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Mathematical Modelling and Numerical Analysis M2AN, Vol 34, N° 3, 2000, pp. 609-636
Modélisation Mathématique et Analyse Numérique

EXISTENCE FOR AN UNSTEADY FLUID-STRUCTURE
INTERACTION PROBLEM

CÉLINE GRANDMONT1 AND YVON MADAY1'2

Abstract. We study the well-posedness of an unsteady fluid-structure interaction problem. We con-
sider a viscous incompressible flow, which is modelled by the Navier-Stokes équations. The structure
is a collection of rigid moving bodies, The fluid domain dépends on time and is defined by the position
of the structure, itself resulting rrom a stress distribution coming from the fluid. The problem is then
nonlinear and the équations we deal with are coupled. We prove its local solvability in time through
two fixed point procedures.

Mathematics Subject Classification. 76D05, 35Q30, 73K70.

Received: April 9, 1999. Revised: October 7, 1999.

1. INTRODUCTION

The problem we study deals with fluid-structure interaction in the case where the fluid domain is time
dependent and the structure is a collection of rigid bodies. For related works on this type of problems we refer
to [6-8,15] and to [11] for numerical simulations. We consider a 2D or 3D, viscous, incompressible flow satisfying
the Navier-Stokes équations. We dénote by v the fluid viscosity, We suppose that the fluid fills, at time t = 0, a
smooth domain of Mrf, d = 2, 3. In this cavity denoted by Q, we consider a collection of rigid but moving bodies
SÎ, 1 < i < N with density p%, mass m% and matrix of inertia J%. We dénote by B%{£), the position of the ith

body at time t. Their motion is thus described by three or six degrees of freedom: translations and rotations. If
we dénote by Gz(t) the position of the center of mass at time t of Bz(t), and 9%(t) its rotation angle with respect
to the rotation axis représentée by the element R%{t) on the unit sphère (if d — 2, Rt(t) is a constant vector
orthogonal to the plane where the motion takes place), so that

x(t) e B%(t) <* G^{t) = exp(öt(t)[^t(*)A])G^(0), (1)

where [Rt(t)A] is the operator "exterior product". In order to be more explicit, we rewrite (1) as follows: in
2D

\sm(ei{t)) cos(0(£)) J
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whereas in 3D

where

C GRANDMONT AND Y MADAY

x{t) G B%(t) «*• Gtx{t) = Mx(t)My(t)Mz(t)Gix{0), (3)

My(£) =

0 - s i

1 0

0 cos((i2,)sôt(t))

0 0 1

and where Rtx^RXy,R%z are the three components of Rz(t) in a fixed given coordinate System. The Navier-
Stokes équations are then set in Cl(t) = Q \ U^L1Bl(t) which is an unknown domain depending on time. The
boundary Fo of O and the boundaries dBt of the various bodies are assumed to be regular enough in all what
follows.

The équations for the fluid part are

dtu + (u.V)u
div u = O
u(£,.) = O

u(*,a;(t)) =

u(O,.) = uo

+ Vp = f

dt
A

in n(t)
in iï(t)
onFo

on dBz{t)
in Q(0),

(4)

where u dénotes the fluid velocity, p its pressure, w<^ the velocity of the center of mass; the applied exterior
force f is given together with the initial velocity u0. For the structure part, recalling that for each point of the
ïth body we have

so that

£(£) = Gl(t) + -r^(0^)(t) A GlS(*) + —(O~É)(t) A (—

and applying the conservation of linear and angular momentum we obtain

A

dBt(t)
Vr)u).nï(i)da;)

dt2 f *£(
JdBt(t)

 d*
A (5)

Gtx(t) A ((p - i/(V + VT)u).n,(i))dx,
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where nt(t) dénotes the exterior unit normal of Bl{t). Note that in the gênerai 2D and in the case of a 3D
sphère the last term on the left hand side cancels. The velocity wc t dépends on the resulting stress coming
from the fluid and the rotation velocity is determined by the resulting moment of the fluid forces.

We have to impose also initial conditions for the bodies

(6)
= wî0.

In order to ensure the well-posedness of the coupled problem, we impose, moreover, compatibility conditions
over the initial conditions

divuo = uo ro =0>

Remark 1. The standard compatibility condition between the fluid incompressibility and the boundary con-
ditions is satisfied hère. This condition is derived from the f act that divu = 0 in Q(t) implies necessarily that

hdQ(t)
u.n = O, i. e. here

u.n1( t)=0. (8)

But u over dBt(t) is equal to a velocity associated to a rigid body motion which is the sum of a translation
velocity and a rotation velocity. Thus (8) is satisfied.

