©(0),

where we set ¢(t,£€) = p(t, xv(t,€)). We mean by f o x, the function defined by f(t, xv(¢,€)). The operator
V. denotes the operator cof(Vxy).V. We have used the fact that detVyx, = 1, which comes from the fluid
incompressibility and from the relation

%dethv = divu o xydetViy.
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For the proof of the last equality we refer to [9] Chapter 1 pp. 26-27, or [17]. We note that the convection term
(u.V)u disappears due to

Ov(t, &) = (Oru+ (u.V)u)(t, x+(t,€)).
We can also rewrite the structure equation with the help of the new unknowns, we get

M d‘;,fl = o8 (q - V(VV + vVT)V) cof (va)nzdl‘
sz zlt?z + /a& Pz%(@lﬁz)(t) A (ad—t(gzﬁz)(t) A (exp(6,[R.A]))Goz(0)))dz = (11)

/aB (exp(6,[ B, A))G.z(0)) A [(g = v(Vy + Vi T)V) (cof (Vxv).m,)] dz,

where n, denotes the exterior unit normal to B,.

We are looking for a solution of (10, 11) and are going to prove an existence result locally in time in some
Sobolev spaces, that have first been used by J. T. Beale in a similar context. We shall often use their interpolation
properties. In what follows, we do not distinguish the space of scalar-valued functions H*(2,R) from the space
of vector-valued functions H*(Q, RY), we will simply write H*(Q). If X is an Hilbert space, H*(0,T; X) denotes
the space functions H*® with value in X. Because the time interval (0,T) will be small, we have to be careful
about the dependence of the various estimates on T'. Thus, we make an explicit choice of the norm associated
to spaces of type H(0,T; X). For 0 < s < 1, we define H*(0,T; X) as the domain of the operator A%/2 where
A = (1-08?2) and D(A) = {v € H?(0,T; X); 8;v(0) = 0;v(T) = 0}. This choice enables us to have the following
property: let Y and Z be two Hilbert spaces such that Z C Y and Z is supposed to be dense in Y, assume
that for all T', we have a continuous operator A(T) from H®(0,T;X) to Y and from H'(0,T;X) to Z with
a constant of continuity independent of T. Then A(T) maps H*(0,T; X) to the interpolated space [Z,Y]1_s,
0 < s <1 with a continuity constant independent of T" (see Th. 1.5.1 [14]). For m < s < m + 1, where m is an
integer, we define H*(0,T; X) as the space of functions such that 8/"v € H5~™(0,T; X). We set for T > 0,

Kr(Q) = L%(0,T; H™(Q)) N H™/2(0,T; L*(Q)).

The main result is the following:

Theorem 1. Let r be a real number, 1 < r < 3/2. We assume that ug € H™1(Q(0)), f 1s sufficrently smooth
and that the mass and the moment of merzz_()z of the bodies are sufficiently large, then there exists a time 17 > 0
depending on Q(0), ||uOHHT+1(Q(O)), W.0, W,0 and £ such that the problem (10,11) has a unique solution with

u € K52(Q(0)), Vg € K5 ((0)), we, € H/2+1(0,Ty) and (6, R,) € H™/272(0,T1).
T1 T1

Remark 2. As noted in [4] the real number r has to be large enough in order to define and estimate the
nonlinear terms which appear in the Lagrangian formulation of the fluid equations and also in order that the
solution in the Lagrangian variables can be transformed into a solution of the original problem, u.e. where the
fluid equations are written in the eulerian variables. Moreover, as the value of r increases, more compatibility
conditions should be imposed on the data of the problem (initial conditions, forces) to obtain a solution in the
spaces we choose. This is the reason why 7 is less than 3/2. An alternative could then be to use weights in time
as in [13].

In order to prove Theorem 1, we are going, in a first step, to study a fluid problem with a given velocity over
O0B,. For such equations we prove that there exists a smooth solution with the help of a fixed point theorem
(contraction mapping principle). The ideas are the same that one can find in the papers [2—4,16,17] where the
authors have studied the solvability of the Navier-Stokes equations with free boundary in bounded or unbounded
domains. Their approach is the following: the equations are rewritten in Lagrangian coordinates and it is shown
that solutions for the initial value problem exist locally in time, in smooth functions spaces, that is to say the
same kind of spaces we use here [2-4], or spaces of W1P-type with p bigger than the spatial dimension [17],
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or in Holder spaces [16]. Section 2 is devoted to the study of the fluid equations, and contains some standard
lemmas which will be useful (Sect. 2.1) and the study of the linearised equations (the homogeneous case
and inhomogeneous one). We obtain existence and regularity result for the linear problems. The existence of
solutions for the nonlinear problem is proven, for a small enough time (Sect. 2.3). The proof is based on the
estimates of the nonlinear terms and the contraction mapping principle. We have then to recouple the equations
in order to obtain a solution of the original interaction problem (Sect. 3).

2. STUDY OF THE FLUID PROBLEM

We consider the following equations:

Ov —v(Vy)2v+Vyg="Ffoxy in (0)

Vyv =0 in Q(0)

v=20 on Iy (12)
V = Vy, on OB,

v(0) =wg in Q(0),

where vy, is given in H™/2+1(0, Ty; H(8B,)), | will be chosen latter (T is some strictly positive time) and v,
verifies the following compatibility condition

N
Z/ Vp,. cof Vxy.n, =0, (13)
=1 o8,

which comes from Vy.v = 0 by integration by parts. Note that the vector cof Vyx,.n, depends only on

2(0)
the tangential derivatives of v along 8B,, thus only involves v,. Note also that each term in this sum vanishes
automatically for velocities v, associated with rigid body motions, since rigid body motions are incompressible.

Theorem 2. Let r be a real number, 1 < r < 3/2. We suppose that ug € H"t1(Q(0)), and that its
trace on the boundary OB, 1s regular enough, say belongs to HY(0B,) with | > r + 3/2. We consiuder vy, €
H™/2%1(0,To; HY(8B,)), such that (18) 1s satisfied and we suppose that £ 15 smooth enough (for instance C™).
We suppose, moreover, that

divup =0, wug|r, =0,
then there ezists Ty > 0 depending on (0), (ol gri1(0(0)y» WoloB.s [Veallgrr2e1(0 10, 1 (88,y) and £ such that the
problem (12) has a unique solution with v € K}fz(Q(O)), Vg € K7, (2(0)).

This theorem will be proven in several steps. First of all we study the linearised system associated with (12)
and in particular we prove the existence of a smooth solution, first for the homogeneous equations and next we
extend the result for the fully inhomogeneous problem. We then estimate the nonlinear terms, which are small
for a small enough time, and we apply the contraction mapping theorem in order to obtain a solution of the
original fluid problem with a given velocity on the boundary. We follow here closely the paper of J.T. Beale [4]
and adapt carefully each step of his proof to our context. The main difference lies in the type of boundary
conditions.

2.1. Preliminary results

In this subsection, we give some classical lemmas and theorems which are useful for our purpose, 2 will
denote here any smooth enough domain regardless of the previous section.

Theorem 3. 1) Suppose that 1/2 < r < 5. The mapping v — 0v 1s a bounded operator from K5.(Q) wnto the
space K57 7Y%(090), where j 15 an wnteger with 0 < 3 < v —1/2. The mapping v — 8Fv(.,0) 1s also a bounded
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operator from K3(Q) o H~2+-1(q), 0 < k < "1,

1) Suppose that 1/2 <r <5, r#1,r# 3 and r — 1/2 1s not an wnteger. Let

wr= ] k&7eoyx [ HO*F@),

and let W§ the subspace of W™ consisting of (a,,wx) so that (whenr > 3/2)
OFa,(x,0) = Dwk(z), €N for 3+2k<r—3/2.

Then the traces of 1) sum up to a bounded operator from KT.(S2) onto W{; this operator has a bounded wnverse.
For the proof of this theorem we refer to Chapter 4 of [14].

Lemma 1. Let X be a Hilbert space.

1) For s > 0, there exists a bounded extension operator from H(0,T;X) mto H*(0,00; X).

1) For0 < s < 7/2, s—1/2 not an integer, there exists an extension operator from the subspace {v € H*(0,T;X)/
OFv(0) = 0 pour 0 < k < s —1/2} wmto H*(0.00; X) with a norm bounded independently of T.