We have an unsteady coupled problem. Since the fluid domain is an unknown of the problem and dépends
on time, we rewrite, in a first step, the Navier-Stokes équations on fî(0), by using the Lagrangian variables. We
dénote by v the Lagrangian velocity of the fluid and set:

(9)

So that,

Making use of this change of variables we obtain -— at least formally —

9tv - z/(Vv)
2v + Vv<? = f ° Xv

Vv.v = 0
v = 0

, d ( e x P ( ^ [ ^ A ] ) ) ? ^ ^

in îî(0)
in O(0)
on r0 (10)

v =

v(0) - uo
dt on

in

where we set q(t,Ç) = P(£,XV(£Î£))- We mean by f o Xw the function defined by f(£,Xv(£,£))• The operator
Vv dénotes the operator cof(Vxv)-V. We have used the fact that detV%v — 1, which cornes from the fluid
incompressibility and from the relation

F)
—detVxv = divu o
ot
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For the proof of the last equality we refer to [9] Chapter 1 pp. 26-27, or [17]. We note that the convection term
(u.V)u disappears due to

&v(t,0 = (dtu+ (u.V)u)(t,Xv(*,O)-
We can also rewrite the structure équation with the help of the new unknowns, we get

2 ~ ^(Vv + VvT)v) cof

ji~T\yz ±Li)\uj A (•j-(Öl Rz)(t) A (exp(^ z[ i? ïA])G îx(O)))dx = (11)
de de

f (eKp(6%[ÉlA])G^x(0)) A [(q - z/(Vv + Vv
r)v) ( cof (V^v)-^)] dx,

where n2 dénotes the exterior unit normal to Bt.
We are looking for a solution of (10, 11) and are going to prove an existence resuit locally in time in some

Sobolev spaces, that have first been used by J. T. Beale in a similar context. We shall often use their interpolation
properties. In what follows, we do not distinguish the space of scalar-valued functions iP(Q,M) from the space
of vector-valued functions HS(Q, Mrf), we will simply write HS(Q>). If X is an Hilbert space, Hs(0} T\ X) dénotes
the space functions Hs with value in X. Because the time interval (0,T) will be small, we have to be careful
about the dependence of the various estimâtes on T. Thus, we make an explicit choice of the norm associated
to spaces of type Hs(0} T: X). For 0 < s < 1, we define Hs(07 T; X) as the domain of the operator A5/2 where
A = (1 - <9t

2) and D(A) = {v e #2(0, T; X)\dtv(0) = dtv(T) = 0}. This choice enables us to have the following
property: let Y and Z be two Hilbert spaces such that Z c Y and Z is supposed to be dense in Y, assume
that for ail T, we have a continuous operator A(T) from #°(0,T;X) to Y and from ^(O.T'.X) to Z with
a constant of continuity independent of T. Then A{T) maps Hs(0^T]X) to the interpolated space [Zyy]i_s,
0 < 5 < 1 with a continuity constant independent of T (see Th. 1.5.1 [14]). For m < 5 < m + 1, where m is an
integer, we define Hs(0, T; X) as the space of functions such that d^v G iJ s"m(0, T; X). We set for T > 0,

K£{Q) = L2(0, T; Hr(ü)) n Hr/2(0} T; L2(ü)).

The main resuit is the following:

Theorem 1. Let r be a real number, 1 < r < 3/2. We assume that UQ G Hr+1 (£2(0)); f is sufficiently smooth
and that the mass and the moment of znertia of the bodzes are sufficiently large, then there exists a time T± > 0
dependmg on £1(0), ||uo||#r+i(mo))> w^o> ^ o ^nd f such that the problem (10,11) has a unique solution with
u e JÇ+2(n(0)), Vq e K^(Ü(0)), wGï e Hr'2+\Q,TX) and (0,7?,) G H^+^O,^).

Remark 2. As noted in [4] the real number r has to be large enough in order to define and estimate the
nonlinear terms which appear in the Lagrangian formulation of the fluid équations and also in order that the
solution in the Lagrangian variables can be transformed into a solution of the original problem, i.e. where the
fluid équations are written in the eulerian variables. Moreover, as the value of r increases, more compatibility
conditions should be imposed on the data of the problem (initial conditions, forces) to obtain a solution in the
spaces we choose. This is the reason why r is less than 3/2. An alternative could then be to use weights in time
as in [13].

In order to prove Theorem 1, we are going, in a first step, to study a fluid problem with a given velocity over
dB%. For such équations we prove that there exists a smooth solution with the help of a fixed point theorem
(contraction mapping principle). The ideas are the same that one can find in the papers [2-4,16,17] where the
authors have studied the solvability of the Navier-Stokes équations with free boundary in bounded or unbounded
domains. Their approach is the following: the équations are rewritten in Lagrangian coordinates and it is shown
that solutions for the initial value problem exist locally in time, in smooth functions spaces, that is to say the
same kind of spaces we use here [2=4], or spaces of WlsP-type with p bigger than the spatial dimension [17],



ôtv - i/(Vv)2v + Vvg = f o xv
Vv.v = 0
v = 0
v = vbl

v(0) = u0

in fî(0)
in fi(0)
on Fo
on dB%

in Q(0),
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or in Hólder spaces [16]. Section 2 is devoted to the study of the fluid équations, and contains some standard
lemmas which will be useful (Sect. 2.1) and the study of the linearised équations (the homogeneous case
and inhomogeneous one). We obtain existence and regularity resuit for the linear problems. The existence of
solutions for the nonlinear problem is proven, for a small enough time (Sect. 2.3). The proof is based on the
estimâtes of the nonlinear terms and the contract ion mapping principle. We have then to recouple the équations
in order to obtain a solution of the original interaction problem (Sect. 3).

2. STUDY OF THE FLUID PROBLEM

We consider the following équations:

(12)

where vbl is given in Hr/2+l(O,To]Hl(dBl)), l will be chosen latter (To is some strictly positive time) and v^
vérifies the following compatibility condition

N

v6t. cofVxv-n, = 0, (13)
JdB%

which comes from / Vv.v = 0 by intégration by parts. Note that the vector cof Vxv*^ dépends only on
JQ(0)

the tangential derivatives of v along dBl, thus only involves v&4. Note also that each term in this sum vanishes
automatically for velocities V62 associated with rigid body motions, since rigid body motions are incompressible.

Theorem 2. Let r be a real number, 1 < r < 3/2. We suppose that uo € Hr+1(Ül(0)), and that lts
trace on the boundary dBz %s regular enough, say belongs to Hl(dB%) with l > r + 3/2. We consider v^ G
Hr/2+1(Q,To\Hl(dBt)), such that (13) is satisfied and we suppose that f is smooth enough (for instance C°°).
We suppose, moreover, that

divuo = 0, uo | ro=0,

then there exists T\ > 0 dependmg on fi(0); ||uo|lifr+im(O)\? ~uio\dB%, llvfcillHr/2+1(o T0 H
l(dBl))

 an^ ^ such ^ia^ ^e

problem (12) has a unique solution with v G KJ^2(Çl(Q)), Vq G K^(ü(0)).

This theorem will be proven in several steps. First of all we study the linearised System associated with (12)
and in particular we prove the existence of a smooth solution, first for the homogeneous équations and next we
extend the resuit for the fully inhomogeneous problem. We then estimât e the nonlinear terms, which are small
for a small enough time, and we apply the contraction mapping theorem in order to obtain a solution of the
original fluid problem with a given velocity on the boundary. We follow hère closely the paper of J.T. Beale [4]
and adapt carefully each step of his proof to our context. The main différence lies in the type of boundary
conditions.

2.1. Preliminary resuit s

In this subsection, we give some classical lemmas and theorems which are useful for our purpose, £1 will
dénote hère any smooth enough domain regardless of the previous section.

Theorem 3. i) Suppose that 1/2 < r < 5. The mapping v \—> d^v is a bounded operator from Kj,(Q) mto the
space K^T3~1^2(dQ)} where j is an integer with 0 < j < r — 1/2. The mapping v i—• d^v(.,0) is also a bounded
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operator from K£(SÏ) %nio Hr"2k'Y{Çl), ifö <k< ^ ~ ^ .

ii) Suppose that 1 / 2 < r < 5 , r ^ l , r ^ 3 and r — 1 / 2 is not an integer. Let

0<3<r-l/2

and let WJ the suhspace ofWr consistmg of (a3}Wk) so that (when r > 3/2)

d£a3(x,0) = dJ
nwk(x), x e dn for j + 2/c < r - 3/2.