Proof. For the first part, we refer to the Theorem 2.2 page 17 of [14]. For 1), if s is an integer and v belongs
to the subspace of H%(0,T; X) introduced in the lemma, we extend v by 0 for ¢ < 0 and for ¢t > 0 we set:

v(t +T) = 100(T — 2t) — 150(T — 3t) + 6v(T — 4t). (14)

The extension operator we built has the desired properties. In the case where s is not an integer the results
follows by interpolation. O

Remark 3. A more general lemma can be stated that deals with the cases s > 7/2. Different linear combi-
naisons than (14) which match more derivatives have then to be considered.

Lemma 2. Let 0 < r <6.
1) The wdentity s a bounded operator from KZ.(Q) wnto HP(0,T; H™=?P(Q)) for p < r/2.

w) If v 15 not an odd wnteger, the restriction of this operator to the subspace with OFv(0) =0 for 0 < k <
18 bounded wndependently of T'.

r—1

Proof. The first part 1) can be easily derived by extending the functions to R (with a norm maybe depending on
T') and by using the Fourier transform with respect to time. For 21) we apply the previous lemma with s = r/2.

a

Lemma 3. Let Ty > 0 be arbitrary and choose T such that 0 < T < Ty. For any v € L?(0,T;X) we define
Ve HY(0,T; X) by

Vi) = /0 t v(7)dr.

1) For 0 < s < 1/2, and 0 < e < 1 the operator v — V 1s a bounded operator from H*(0,T;X) wnto
Hst17¢(0,T; X) and satisfies

||V||HS+1—E(O,’I‘,X) < CoT* ”'UHHS(O,T,X)’ (15)

for a constant Cy independent of T < Tp.
u) For 1/2 < s <1 the estumate (15) 1s still satusfied, of furthermore v(0) = 0.
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Proof. The Cauchy-Schwartz inequality easily leads to ||V (¢ < Y2 ||yl then to ||V ;2 <
X L2(0,T,X) L2(0,T,X)

T vl 20,7, xy and then [[Vllgi o1 x) < (T + 1) [vllz20,7,x) < Cllvllz2¢0,7,x)- Hence, recalling the convexity
property of Sobolev norms:

IVilgi-co.r,x) < “V”}J—le(o,T,X) IVIz20.7,) »

we have

“V“H1=5(0,T,X) <CT* ||U||L2(0,T,X) : (16)
¢
Moreover, if v € H!(0,T’; X) with v(0) = 0 then v(¢) = / Owv(T)dr, and thus we check
0
lvll20.7,x) € T 1100l 1207, »

VIl o,1,%) < Tl o7, »

IVllgz01.x) < Cllvllenor,x) -

Therefore by convexity

IVIr2-c 0.0, x) < CTC 10l o, xy - (17)
We can now interpolate between the two estimates (16), (17), and we obtain the desired conclusion. [

Lemma 4. 1) Let r > d/2 andr > s 2 0. Ifv € H"(Q) and w € H*(Q) then vw € H*(Q) with |Jvw| . o) <
Clvll gr gy 1wl s g)-

w) Ifv € H™(Q) with r > d/2 and 1f w belongs to the dual space of H'(SY) then vw 18 defined wn (H'(Q)) and
lvwll gy < Cllvll gy 1wl )y -

w) If v,w € H'(Q) then vw € L*(Q) and |vw| 12y < C vl g1 (o) 1wl 2 (q)-

w) If v e H'Y(Q) and w € L*(Q) then vw € (HY(Q))" with [[vwll g1 qyy < C vl g (qy 1wl 2 (oy-

Proof. For the first part 1), the case where s = r is standard and relies on the fact that H"(2) is an algebra for
7 > d/2. The case s = 0 comes from the Sobolev continuous embedding of H"(2) into L>(2). The other cases
follow from hilbertian interpolation, by considering the multiplication by w as a continuous linear operator. For
1), it suffices to use Sobolev inequality (see [1,5]). For the second point, we consider the multiplication on
(H'(2))" by an element of H"() as the adjoint of the multiplication on H'(£2) and we use the first assertion.
Similarly, 1v) follows from 21). O

Lemma 5. Let XY, Z be three Hilbert spaces and m : X xY +— Z be a bounded, bilinear application.

o) If ve H*(0,T; X) and w € H*(0,T;Y) where s > 1/2 then m(v,w) € H*(0,T; Z) and ||m(v, w)|| gs 01,2y <
C vl grs 0,2, x) 1@l grs 0,7, v)-

w) If s < 7/2 and v,w satisfy also the additronal conditions OFv(0) = OFw(0) =0,0< k <s—1/2, and s —1/2
18 not an wnteger, then the constant C 1s independent of T > 0.

Proof. For 1), we use the fact that, in one dimension, H® with s > 1/2 is an algebra. For 1), we use Lemma 1.
O
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2.2. The linearised problem

For the sake of simplicity, we will consider only one rigid body B, but the analysis is the same with a finite
number of moving rigid bodies. The linearised problem associated to (12) is:

Ov —vAv+Vg=1f in Q(0),

divv=p in ©Q(0),

V= on 0B, (18)
v=_0 on Fo,

v(0) =ug in 9(0),

where f, p, vy and ug are data which satisfy the following compatibility conditions:
/ p= / vpn, ug=0 on Iy, divug=p(t=0) in Q(0), uglan = vp(t =0). (19)
Q(0) o8B

2.2.1. The homogeneous linearised problem

In a first step we study the homogeneous linearised problem (existence and regularity of solutions).

Ov—-—vAv+Vg=f in £(0),

divv =0 in Q(0),
v=0 on 0BUTY, (20)
v(0) =0 in Q(0).

We call II the L?(€(0))-projection on H defined by

H % {w e L*(©(0))/divw = 0 in ©(0), w.n =0 on 92(0)}.
A standard result makes precise the orthogonal H+ of H in L?(2(0)):
H* = {Vp, pe H'(9(0))}.
Moreover, we have
Lemma 6. 2) I 1s a bounded operator on H*(£2(0)).
1) II 15 also bounded on K3.(S2(0)), with a norm bounded independent of T'.

Proof. 1) Suppose that s > 1. Let v € H*(2(0)). By definition of II and from the characterisation of H*
(I — I)v = Vy, where x is defined by

(Vx, V) = (v, V), Yo € H'(Q(0)).

Therefore, x is a weak solution of
Ax =V.v in £(0),
Ox

g = Ym on 09(0).

Taking into account the regularity properties of the Laplace equation with Neumann boundary conditions, and
since by assumption 9Q(0) is smooth, we derive that x € H**1(£2(0)) and we have the following estimate

X grs+2 (200y) < C IVl g2 20y -

Thus I — II, and consequently IT are bounded operators on H*((0)) for s > 1. By definition 4) is satisfied for
s = 0. The other cases follow by interpolation.
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12) Let s be an even integer, the properties come from the first assertion because the projection II commutes
with the time derivative. The other cases follow by interpolation. O
We state now the proposition in the homogeneous case.

Proposition 1. Suppose that f € K7.(Q(0)) with 0 < r < 2, r # 1 and suppose that TIf(0) = 0 +f r > 1, then
there emits a unique solution (v,p) of the problem (20) with v € K52(9(0)), Vp € KL.(9(0)) and / p=0.
Furthermore, o

IVl kz+200)) + IVPI &z 200)) < C Il 470y »
where C denotes a constant independent of T' < Tp.

Proof. The proof is separated in several steps. We prove the proposition first for » = 0, then for r = 2.
When f € L?(0,T; L?(©(0))) (this corresponds to the case r = 0), it is shown in [10], or [19] Chapter III,
p. 267, that there exists a unique solution (v,p) of (20) with v € L2(0,T; H2(£2(0))) N H*(0,T; L%(Q(0))),

p € L*(0,T; H*(£2(0))) and / p = 0. Moreover, we have
Q(0)

“VHL2(0,T,H2(Q(0)))0H1(0,T,L2(Q(o))) + ||P||L2(0,T,H1(Q(o))) <C ||f||L2(o,T,L2(Q(o))) )

where C is a constant independent of the time T' < Tg.
In the case 7 = 2, we consider f € L%(0,T; H%(Q(0))) N H*(0,T; L*(Q(0))) = K2(22(0)) with the additional
assumption IIf(0) = 0.
First we suppose that £(0) = 0.
Let (z,g) be the solution of

Oz—vAz+Vg=0,f in Q0),

divz =0 in §2(0),
z=0 on 9BUTY, 21
2(0) = 0 in ©(0).