Then the traces of i) sum up to a bounded operator from K^(ft) onto WQ ; this operator has a bounded inverse.

For the proof of this theorem we refer to Chapter 4 of [14].

Lemma 1. Let X be a Hubert space.
i) For s > 0, there exists a bounded extension operator from HS(Q,T;X) mto Hs(Q,oo]X).
n) ForO < s < 1/2, s—1/2 not an integer, there exists an extension operator from the subspace {v G iïs(0,T; X)/
d^v(0) — 0 pour 0 < k < s — 1/2} mto Hs(0, oo; X) with a norm bounded mdependently ofT.

Proof For the first part, we refer to the Theorem 2.2 page 17 of [14]. For zz), if s is an integer and v belongs
to the subspace of Hs(0, T; X) introduced in the lemma, we extend v by 0 for t < 0 and for t > 0 we set:

v(t + T) = 10v(T - 2t) - 15v(T - 3£) + 6v(T - At). (14)

The extension operator we built has the desired properties. In the case where s is not an integer the results
follows by interpolation. D

Remark 3. A more genera! lemma can be stated that deals with the cases s > 7/2. Different linear combi-
naisons than (14) which match more derivatives have then to be considered.

Lemma 2. Let 0 < r < 6.
i) The idenüty is a bounded operator from üT£(ïï) %nto Hp(ö,T]Hr-2p(ü)) for p < r/2.

y* 2

zẑ  Ifr is not an odd integer, the restriction of this operator to the subspace with d^v(0) = 0 for 0 < k < —-—

is bounded mdependently ofT.

Proof. The first part i) can be easily derived by extending the functions to M (with a norm maybe dependmg on
T) and by using the Fourier transform with respect to time. For n) we apply the previous lemma with s = r/2.

D

Lemma 3. Let TQ > 0 be arbitrary and choose T such that 0 < T <T0. For any v € L2(Q,T]X) we define
VeH^T-tX) by

V(t) = f v{r)dr.
JQ

I) For 0 < s < 1/2, and 0 < e < 1 the operator v »-» V is a bounded operator from HS(O,T;X) mto
Hs+1~£(QyT;X) andsatisfies

for a constant CQ independent ofT<To-
n) For 1/2 < s < 1 the esümate (15) is still satisfied, if furthermore v(0) = 0.
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Proof. The Cauchy-Schwartz inequality easily leads to [|V(£)||X < t1^2 \\v\\L2(Q T^X) ^ e n t o II^IIL^O,?"1,X) —
TWV\\LHO>T,X)

 a n d t h e n
 II^IIHI(O,T,X) < ( r + 1) IMIL2(O,TVO < c\ML*(otT,xy Hence, recalling the convexity

property of Sobolev norms:

-

we have

) . (16)

pt

Moreover, if v G i71(0,T;X) with v(0) = 0 then v(i) — I dtv(r)dr, and thus we check
Jo

O.TVC) ^ T\\dtv\\mo,T,x) >

llli^Co.r.x) - C ll^lliï^o.r.x) *

Therefore by convexity

X). (17)

We can now interpolate between the two estimâtes (16), (17), and we obtain the desired conclusion. D

Lemma 4. %) Let r > d/2 and r > s > 0. IfveHr(Q) and w G HS(Q) then vw G Hs(Çl) with \\vw\\HB^ <

C \\v\\Hr{Q) ll^lliî*^)'
i%) If v G Hr(Çl) with T > d/2 and if w belongs to the dual space of H1^) then vw is defined m (H1(Q,))f and

(( k{
ni) Ifv,w G H1^) thenvw G L2(il) and \\vw\\L2^ < C\\v\\H\^ ll^llfl-i(
%v) If v E H1^) and w G L2(£l) then vw G (Jï1(^)) / with WwwWm1^))' —

Proof. For the first part i), the case where 5 = r is standard and relies on the fact that Hr(ft) is an algebra for
r > d/2. The case 5 = 0 cornes from the Sobolev continuous embedding of Hr(ÇÏ) into L°°(Çl). The other cases
follow from hilbertian interpolation, by considering the multiplication by w as a continuous linear operator. For
ni)) it suffices to use Sobolev inequality (see [1,5]). For the second point, we consider the multiplication on
(Hl(Q)y by an element of Hr(Q) as the adjoint of the multiplication on H 1(ft) and we use the first assertion.
Similarly, iv) follows from ni). D

Lemma 5. Let X, Y) Z be three Hubert spaees and m : X xY H-> Z be a bounded, bihnear application.
i) Ifv eHs(0,T;X) andw G# s(0,T;Y) where s > 1/2 thenm{v,w) G Hs(0,T;Z) and \\m(v,w)\\Hs{OTZ) <
C\\v\\H»{0,TtX)\\w\\&(09TtY)>

n) If s < 7/2 and v>w satisfy also the additional conditions dfV(0) = 9 ^ ( 0 ) = 0 ; 0 < & < s — 1/2, and s — 1/2
is not an integer, then the constant C is independent ofT>0.

Proof. For i), we use the fact that, in one dimension, Hs with s > 1/2 is an algebra. For u), we use Lemma 1.
D
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2.2. The linéarisée! problem

For the sake of simplicity, we will consider only one rigid body i3, but the analysis is the same with a finite
number of moving rigid bodies. The linearised problem associated to (12) is:

9 t v - Ï/AV + Vq = f in fi(0),
d iw = p in fï(0),
v-v6 on dB, (18)
v = 0 on FQ,

v(0) = uo in

where f, p, vb and u0 are data which satisfy the following compatibility conditions:

p = vb.n, uo = O on Fo, divu0 = p(t = 0) in tï(0), uo|ae = v6(t = 0). (19)
JdB

2.2.1. The homogeneous hnearised problem

In a first step we study the homogeneous linearised problem (existence and regularity of solutions).

ötv - z/Av + Vg = f in fi(0),
divv = 0 in fi(0),
v = 0 on Ô£UFO,
v(0) - 0 in fi(0).

We call II the L2(H(0))-projection on H defined by

H d= {w e L2(Q(0))/divw = 0 in £2(0), w.n - 0 on ôîî(0)}.

A standard resuit makes précise the orthogonal HL of H in

Moreover, we have

Lemma 6. i) II is a bounded operator on HS(Q(O)).
il) II %s also bounded on Kf (fî(0)); with a norm bounded independent of T.

Proof. i) Suppose that s > 1. Let v G i7s(îl(0)). By définition of II and from the characterisation of H±

(I — n)v = Vx, where x is defined by

- (v,

Therefore, x is a weak solution of
= V.v in îî(0),

= v . n o
an

Taking into account the regularity properties of the Laplace équation with Neumann boundary conditions, and
since by assumption ôfi(0) is smooth, we dérive that x £ Hs+1(^(0)) and we have the following estimate

Thus ƒ — II, and consequently II are bounded operators on HS(Q,(Q)) for s > 1. By définition i) is satisfied for
s — 0. The other cases follow by interpolation.
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%%) Let s be an even integer, the properties come from the first assertion because the projection II commutes
with the time derivative. The other cases follow by interpolation. D
We state now the proposition in the homogeneous case.

P r o p o s i t i o n 1. Suppose that f e K^(ü(0)) with 0 < r < 2 , r ^ l and suppose that Ilf(O) = 0 if r > 1, then

there exits a unique solution (v ,p) of the problem (20) with v G KJ^2 (£1(0)), Vp G K^(Q(0)) and I p = 0.
JQ(0)

Furthermore,

where C dénotes a constant independent of T <TQ.

Proof The proof is separated in several steps. We prove the proposition first for r = 0, then for r = 2.
When f E L2(0,T; L2(O(0))) (this corresponds to the case r = 0), it is shown in [10], or [19] Chapter III,
p. 267, that there exists a unique solution (v,p) of (20) with v G L2(0,T; i/2(O(0))) n tf^O,!1;

p e L2(0,T; fl^î^O))) and / p = 0. Moreover, we have
JQ(O)Q(0)

where C is a constant independent of the time T <TQ.
In the case r = 2, we consider f € L2(0,T]H2(Q(0))) O Hl(0,T;L2(n(0))) = üCf.(fi(O)) with the additional

assumption EEf (0) = 0.
First we suppose that f (0) = 0.
Let (z, q) be the solution of

dtz - Ï/AZ + Vq = dtf in $1(0),
divz = 0 in
z = 0 on 0,
z(0) = 0 in Q(0).