We remark that 8;f € L2(0,T; L2(Q(0))), and so we obtain a solution (z, ¢) belonging to K2(2(0))x L2(0,T'; H'(£2(0))).
We set
¢ ¢
v = / z, p= / q.
0 0

Ov—-vAv+Vp=f in Q0),
divv=0 in Q(0),
v=20 on OBU Fo,
v(0) =0 in Q(0).

Then, (v,p) is a solution of

(22)

If we choose the average of ¢ equal to zero then / p=0.
Q(0)
This solution verifies

dv =z € KZ(2(0)), 9w = q € L*(0,T; H(2(0))),

and, thanks to the previous step

||3tV||Kg,(Q(0)) + “atp“L2(0,T,H1(Q(O))) <C ”atf“m(o,T,Lz(Q(o))) .
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Moreover, we get

divv =0 in ©(0),

v=0 on 09(0).
Using the regularities properties of the steady state Stokes equations with ©(0) smooth (see [10] Th. I. 5.4,
p. 88), we deduce that v € L2(0,T; H*((0))), p € L*(0,T; H3(Q(0))) and

{ —VAvV + Vp = f — 9v € L%(0,T; H*(2(0))),

HVHLz(o,T,m(Q(o))) + “p“L2(0,T,H3(Q(O))) <C [|i3tVHL2(o,T,H2(n(o))) + ||f”L2(o,T,H2(Q(0)))] <C ||f||K§(Q(o)) :
Then we have (v, p) solution of (20) with £(0) = 0, and such that
v e K7(2(0)), Vpe KZ((0)),

with the estimate

vl k. a0y + 1VPI k2 200)) < C Ifll k2. (00) >
where C denotes a constant independent of T'.
When 0 < » < 2 and 7 # 1, we obtain the desired result by interpolating the spaces L2(0,T; L?(©2(0)))
and {f € K2(9(0))/f(0) = 0}. The interpolation between these two spaces faces no difficulty because we can

extend in time the functions belonging to {f € K2(Q(0))/f(0) = 0} to R so that the norm of the extension is
independent of T'.

The next step is to consider a given force that satisfies I[If(0) = 0. We have f = IIf + (I — II)f. For IIf we
apply the previous result. Then, there exists a couple (V, ) which is solution of (20) with IIf as a data, such
that v € K7t2(Q(0)) and V§ € K7(2(0)) and which satisfies

IVl kzt2 oy + VBl Kz 200y < C N ke 00y -

The second part 12) of the Lemma 6 yields

||‘~’”K;+2(Q(o)) + “vﬁ“K,}(Q(O)) <C ”f"K;(Q(o)) )

with a constant C independent of the time T". On the other hand, as we already seen, (I — II)f = Vx But
I — 11 is a bounded operator whose norm is independent of 7" and consequently ||Vx|| K@) < ClIf|l K2.(Q(0))

(C independent of T'). Setting (v,p) = (V,D + X), we obtain a solution of (20) associated to f which satisfies
the desired estimates. This ends the proof. O
2.2.2. Inhomogeneous linearised problem

We now extend the results of the last section to a more general problem: the inhomogeneous case. But, first
of all, we start by making a remark, which will enable us to specify the spaces in which we will choose the data
of the problem. If ¢ € Knt2(Q(0)) with ¢|r, = 0 and ¥|s = z € H"/2T1(0,T; H'(0B)) with | > r + 3/2, then
div ¢ € K5(9(0)), where K7.(Q(0)) is defined by

K5(2(0)) € L0, T; H™(Q(0))) 0 H*7/2(0,T; (H(9(0)))").

Indeed, suppose first that r is an even integer, r > 0, and z = 0. If ¢ is a smooth function, let us choose 9 in
H*(0,T; H+2(Q(0))), where ¥|r,uas = 0. Then,

Vo € H'(Q(0)), Vg < 1+7/2 (8] (divy),¢) = —(0]%,V9),
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where (.,.) denotes the L?(€2(0))-inner product. Thus for each ¢

oz divp o) < |l

(HX(Q0)) —

L2(0(0))

Integrating in time, we get

Idiveh | grsrr2 0,1, (11 200)y) < 1P k2 020y -
This inequality extends to arbitrary functions in K7.7%(£2(0)) which satisfy 9|r,uas = 0. It is obvious that for
such functions divyy € L2(0,T; H™**(Q(0))), and, in summary, the operators

div (%€ K5Q(0) blras = 0} — L(0,T; H(Q(0))
and
div : {zp € K§1+2(Q(0))/¢|P0U83 = 0} — HY/2(0,T; (H*(£2(0)))")

are linear and continuous. For r not an integer this statement holds by interpolation. Then ¥ € K7."?(Q(0))
with ¥|rouas = 0 implies divyy € K7(2(0)). We have similarly that div ¢ € K5(Q(0)) if ¢ € K72(Q(0)) with
Y|r, = 0 and ¥|op = z € H/2+1(0,T; HY(0B)). Indeed, we consider a lifting z € H"/2+1(0, T; H*1/2(Q(0))) of
z. Then div Z € H™/?271(0,T; H'-1/2(Q(0))), since | > r + 3/2, and thanks to the last argument div (1) — %) €
K%.(9(0)). Therefore, div ¢ € K7(Q(0)) and we have the following estimate

[divibll grsrs2 0,1, (2 0)yy S CUNkr+2 00y + 12 /241 (0,7, 112 08)))-

Proposition 2. Suppose that 1 < r < 3/2. Let f € K5(Q(0)), uo € H™t1(Q(0)), p € K5(2(0)) and vy €
H™/241(0,T; HY(0B)), with 1 > r + 3/2. We suppose that the compatibility conditrons (19) are satisfied, then

there exsts a unique solution of (18) such that v € K5.72(Q(0)), Vp € K5.((0)), / p=0 and
Q(0)

”V||K;+2(Q(0)) + |iVPHK;,(Q(o)) <C(T) [”f”K,;:(Q(O)) + ||P|if<;(g(o)) + ||Vb“Hr/2+1(o,T,Hz(aB)) )
If, moreover, we make the follounng additional assumption
f(O) = 0, p(O) = 6tp(0) = 0, Vp = 0, Ug = 0, (23)

then the constant C(T') can be chosen independent of T. Furthermore, (v,p) verifies the following conditions,
at the timet = 0:

v(0) = ;v(0) =0, p(0)=0.
Proof of the Proposition 2. We shall prove this proposition by reducing into two steps the problem to the case

previously treated, that is to say the homogeneous case. We are going to build continuous lifting of v, up and
.
o Lifting of v and ug.

Thanks to the assertion 12) of Theorem 3, since 7 < 3/2 and taking into account (19), there exists a function
¢o € K7t2(£(0)) such that

dolos = Vb, ¢olr, =0, ¢o(0) =g, 0:¢0(0) = vAug + £(0),

and

”‘750“1(,;”(9(0)) <C [”Vb”K;H/?-(aB) + ||u0|]Hr+1(Q(o)) + ”f”K,;(Q(O)):| > (24)
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with a constant C' which may depend on T. Then (vy = v — ¢, p) satisfies

def

Ovi — VAV + Vp =1 — Oipo + vAPpy = fy in Q(0),

divvy = p — divgo % og in (0), (25)
v; =0 on OBUTY,

v1(0) =0 in (0),

with, thanks to the choice of ¢ and (19)
£5(0) = 0, 50(0) = 0.