We remark that ötf € L2(0, T; L2(fi(0))), and so we obtain a solution (z, q) belonging to K^(Ü(0)) xL2(0, T; fl"1

We set

v = / z, p= q.
Jo Jo

Then, (v,p) is a solution of

a tv - Ï/AV 4- Vp = f in
divv = 0 in O(0), , ,
v = 0 on d # u r O î

 l ;

v(0) = 0 in

If we choose the average of q equal to zero then / p = 0.
Mo)

= z e if|.(îî(o)), ap = ç G

Mo)
This solution vérifies

and, thanks to the previous step

I I I L
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Moreover, we get
+ Vp = ƒ - dfv e L2(0, T; H2(ft(0)))}

divv = 0 in fi(0),
v = o on

Using the regularities properties of the steady state Stokes équations with fï(0) smooth (see [10] Th. I. 5.4,
p. 88), we deduce that v G L2(0,T; K4(Q(0))), p G L2(0,T; #3(Ü(0))) and

— ^ |_ll̂ tVllL2(0,T)H
2(n(0))) + H îL2(0Tif2(^(0)))J

Then we have (v,p) solution of (20) with f (0) = 0, and such that

with the estimate

llVll
where C dénotes a constant independent of T.

When 0 < r < 2 and r / 1, we obtain the desired result by interpolating the spaces L2(0,T;L2(Q,(0)))
and {f € K^(Q(0))/f (0) = 0}. The interpolation between these two spaces faces no difnculty because we can
extend in time the functions belonging to {f E K^(Q(0))/f (0) = 0} to M so that the norm of the extension is
independent of T.

The next step is to consider a given force that satisfies üf(0) = 0. We have f = llf + (ƒ — II)f. For nf we
apply the previous result. Then, there exists a couple (v,p) which is solution of (20) with üf as a data, such
that v e K^+2(n(0)) and Vp e ÜT£(fi(O)) and which satisfies

)) II^ilKj(n (o)) C

The second part %%) of the Lemma 6 yields

C llfil

with a constant C independent of the time T. On the other hand, as we already seen, (/ — II)f = V% But
/ — II is a bounded operator whose norm is independent of T and consequently ||Vx||x^ (Q(o)) — ^ ll*Hjrr(fi(o))
(C independent of T). Setting (v,p) = (v,p + x), we obtain a solution of (20) associated to f which satisfies
the desired estimâtes. This ends the proof. D

2.2.2. Inhomogeneous hneansed problem

We now extend the results of the last section to a more gênerai problem: the inhomogeneous case. But, first
of all, we start by making a remark, which will enable us to specify the spaces in which we will choose the data
of the problem. If ip e ^+ 2(Q(0)) with t/;|Fo = 0 and ^ | a ö = z € # r/2 + 1(0, T; Hl{dB)) with l > r + 3/2, then
div i) G Âî,(fi(0)), where K£(Cl(0)) is defrned by

Indeed, suppose first that r is an even integer, r > 0, and z = 0. If ip is a smooth function, let us choose ip in
2 ) , where ^|rouöö = 0. Then,

, Vj < 1 + r/2
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where (.,.) dénotes the L2(£l(0))-inner product. Thus for each t

Integrating in time, we get

l l l l
This inequality extends to arbitrary functions in K^~2(Çt(0)) which satisfy ip\vQudB = 0. It is obvious that for
such functions div^ G L2(07T;Hr+1(Q(0))), and, in summary, the operators

div : {</, € Kr
T

+2(Q(0))/i,\roUdB = 0 } - L2(0,T;Hr+\u(0)))
and

div : ty e ^+2(fi(0))/^|r0uaB = 0} -

are linear and continuons. For r not an integer this statement holds by interpolation. Then ?/> G i££
with ^|rouaB = 0 implies div^ G j££(fî(O)). We have similarly that div Î/J G K^(Q(0)) if ^ G lf£+2(fi(0)) with
<0|ro = 0 and ̂ \QB = z G Hr/2+l{Q,T;Hl(dB)). Indeed, we consider a lifting z G Hr/2+1(0,T] Hl+1^2(Q(0))) of
z. Then div z G iy r / 2 + 1 (0 ,T; F z-1 /2(Q(0))) , since l > r + 3/2, and thanks to the last argument div (ip - z) G