Moreover, recalling the remark we made before the proposition 2, div ¢g and then oo belong to K}(Q(O))
o Lifting of the divergence.
The next step is to adjust the divergence. We want a function ¢; which satisfies:

¢1 € K372(2(0)), ¢1(0) =0, divgy = o9 and ¢1|an() = 0.
Lemma 1 implies that there exists an extension & of og such that
o € L*(R; H™H(Q(0))) N HY/2(R; (HH(Q(0)))"),

and

191l L2z, 5m+2 (o)) nE+ /2 . (B (o)) S C 00l L2 (0,7, 41 ((0)) B ++/2 0,1, (2 (2(0))y) »

with a constant C which may depend on T'. Since the average of og 1s equal to zero, we can choose the average
of & equal zero (extension by reflexion). Denoting by & the Fourier transform of &, we remark that

G e L (R H™(Q0) and |7]"*7/%5 € L*(R; (H'(2(0)))"),

and the average of & is equal to zero. For each 7 in R, we define § by

9@ = 0 on 'y UOB.

{—Z_\O(T) = o(r) inQ(0)
On

We search the function 6 so that / 6 = 0. For almost all 7, (1) € H™"3(Q(0)) and WO s oy <

Q(0)
C “3(7’)“ Hr1(0(0)) with C independent of 7. Furthermore, from the variational equivalent formulation we
deduce

10| £ a0y < C TN a2 a0y -
Hence 0 € L*(R; H™73(Q(0))) and |7|**7/2V0 € L?(R; L?(£2(0))). We set ¥, = VF~1(6), where F~' denotes
the inverse Fourier transform. Then, the function ; belongs to K7:"(©2(0)) and satisfies

¥1(0) =0, divyyy = 0o, Y1.n|ryues =0, Y =0.

The last equality comes from the fact that v; is a gradient. We have just built a function in K7.?(Q(0)) whose
divergence is equal to og and so that its normal component on the boundary I'o U 9B is zero. We shall add to 11
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a function 2 that will not modify the divergence but such as 1) + 1 satisfies the desired boundary conditions.
We choose 12 = curlw with w such that:

onToUdB: w=0, 2% — 4 An
on

(26)
att=10: w(0)=0w(0)=0.
The compatibility conditions between the traces to ensure the existence of w in K7-72(£2(0)) are satisfied, because
r < 3/2 and 00(0) = 0. We set ¢ = 11 + 92 = VF1(8) + curlw. The choice of w implies that the function
¢1 € K7t2(Q(0)) and
¢1(0) = 0, diV¢1 = 0y, ¢1 =0on BQ(O)
The pair (ve = v — ¢1,p) then satisfies:

Byva — vAVy + Vp = £y — i1 + vAS L £ in Q(0),
divvg =0 in Q(0), 97
vy =0 on 0BUTYy, @7)
v2(0) =0 in Q(0).

Therefore, we are back to the homogeneous case with a right hand side f; such that IIf; (0) = 0. Indeed,
f0(0) = 0, ¥1(0) = ¥2(0) = 8¢1p2(0) = 0 and Iy, = 0. Then there exists a unique solution (vz,p) of (27) such

o v € KP((0), Vp € KHQO), [ P 0

Ivall g2y + IVPILkp 00y < C Ifillxg (o -

But
Idollirr2y < C [Ivollgrrsrzomy + W0l ares oy + Hf”K;(Q(O))] ,
“‘751”1{;“(9(0)) < C ||P||1'<;.(Q(o)) + ||¢0||K;+2(Q(o)) + ||Vb||Hr/2+1(o,T,Hl(aB)) )

with a constant C' which may depend on 7. Consequently, there exists a unique solution (v,p) of (18) such
that v € K772(Q(0)), Vp € KL.(Q(0)), / p=0and
Q(0)

”v”K,;,"'Z(Q(O)) + ||VP||K;(Q(0)) < C [“fHK;(Q(o)) + ||P||f<;(n(0))

+Ivoll grr2+10,7, 5188)) + ||u0||Hr+1(n(o))] :

If the condition (23) is satisfied then the constant C can be chosen independent of the time T because at the sec-
ond step the extension of divergence can be done with a bound which is independent of T since p(0) = 8;p(0) = 0.

Proof of the last statement of Proposition 2. We suppose that (23) is satisfied. By definition of v we have
v(0) = 0. Now, we have to prove that 9,v(0) = 0 and p(0) = 0. We have

div 8;v(0) = 0, (28)
8,v(0) + Vp(0) = 0, (29)
vlrouas = 0. (30)

We recall that IT denotes the L2(2(0))-projection operator on H. We have (I — II)v = Vy, where x is defined
by
(VX, Vo) = ~(p ¢), Vo € H'(Q(0)).
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Indeed,
(I -1)v), V) = (v,V¢), Vo€ H'((0)).
The relation (28) implies that VO,x(0) = 0 and then that 9;v(0) = II(d;v(0)). But IIVp(0) = 0 (Vp(0) €
L?(©(0))), therefore projecting the equation (29) on divergence free vector, we obtain I1(d;v(0)) = 0, that
implies that 9;v(0) = 0. Then the pressure at the time ¢ = 0 is constant but since p(0) = 0, this constant
Q(0)
is zero. This ends the proof of the Proposition 2. O

Remark 4. We can rewrite the conclusion of Proposition 2 in terms of operators. If we denote by L the linear
operator

(W, q) € Xf7[“ = (8tW ~vAw + anV~W)wlaBaw(0)) € Y‘17“‘7
with

Xr = {(w,q),w € K712(9(0)), Vg € K:?(Q(O)),/ q=0, wlag € H"/**(0,T; H'(8B)), w]r, = 0},
Q(0)

and
in = {(£,p, vy, wo), £ € KR(Q(0)), p € KI(Q0)), vy € H™/2710,T; HY(OB)), uo € HT“(Q(O))} ,
then L has a bounded inverse for any 1 < r < 3/2. Moreover, if we set
Xro={(w,q) € X7 / w(0) =8:w(0) =0, wlas =0, ¢(0) = 0},

and
Y70 ={(f,0,0,0) € Y7 / £(0) =0, p(0) = 8:p(0) = 0},
then L : X7, — Y71, has a bounded inverse with a norm independent of T'.

2.3. Estimates of the nonlinear terms. Proof of Theorem 2

In what follows, we choose an arbritary time Tp. We suppose that v, € H™/2t1(0, Tp; H'(0B)) and that the
condition (13) is satisfied. Let (v, p) be a solution of (12) then (v, p) verifies:

Ov — VAV +Vp=Ffox, —vAV+v(V,)?v+ (V- V,)p in 0(0)

divv = (V= V,).v in £2(0)

v=0 on I'y (31)
vV=v on OB

V(O) = Wy in Q(O)

In a first step, we shall build (vg, po) such that, if we set

(V,ﬁ) = (V_’VO:p"'pO)’ (32)

then we have
v(0) = 8;v(0) =0, p(0)=0. (33)

In order to define (vo,pg) let us analyse some necessary conditions to (33). Assuming a solution (v,p) is
known, we differentiate with respect to time the equation V,.v = 0 and set ¢ = 0. We recall that V,.v =

t
(cof (I+/ Vv).V).v. We have
0

V.8,v(0) = (Vug)T.V)up ¥ o4,
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because v(0) = ug. Therefore, if (vg,po) exists it has to satisfy V.9;vo(0) = o1. Since Vug € H"(2(0)),
with 7 > 1 we have o; € H""1(Q(0)). By Theorem 3, there exists oy € K§:2(Q(O)) such that 0o(0) = 0 and
8:00(0) = o1. We consider now z € H"/2+1(0, To; H'(OB)) such that

z(0) = wv(0),

zn = fQ(o)UO'
oB

(34)

For instance, we can choose z = ug|og + (t)w where w denotes a smooth function which does not depend on

the time variable ¢ and so that wn =1 and a(t) = 0p. Taking into account the regularities of oy,
o8B £2(0)

a belongs to H™/2+1(0,Tp). Then z satisfies (34) and belongs to H™/?71(0, Tp; H(8B)), because we made the

assumption that ug|sp is in H'. We are now in a position of defining (V¢,po) € X7, solution of (Prop. 2 gives

the existence of such a solution):

6t—\70 - I/AVD + Vpo = f(O) in Q(O)

div Vo = 0p in Q(O)

VO =0 on P() (35)
Vo=12 on 0B

Vo(0) = ug in ©(0).