). Therefore, div ip G ̂ ( ^ ( 0 ) ) and we have the following estimate

- ^(ll^llic^cnco)) + INIlH^^+iCo.T.ff'CôB)))-

Proposition 2. Suppose that 1 < r < 3/2. Lei f G uT£(fî(O)), u 0 G ^ r + 1 ( ^ ( 0 ) ) 7 p G ^ ( f î ( 0 ) ) and v6 G
Hrf2Jtl(Q,T\Hl(dB)), with l > r + 3/2. We suppose that the compatibihty conditions (19) are satisfied, then

there exists a unique solution of (18) such that v G K^~2(Q(0)), Vp G üff (fî(0)), / p = 0 and

+ llv^llic-(n(o)) ^ C(T) [llf 11^(^(0)) + 11^11^(0(0)) + W^b\\HT/2+1 {OiTj

/ƒ moreover, we make the following additional assumption

f(0)=0, p(0) = ötp(0) = 0, v b =0, uo = 0, (23)

then the constant C(T) can be chosen independent ofT. Furthermore, (v,p) vérifies the following conditions,
at the time t = 0:

v(0) = öfv(0) = 0, p(0) = 0.

Proof of the Proposition 2. We shall prove this proposition by reducing into two steps the problem to the case
previously treated, that is to say the homogeneous case. We are going to build continuous lifting of v&, UQ and
P'
o Lifting of Vb and u0 .
Thanks to the assertion %i) of Theorem 3, since r < 3/2 and taking into account (19), there exists a function

+2 such that

4>o\dB=vh, </>o|ro=0,

and

c [ l l ^H^+^caö) + Huolliï-+i(n(o)) + ilfilic-(^(o))J > (2 4)
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with a constant C which may depend on T. Then (vi = v — 4>o,p) satisfies

+ Vp = f - dt(f>o + ^A<£0
 d= fo in fi(0),

= p — div^o == CTQ in fi(0), (25)
= 0 on <9#ur 0 )

v i ( 0 ) = 0 in îî(0),

with, thanks to the choice of <̂o a n d (19)

= 0, o-0(0) = 0.

Moreover, recalling the remark we made before the proposition 2, div 0o a nd then ao belong to
o Lifting of the divergence.
The next step is to adjust the divergence. We want a function <f>i which satisfies:

q ^x(O) = 0, àïvfa = aQ and 0 i | ô n ( o ) = 0.

Lemma 1 implies that there exists an extension ö of CTO such that

a e L2(M; iT+1(Q(0))) n

and

with a constant C which may depend on T. Since the average of ao is equal to zero, we can choose the average
of G equal zero (extension by reflexion). Denoting by a the Fourier transform of â, we remark that

a G L2(M;tfr+1(O(0))) and

and the average of <j is equal to zero. For each r in W, we define 6 by

f - A Ö ( T ) = a{r) infi(O)

1 ^ = 0 onToUaB.

We search the function 9 so that / 9 = 0. For almost all r, ö(r) € i7r+3(Q(0)) and ||6l(r)||iï.
Jn(o)

C ||^(r)||JH-T'+im/0^ with C independent of r. Furthermore, from the variational equivalent formulation we
deduce

Hence 9 6 L2(M;iF+3(Q(0))) and |r|1+r/2V<9 e L2(E;L2(O(0))). We set fa - VF-a(0), where F'1 dénotes
the inverse Fourier transform. Then, the function fa belongs to K^2(n(0)) and satisfies

fa(0) = 0, div^i = cr0, ^i-n|rouaö = 0, Ufa = 0.

The last equality comes from the fact that fa is a gradient. We have just built a function in K^2(Jl(0)) whose
divergence is equal to CTQ and so that its normal component on the boundary FQ UdB is zero. We shall add to fa
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a function ^2 that will not modify the divergence but such as ipi + V>2 satisfies the desired boundary conditions.
We choose ^2 = curlw with w such that:

onToUdB: w = 0, — = -ipi A n

at t = 0 : w(0) = ötiü(0) = 0.

The compatibility conditions between the traces to ensure the existence of w in K^~3(Q(0)) are satisfied, because
T < 3/2 and ao(0) = 0. We set (pi — ipi -\- 1P2 = VF~1(0) + curku. The choice of w implies that the function

^2 and

The pair (v2 = vi - </>i,p) then satisfies:

atv2 - z/Av2 + Vp = f0 - ôt0i + ^A0i d= fi in fî(0),
divv2 = 0 in îî(0),
v2 = 0 on ô^U
v2(0) = 0 in fî(0).