We associate a new velocity v, in K7+%(€(0)) such that
¥o(0) = 8:vo(0) = 0, ¥olos = v —2, ug|r, = 0.
We finally set (v, po) = (Vo + ¥g,20)- Then (¥,7) define in (32) is solution of

9V — VAV + VP =10 Xo1v, — £(0) + a1(vo + v, po + P) — Orvp + VAV, in €(0),

divv = ag(vp + V) — div vg in ©(0), (36)

v=0 on I'p U 8B,

¥(0) =0 in ©(0),
with

a1(w,q) = —vAW + v(Vyw)’w + (V = Vy)g,
and
az(w) = (V ~ Vy).w.
We can also write that (¥, p) is solution of
L({’7ﬁ) = (f O Xv+vo — f(O) + al({’ + VOaﬁ + PO), O[3(V0 + {')7 07 0) + (_8t!0 + VAXOa Po, Oa O)a

where az(w) = az(w) — (V — Vy,).vo. We set pog = —Vy,.vp. We want to use the results we obtain for the

linear problem in order to obtain the solvability of the modified nonlinear fluid problem (36) for a given velocity
on the disc. To do so we will use a fixed point theorem. We introduce the mapping

(Vlapl) € X;",O — (VZ’p2) S X’},O?
where (va,p2) is defined by

(V27p2) - L_l(f O Xvi+vy — f(O) + Oé}(Vl + Vo,P1 + pO)r a3(vl + VO), 0’ 0)
+L_l(_at20 + VAXO) Po, 07 0)
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We check that this mapping satisfies the contraction mapping principle, for a small enough time. We shall
show that the terms on the right hand side (that is to say the nonlinear terms) are defined, that we can control
their norms with respect to the time, and that each is lipschitz with a small lipschitz constant. We state now
properties on the functions a1, ag... We take two couples (vj,po) in X7, with the velocities defined as above:

vl = Vo + v§ on the time interval (0,7p). These two velocities are associated with two different velocities on
the boundary : v}, vi. The functions v} satisfy the following assumptions

VZ')(O) = o,
(H) volos = Vi,
vl € K;jz(ﬂ(o)).

Lemma 7. Forall (w,q) € X7, 1 <7 < 3/2, we have a;(w, q) € KL((0)). Moreover, for a gwen real number
R > 0 there emsts constants C1,Cs and n depending only on R,r and ||(v,po)|| . such that
To

VT < To,¥(vi,p) € Xfp,0= 1,2 with ||(ve,p)ll; < R,
we have

||061 Vz + Vo’Pz +p0)“Kr n(Q(0)) = <GiT (37)

[[ea (V1 + vo,p1 + po) — 1 (va + V5, P2 + Po) || 7 oy < Co2T7 ||(v2 + Vo, p1) = (V2 + Vop2)|l - (39)
Proof. Using the Einstein convention for summation, we can make explicit o in 2D as follows

t t
ar(w,q) = o, ((eof(V [ 8+ (of(V [ whlow

¢ t
+v0) (cof(V/ w)k,&w> — cof(V/ w)Vq,
0 0

where dg, denotes the Kronecker symbol. In 3D the complete explicit form is more tedious to write down but
we can notice that (as in 2D) it takes the form

(w,q) = 28 (V/O w).V)w] +Q(V/O w).Vgq

where P(V f; and Q(V fot w) are two matrices and each of their component is a polynomial function with
respect to the components of V / w of degree less than 3 and of variance 1. The K7 norm is composed
of two parts the L2(0,T; H"(Q)) and the H"/2(0,T; L?(?)). Let us first study the L2(0,T; H™()) part. If
(w,q) € X%, then Vw € K7t1(Q(0)) and then / Vw € HY(0,T; H™(Q(0))) N H™/2+3/2(0, T; L2((0))).

In particular, / Vw € L0, T; H™(Q(0))). Since Vw € L2(0,T; H™1(Q(0))), Vq € L2(0,T; H(Q(0)))
and r > 1, Lemma 4 leads to a;(w,q) € L2(0,T; H"(€(0))). In another hand, we have by interpolation

/ Vw € HPYH0,T; H'?P(Q(0))) for 0 < p < (r + 1)/2 (see Lem. 2). Therefore, for p = r/4 we have
0
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4

/ Vw € H™/*+(0,T, H/?*1(Q(0))). But Vw € H"/2(0,T; H*(Q(0))) and Vq € H"™/2(0,T; L3(Q(0))), then,

0

since r > 1 and 1+ /4 > /2 we have a;(w,q) € H™/2(0,T; L?(Q(0))).

Now we shall estimate oy (v +vg,p+ po) for (v,p) € X710, 1 <7 <3/2. We do not precise here the exponent .
Thanks to the Cauchy Schwartz inequality, we get

t
Vvo < T/? Vol r+2 R
/o Loo(0,T, H™+1(£2(0))) Kig (0D

Then, recalling the expression of a;, there exists some constants n > 0 and C; which depends on R,r and
”(VO,IJO)HX; such that

and

t
Vv < TY2||v|| grea :
/o Lo (0,T,H™+1(02(0))) Kz (0D

V(v,p) € X170, (v, P)llxg < R, [loa(v + vo,p + po)ll 20,7, 5 (20yyy < C1T7- (39)
We study now the second contribution H"/2(0,T; L?(£(0))) of the K7 norm.
||VV0||Hr/2(o,T,H1(Q(o))) < C(To) HVOHK;,;'Z(Q(O)) )

and applying Lemma 2 1),
“VVHHT/Z(O,T,Hl(Q(o))) <C “V”K;ﬂ(n(o)) )

where C denotes a constant independent of T because the velocity v satisfies v(0) = 0. Furthermore, for T < Tp,
using Lemma 2 and Lemma 3 with s = p, we obtain fore <p <1/2 and p < (r +1)/2,

t
’/VVO
0

We have the same estimate for v with a norm ||v|| KI+2((0)) In the right hand side of the inequality and with a
constant C that does not depend on T because v verifies v(0) = 9;v(0) = 0. We choose p = r/4 and € = r/8.

< CT® || vol| gr+2 .
Hp+1-2 (0,7, Hr+1-2p (Q(0))) Kz~ (8(0))

Then
t
/ Vvo < CT™/®||voll kr+2 oy » (40)
0 H1+7/8(0,T,H+7/2(Q(0))) ?
and
t
/ Vv <CcT/® IVl &7+2 (o)) - (41)
0 H+r/8(0,T,H1+7/2(Q(0)))

Using Lemma 5 12) we obtain estimates of the terms where Vv does not appear. For instance, the terms
t t

(/ Vv0> 9,v or (/ VV> 9,v are bounded in H™/2(0,T; H'(£2(0))) by CT™/®. For the products in
0 k2 0 k2

which Vv, appears, we cannot apply directly Lemma 5 12) since vo(0) = up # 0. Nevertheless, we can write

t
vp = (vo —up) + up Then we use Lemma 5 22) for the terms ( / Vv) 0,(vo —up) and remark that, for the
0 k2
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remaining terms, ug is a data and does not depend on time. Then there exists a strictly positive constant, we
will denote by 1 and strictly positive constant Cy which can be chosen independent of T such that

llea (v +vo, p+ po)ll g2 0,7, L2(020))) S C2T7- (42)

The estimates (39) and (42) lead to the estimate (37). We also check, using the same type of arguments that
o is lipschitz (estimate (38)) . a
We now state the same type of lemma for as.

Lemma 8. For all w € K572(Q(0)), with w|r, = 0, wlas € H™/>T1(0,T; H'(dB)), 1 < v < 3/2, we have
aa(w)(resp.az) € K5(Q(0)). Moreover, for a gwen R > 0, for vi satisfying the hypothesis (H) there exists
C1,Cs and n depending only on R, 7, and || v such that VT < Ty, V(v,,p,) €

¥l g cacon
X;,O’Z =1,2 wnth “(V’Lapl)”)(; < R, we have

HT/2+1(0,To, H' (3B))

[|oa(ve + vé)“f(;(ﬂ(O)) < G T, (43)

Hag(vl +v3) — as(va + V%)”K;(Q(o)) < CyTM [H(Vl +v§) — (va + V%)HK;”(Q(O))

(44)
v = 2]

H™/2+1(0,T,H!(88)) | *

t
Proof. We first note that a2 (w) is a sum of terms that can be written (Pz_; ( / Vw) .V).w, where Py_1 ( fot Vw)
0

¢
is a matrix whose component are polynomial functions with respect to the components of / Vw of degree
0
d — 1 and variance 1. We recall the definition of K7.(€2(0)):
K3(2(0) = L*(0, T3 H™(22(0))) 0 H™/>*1(0, T (H*(2(0))))-
As in Lemma 7 we have ax(w) € L2(0,T; H"*1(Q(0))). The earler estimates for oy in L2(0,T; H™1(€(0)))
apply here for ay (resp. a3). We only need to be concern with the estimates in H™/2+1(0,T; (H(£(0)))").
t
First if w € KI72(2(0)) then ( / VW), Sw € HT/2H(0, T3 (H(Q(0)))).
0
t
Indeed we have Vw € H(0,7; L2(©2(0))) and / Vw € HY(0,T; H(9(0))).
0
Then,
az(w) € H'(0,T; L*(2(0))) < H' (0, T; (H'(2(0))))-

It remains to prove that dyas(w) € H™/2(0,T; (H*((0)))). It is straightforward to note that it can be written
as the sum of terms of the following four types

° (/0 VW), (0: VW),
[ ] (VW)W(VW)M,

. (/Ot VW)zy(/ot VW) imn (0s VW)t

. /0 VW) (VW) (V).
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Let us start with the two first one. By the discussion preceding Proposition 2, we have 8, Vw € H™/2(0, T; (H*(2(0)))").
t
We know that / Vw e H*/40,T; H7/2(9(0))) and recall that H*7/2(€2(0)) is a multiplier of H(£(0))
0
and H'*7/4(0,T) is a multiplier of H/2(0,T"). Then Lemma 5 implies that

</0t VW), (0T w) € H™/2(0, T3 (H((0)))').

We study now the second term (Vw),,(Vw)r. We have Vw € H7/2(0,T; H*(£(0))). The multiplication of a
function in H!(2(0)) by a function in H*(£2(0)) belongs to (H*(Q(0)))’. Together with the fact that H"/2(0, T
is an algebra we obtain from Lemma 5

(VW) (VW)e € H2(0,T; (H* ((0)))").
And then we get 8 (as(w)) € H™2(0,T; (H*(£(0)))") (resp. for as).
Next we estimate ag in H*+7/2(0, T; (H((0)))").
As previously ag(v + vo,p + po) can be written as a sum of six generic terms and the basic ones are

( / V) (V¥)is ( / V) (Fvo)is ( /0 Tv0)ey (VV)i.

ot
We consider the term (/ V) (VVo) ki
0
We have
IVYollg 0,7, 220000 < C IV Vol kg2 oy »

recalling (41) we derive

<CT/8, (45)
H'(0,T,L2(22(0)))

([ 7907

and then
lea(v + vo)ll 2 0,7, 200y < CT™/, (46)

since the other terms can be handled in the same way (each constant can be chosen independent of T" since v(0) =

¢
9:v(0) = 0). We estimate now ;a3 in the H™/2(0,T; (H*(£(0)))’) norm and consider Bt((/ Vv)o, (VVvo)ii) as
0
¢
a generic example. We have again two types of term to study: ( / V) (VO:vo) i and (Vv),, (Vvo)re.
0

¢
First we consider ( / V) (Vvo) ki
0

We have that V8,vq is bounded in H"/2(0,T; (H'(2(0)))’) independently of T. The estimate (41), Lemma 4
1), Lemma 5 22) (we write 8;vo = (8;vo — 8:vo(0)) + 8:vo(0) ) lead to:

< T8, (47)
H™/2(0,T,(H*((0)))")

H(/ot V) (VOvo) kit
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where C is independent of 7. We deduce from Lemma 1 that the condition 9;v(0) = 0 provides a bound

t
of Vv in H™/?+1(0,T; (H*(£(0)))’) independent of T, so the same estimates hold for (/ Vv),, (V) and
0

(/t Vv0)ey (VO V)i

0
Finally we study (Vv),, (Vvo)ki-
We know on one hand that Vvg is bounded in H™/2(0,Ty; H*((0))). On the other hand since v(0) = 0, we

t
obtain Vv = / VO;v and estimate (15) with X = L?(©2(0)), s =0, € = 1 — /2 implies:

0

NVl or 2o < CT IV o.rm2@0) < CT 2 IVl ko)) -
Then we get

’l (Vv)zy (vvo)kl |iH"'/2(0,T,(H1(Q(0)))’) < cT'~"/2. (48)

We have the same type of estimates for (Vv),,(Vv)i and (Vvg)y, (VV)i.
Then the estimate (43) is satisfied. The same kind of argument enable us to obtain (44) on az. Indeed, for
instance in 2D we can write:

¢ ¢
as(vl +vi) —as(vi+ve) = cof / V(vg +vi) : V(v§ + v1) — cof / V(v2 +v2): V(vE +v2)
0 0
¢

cof / (V(vg + v1) — V(¥2 + v2)) : V(v§ + 1)
0
+cof f(f V(vi+v2) : V((¥§+v2) —¥§ +v1) .

¢
We remark that we have two type of terms: cof / V®, : V&, with for 2+ = 1 or for 2 = 2: 9; 9,(0) = ¢,(0) = 0.

0
We follow the same ideas as for estimate (43), noticing moreover that

[V ((v8 + v2) — v§ +v1) “Hr/2+1(o,T,(H1(Q(o)))/) < (v +vp) = (ve +X(2))|IK;+2(Q(0))

+|v§ - vg”HT/“‘l(O,T,Hl (8B))

This ends the proof of Lemma 8. O
It remains to study f o xw — £(0). We suppose that £ € C®([0,T] x R?).

Remark 5. Our interest is not to have the minimal regularity on the force f.

Lemma 9. For all v € K5t?(Q(0)), we have f o xv € K5.(Q(0)). Moreover, for R > 0 there emsts C and n
strictly positive constants which only depend on R,r and Hv6||Kr+z(Q(0)) such that VI' < To, V(vy,p.) € X g, =
Ty )

1,2 such that ||(vz,p1)||x; < R, we have

|

£ . —£(0 ){ <CT, 49
oXv1+v0 ( ) |K,'§,(Q(0)) —_ ( )

and

| .
7 1 _ 2\[i
‘K}IZ(Q(O)) S CcT “Vl + Vo (VQ + VO)HK,;:"Z(Q(O)) . (50)

fo Xv1+v(1, —fo ng-{—vg
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Proof. First we prove that f o xy € K7.(Q(0)) for all v € K7.72(£2(0)).
t

Recalling that the regularity of x, is the regularity of / v, we know that xv € HPY(0,T; H"+2-27(Q(0)))
0

+2
with 0 <p < T—2—

r—1
First, we choose p =

, then xy € H3/4+7/4(0,T; H"/2+5/2(Q(0))). And thus using the Sobolev injections
xv € C°([0,T]; C3(Q(0))). Consequently,

foxv € CO0,T]; C*(Q(0))) c L*(0, T; H™((0))),

because r < 3/2.

Then taking p = ;1_—3, we obtain xy € H7/4+7/4(0,T; H™/2t1/2(0(0))). But > 1, then xv € C*([0,T]; C°(Q(0))).
Therefore,

f o xy € CH{([0,T]; C°(Q(0))) € H™/?(0,T; L*(2(0))).
Finally f o x, € K7.(£(0)).

Next we estimate [|f o xvo+v — £(0)l| k7 (o) for all v € K7+2(9(0)) which satisfies v(0) = 9;v(0) = 0 and

v]an() = 0.
We set

g="fo Xvo+v — f(O)
t

We check that g(0) = 0 and deduce that g = / Oig. This yields
0

lgliz2o,7 2000y < T 19:8ll 12(0,7,22(0(0))) »

and then
&l f2-c 0,7, L2¢200))) < T° 18l g2 0,7, 220200y -

We choose 1 — ¢ = r/2, it gives
gl zrr2(0,7,22(02¢0))) < T/ l&ll &1 0,7, L2(02(0))) -
But

2 2 2
I8l e 0,7, 22(20))) = 1811 220,7, L2(02(0))) T 198220, L2(02(0))) -

Under the assumption that f is C°°, we obtain that for any T', T < Ty,

&1l 20,7, L2(020))) < C Il pos -

Furthermore,
atg(tv 5) = (atf) (tv Xv+vo (t’ ﬁ)) + 8tXV+Vo (t’ 5) (Vf) (ta Xv+vg (ta E))’

= (Btf) (t, Xv+vo (t’ 5)) + (V + vO)(ta 5)(Vf)(t, Xv+vo (t$ 5))
We conclude that for all T' < T}

19e&ll 20,7, L2(a(0y)) < C>
with a constant C' depending on f, R and vq. In summary, we have

I © Xvvo = EO) 10,7, 2200y < CT /2. (51)
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Next we study ||gll 20,7, - (0(0y))- We have already estimated g in L?(0, T; L*(2(0))). In order to simplify the
presentation we denote by 0, all the first order derivatives with respect the spatial variables.

05(f © Xvive) = 02£(0) = (0zf) 0 XvivoOzXvive — Os f(O
(82£) © Xosvo — Bu£(0) + ( / 0s(v + vo ) (02F) © X sve-

Il

We notice that (0:f) 0 Xviv,(0) = 3:£(0), we have

102 £) © Xvtvo = 0oL ()l 20,1, 2(20))) < T 11(0aE) © Xvvo = Fuf(O)ll 1 0,7, L2020y -

And thus the same study we did previously but with d.f instead of f leads to

1(02£) © Xvtvo — 8$f(0)“L2(0,T,L2(Q(0))) < CT,

where C' denotes a constant depending only on f, R and vo. We have in a same way,
t

|([ 0w +v0)) @2 0 i
0

Using Lemma 2, we get

IN

¢
C “ [ O (v + vo)
L2(0,7,L2(2(0))) /0 L2(0,T,L2(Q(0)))

< CT|18x(v + vo)ll 20,7, L2(a(0))

< CT,
L2(0,T,L2((0)))

” (/ (v +¥0)) (3:8) X

with C independent of T'. In summary

102 (£ © Xv+vo) = 0=f(O)ll 20,7, 12(0(0y)) < CT-

We can obtain the same kind of estimates for the second order derivatives. The inequality (49) is satisfied since

r < 3/2. The estimate (50) can be obtain using a Taylor formula applied to f which is by assumption C*°, and

using also Lemma 2 and 3 as we did previously. O
We now consider the mapping S as follows

(wi,q1) € X;",O — (wa, QQ) € X’;‘,Oa

where (W, g2) is defined by

(Wa,q2) = L7 Yfoxwyive — £(0) + a1(W1 + vo,¢1 + po), @3(vo + w1),0,0)
+L7Y(—bsv, + VAV, po, 0,0).

Proposition 3. Let Ry be a real number, Ry > 0. There exsts a titme Ty, 0 < Ty < Ty, such that for all
T <T\ Sy has a unaque fized pownt (U,p) n

Bl = {(W, q) € X’;’,O l ”(W, q) - L—l(_atXO + UAX()) p0’070)”X;~ S Rl}

Indeed, the study of the linear problem (proposition 2) and the estimates of the nonlinear terms give us the
estimate ”(Wg, q2) — L™H(—8yvy + vAvy, po, 0, 0)” < CT". We deduce that for a given constant Ry, there exists
a time 77 (depending on ||u0||HT+I(Q(0))7 Vol grr /241 (0,10, 11 (08, £ @nd Ri) such that, for all T < Ty < Tp, 5
maps Bj into itself and 1s a contraction. This ends the proof of Proposition 3 and the proof of Theorem 2. [
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Remark 6. The time Ty depends continuously on |[Ve| gr/241 (0,7, mr1(a8)) 2nd for all K > 0, for all v, such
that ||vb||HT/2+1(0,TO,HI(3B)) < K, there exists Tx > 0 such that T} > Tk.

To summarize, for a strictly positive given constant R;, an arbitrary time Tp, and a velocity v, given on the
rigid body boundary then the problem (12) has a unique smooth solution (v, p) for small enough time T" < 73.
Indeed, let (v/,p’) be another solution, then (v/ —vq,p’ —po) is a fixed point of Sp; from proposition3 we know
that for T' < T3, the fixed point is unique. Now we study the coupled problem.

3. COUPLED PROBLEM. PROOF OF THEOREM 1

Let (wg, 0 R) € H™/2+1(0,T) x H™/2+2(0, T), be respectively the center of gravity velocity and the rotation
angle of the rigid body. To them we associate the velocity v, defined by

d(exp(9[E ) a2

vp(z) = wg + & 0T,

Vz € B. (52)

To the function v, we associated (v,p) = (V + vo, D + po) where (¥, D) is the unique fixed point of the mapping

S1 with v|sp = v (proposition 3). For the sake of simplicity we denote by @ the vector 6 F. Associated to
—4

the previous (v, p), we define now (W¢, 8 ) solutions of the Newton equations:

md—é‘”vt—c’ - /6 (= v(Ty + (V) )V) cof (V) m
27 — —
% = - / pz%(t)/\(%—g—(t)/\(exp([?/\])m))dx (53)

+ [ (exp([FA)Goz) A [(p — v(Vy + VyT)V).( cof (Vxv).m)] da,
o8B
with the following initial conditions

7y

Wo(0) = wo; 9(0) =05 “-(0) = V.
In order to prove the principal result of this paper, we verify that the mapping S,
—d
(we, 0) = (W, 8),

has itself also a fixed point. To do so, we first check that the mapping S5 is correctly defined, then that, under
some assumptions, it maps Bs into itself, and is a contraction, with By defined by:

By= {(wo, @) e H/*(0,T) x H'/*'%(0,T) /
”WG - WGO”H"/2+1 0.T < Rz, ? - ‘9_)0
0.1

< Rz} .
Hr/2+2(0,T)
In the latter definition R is a given strictly positive constant and (wgo, 70) are solutions of

dvéc)zo /as(pO(O) —v(V+ V) m

2
T [ (S TG + [ G o0~ o7 + T om)
5B oB

Il

(54)
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with the following initial conditions

a0, R

Let (wg, ?) € Bs. First, we extend (wg, 7’) on the time interval (0, Ty), where Ty denotes an arbitrary chosen

time. To do so, we consider wg — wgg. Then, by Lemma 1, there exists an extension ¢ of wg — wgo in
H™/2+1(0,T,) such that

||¢“Hr/2+1(o,To) < Clwe - WGOHHr/2+1(o,T) )

where C is a constant independent of 7. Then ¢ — wgg is an extension of wg. We denote by wg this extension.
We have

HWG”Hr/2+1(o,TO) < “WGOHHT/?H(O,TO) + Cllwe — WGO”H"‘/2+1(0,T) ,
S ”wGOl|H"'/2+1(0,TO) + CR2

Therefore, if ||wg — weo| Hr/241(0,7) < Ry, then there exists an extension of wg to the time interval (0,Tp)
such that,

“WG”HT/2+1(0,TO) < Ry,
with the constant Ry which depends on Ty, Rz, ug and on f, but not on 7. We use the same argument to

extend @ in HT™/?%2(0,Ty). So, if ”7 - ?0‘ R, < R, we obtain an extension of 8 to (0, Ty), also

denoted by ?, such that
||

< Ry
H7/2+2(0,Tp)
To these quantities, we associate v}, defined by (52). Since @ e H 242(0,Ty), the operator exp([?/\]) belongs
to H™/2+2(0, Tp). In order to get this result, we write the exponential function with the help of its serie expansion
and we note that H/2+2(0,Tp) is an algebra. Consequently, v, € H"/2+1(0, Tp; HY(9B)) for any positive real
number . Furthermore, we have a bound for vy :

d(exp([ ' A))
dt

IA

Vol grrr2+1 0,10; 1 (88Y) IWwall grra+ (0,1 + )

H/2+1(0,Tp)

IN

C(Ro).

To the boundary velocity v, we associate thanks to the above sections a velocity and a pressure (v,p) =
(V+v8,5 +po). The velocity and the pressure (¥, 5) is the fixed point of the mapping! S?. The couple (v, ) is
defined over the interval (0,77) with T < To and Ty depends on Ry, To, [[Vs|l gr/2+1 (0,1, 1 a8y 100ll -1 (00
and f. Nevertheless, the time 7} can be the same for all the mappings S°. This results from remark 6, and
from the fact that for (wg, 7) € Bs, the associated velocity v is bounded in H™/2+1(0, Ty; HY(0B)) with a
bound depending only on Rp. V_V)e denote by T3 this time. Taking into account the regularities of v and p, there
exists a unique solution (Wg, 8 ) € H™/2t1(0,T1) x H™/?2%2(0,T1) of (53). Thus the mapping S, is defined.
We shall prove that Sy maps _B)z into itself, for a mass and a moment of inertia sufficiently large. We study
”WG - WGOHHT/2+1(0’T) and ” 5 - 70'

. We first restrict the analysis to the 2D case or the case of
H™/2+2(0,T)

1We add here the exponent b to underline the dependency of S’l’ and vg with respect to vy.
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the sphere since then the following equations are satisfied

md(WG — WGO)
dt¢

—
0 —

_ / (0= A(Vy + Vo T)Vv) cof (Vxe)m — / (0(0) — (V + VT)ug).n
oB oB

d?( 7o)

J

di2 /é}B(exp([?/\])G—'o—-T)) AP = v(Vy + Vi T)V) cof (Vxv)-n] (55)

—/ Cm A [po(()) — u(V + VT)uo.n] .
a8
We write (v,p) = (V+ V8,5 +po) = (V + Vo + v5,5 + po). We first have:
vT S T17 ||‘~1||K;+2(Q(0)) + |IVﬁ”K;(Q(0>) S Rl + C(RZ) U-O;f):
since (V, ) € By, and since the center of By is bounded by C(Rj, uo, f). Secondly, from (35) and Proposition 2,
“vPOHK;O(Q(o)) + ”70”1(;32(9(0)) <C [Hu0||Hr+1(Q(o)) + ||f||K;0 (€2(0)) + ||Z||Hr/2+1(0,To;Hl(aB)) + ”00”1%;,0(9(0))] ’
We recall that o¢ belongs to K}:z(Q(O)) and satisfies the initial conditions: g¢(0) = 0 and d;009(0) =
((Vug)T.V)uo. On an other hand, z = ug|ss + a(t)w = uglos + W / 09, thus
Q(0)
[Vpollxeg, (o) + [Voll gtz (aoy < Cluo, £, wo,%o).
Finally, v§ is an extension of v, — z which satisfies v4(0) = 9;v4(0) = 0. Then
—
||¥8||K'r+z(0(0>) S C(R2, Wo, '(/} ¢} uo)'
To

This allows to conclude that

— d,__
m”wG _WGO||Hr/2+1(0’T) < Cm d—(WG —WGO) ,
¢ Agrr20,m)
< C(RlvRZ)u07faw0a 7/10),
and
= - d? = —
— < = -0
J||7 -7 < OJ‘(W(G 0) :

Hr/2+2(0,T) Ht/2(0,T) (56)

< C(Ry,Ra,uo,f,wo, ¥ 0),

where the two constants are indeed independant of m and J since they depend only on the right hand sides of
(55) that depend only on v, p, ug, po, 8, and not on m and J. Consequently, if the body has a mass and a moment
of inertia large enough, S maps B; into itself. In the general 3D case more nonlinearity rises in the equation of
7, noticing they appear with a lower order of derivation in time, they can be controlled in small time. We thus

—d
have to add in the right hand side of (56) a contribution C(R1, Rz, ug, f, wo, z_/)?g)p H 0 — 70’ o0y that

can be bounded by C(R;, R, uy, f, wy, E’o)pT so that the same consequence holds at least for a small enough
time.

Remark 7. This condition over the characteristics of the rigid body is a sufficient condition to have the stability
of By. Nevertheless it does not seem to be very natural. We should have the existence for small time enough of
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a solution for all kind of disc without restrictions. But for the time being we do not have estimates that enable
us to eliminate this condition.

We shall show that under similar assumption the mapping S is a contraction. We consider (wg,, 72) with

-

1= 1,2 in By and we associate (v,,p,) = (V, + v}, p, + po) and (Wg,, 0 .). We recall that v{ is a lifting if the
initial and boundary values v and v, and that this velocity is the sum of : v} (depending on v}) and Vp, which
is independent of v}. Therefore again in the case of 2D or of a 3D sphere, if we subtract the equation satisfied
by (wWa, 71), for 2 = 1,2, and we rearrange the terms so that the differences vi — v, and p; — p2 appear, we
obtain

m W1 — Wezll grrzia 01y +J“ 01— 90 2| Hr/242(0.T)

< C(lvi,p) = (2. 22)l iz + [exp((82A) = BTN v )

<c [nwl,fn) ~ (2. 52)llxz + 1~ Bl aeppaqagey) + [ (T1A) —exp (T2, oo T)} ,

where C is a constant depending on the data and on R; et R but which is independent of 7. Then

m ”WGI - WGQ||11'T/2~:-1(0,'1~) +J \\71 - ?2’

Hr/2+2 (O,T)

(< ol < =~ Ll i ! = - —- (57)
< C1,51) = (V2,52 g + VoL = Vozllrrar2 o)) + ||exp([ 6 1A]) — exp([ 6 2/\])l vy |
Now we estimate ||(V1,71) — (Vg,ﬁg)ll){; with respect to vy — v, with
d b
o KT
We recall that
OV, — VAV, +Vp, =f o X9, 4vg ~ £(0) + o1 (vl + Vo, p0 + D)
-0l + VAVY in Q(0)
divy, = ag(vl +v,) — div v§ in Q(0) (58)
v,=0 onT'qUOB
v,(0) =0 in Q(0),

We subtract the equations satisfied by (¥1,p1) and (vz,p2). The approach we use at the previous section and
lemma 7, 8 and 9 leads to the following estimate:

+C||div (v - !0)“1%;(9(0)) :
Using the definition of v}, for + = 1,2, we get

(V1 81) = (Va,P2) | xp S CT7 [[(V1,51) — (Va, B2)llxp. + € IVer = Vaell grrza (0,7, 110 (0)) -

For all T' < Ty, we have CT" < 1 thanks to the way we choose T;. Then there exists a constant we denote by
C such that:

1(V1,81) = (V2,B2) I xz. < C |Iver — vzl gr/2+1(0,1, 51 (68)) - (59)
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The estimates (57) and (59) yield

— I 4 4
m “WGl - WG2||H”'/2+1(0,T) + J Il 6 1 — 6 2|

<
Hr/2+2(0,T) - 60
7 7 0

C Vo1 = Veallgerais o,y omy + | exp (T 1)) = exp((F2A))|

Hr/2+2(0,T)

Furthermore,

— —
Hvbl - vb2‘|H1‘/2+1(0’T;H1(63)) < ”WGl - WG’2”H?‘/2+1(D,T) + HeXp([ o 1/\]) - eXp([ 4 2/\])\ Hr/2+2(0,T) ’

We shall estimate ”exp([?l/\}) - exp(['g)g/\])l
apply Lemma 5 4i). We have

with respect to “?1 — ?gl . We want to

Hr/2+2 (O,T)

H™/242(0,T)

exe((17) — exp((72A])| & (ep((T 1) — exp([F2A])

C(To)

<
Hr/2+42 (O,T)

HT™/2(0,T)

We recall that exp([?i/\]) are matrices depending on the cosines and the sinus of the various components of
the vector Oi—ﬁi. So using the series expansion of cosines and sinus, combining the terms in order to make
appearing the difference 6 ; — 6 2 and then applying lemma 5 i), it comes

2

] ([T 1A]) - exp((F'2]) oo < CCF) [CESCE! —
Thus
ver — Vb2”Hr/2+1(o,T;Hl(aB)) < flwer — WG2|lHr/2+1(o,T) + C(Ry) H—il - 72\ Hr/2+2(0,T) (61)
The estimates (60) and (61) lead to
m |[We1 = Wezllgr/esao,ry + I 161 = Ooll gr/avzgo, ) < (62)

C(llwer - WG2HHT/2+1(0,T) + C(Rz) |61 — 92“Hr/2+2(0,T))-

Then the mapping S» is a strict contraction for a mass and a moment of inertia of the disc large enough. The
general 3D is treated as before. This conclude the proof of Theorem 1. O
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