Therefore, we are back to the homogeneous case with a right hand side fi such that IIfi(0) = 0. Indeed,
fo(0) = 0, ^i(0) = ^2(0) = dttp2(0) = 0 and II^i = 0. Then there exists a unique solution (v2,p) of (27) such

as v2 e K^2(Ü(O))7 Vp G ̂ (O(0) ) , / p = 0 and
JQ(

llllic;(Q(o)) \\P\\K^{Q(O))
 c l

But

< c
< c

with a constant C which may depend on T. Consequently, there exists a unique solution (v,p) of (18) such

that v G iq+2(Q(0)), Vp G K%,(ü(0)), [ p = 0 and[
Q{O)

c

If the condition (23) is satisfied then the constant C can be chosen independent of the time T because at the sec-
ond step the extension of divergence can be done with a bound which is independent of T since p(0) = dtp(0) = 0.

Proof of the last statement of Proposition 2. We suppose that (23) is satisfied. By définition of v we have
v(0) = 0. Now, we have to prove that 9tv(0) = 0 and p(0) = 0. We have

div otv(0) - 0, (28)
ôtv(0) -h Vp(0) = 0, (29)

v\roudB = 0. (30)

We recall that n dénotes the L2(r2(0))-projection operator on H. We have (/ — II)v = V%, where x ig defined
by
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Indeed,

The relation (28) implies that Vôtx(O) = 0 and then that <3tv(0) = IÏ(ôtv(O)). But IIVp(O) = 0 (Vp(0) G
L2(f2(O))), therefore projecting the équation (29) on divergence free vector, we obtain II(9tv(0)) = 0, that

implies that <9tv(0) = 0. Then the pressure at the time t = 0 is constant but since ƒ p(0) = 0, this constant
JQ{0)

is zero. This ends the proof of the Proposition 2. D

Remark 4. We can rewrite the conclusion of Proposition 2 in terms of operators. If we dénote by L the linear
operator

(w,q) e l ^ M (0 tw-i/Aw + Vg,V.w,w|aB,w(O)) € YJ,
with

| / ), w|ro = oi ,

and

F^ = {(f,p, vb,uo),f G J^(n(0)) ,p€ ^(ÎÎ(O)), v6 e I

then L has a bounded inverse for any 1 < r < 3/2. Moreover, if we set

*T,o = {(w,g) € Jff / w(0) = ftw(0) = 0, w|flB = 0, q(0) = 0} ,

and
YT,O = {(f. P> o, o) e y ; / f (o) = o, p(o) = dtp{o) = o},

then L : X£ 0 —> YJ 0 has a bounded inverse with a norm independent of T.

2.3. Es t imâtes of t h e nonlinear t e rms , Proof of Theorem 2

In what follows, we choose an arbritary time To. We suppose that v^ G üfr/2+1(OïTb; Hl(dB)) and that the
condition (13) is satisfied. Let (v,p) be a solution of (12) then (v,p) vérifies:

ö4v - Ï/AV + Vp = f o Xv - ^Av + ^(Vv)2v 4- (V - Vv)p in
divv = (V - Vv).v in ü(0)
v - 0 on r 0 (31)
v = Vfc on öö
v(0) - uo in fl(0).

In a first step, we shall build (vo,po) such that, if we set

(v)p) = ( v - v o , p - p o ) , (32)

then we have

v(0) = ftv(0) = 0, p(0) - 0. (33)

In order to define (vo,po) let us analyse some necessary conditions to (33). Assuming a solution (v,p) is
known, we differentiate with respect to time the équation Vv.v = 0 and set t = 0. We recall that Vv.v =

(cof ( /+ / Vv).V).v. We have
Jo

V.a tv(O)-((Vuo)T .V)uod=ai )



EXISTENCE FOR AN UNSTEADY FLUID-STRUCTURE INTERACTION PROBLEM 623

because v(0) = u0. Therefore, if (v0,po) exists it has to satisfy V.9tv0(0) = a±. Since Vu0 G iîr(fi(0)),
with r > 1 we have ai e Hr-x(iï(0)). By Theorem 3, there exists a0 G jRT£+2(fi(0)) such that ao(0) = 0 and
<9tao(0) = ai. We consider now z E # r /2 + 1(0,T0 ; Hl{dB)) such that

J 9

z(0) = v6(0),

(34)z.n ~

For instance, we can choose z = uo|d# + ot(t)w where w dénotes a smooth function which does not depend on

the time variable t and so that / w.n = 1 and a(i) = I ao- Taking into account the regularities of ao,
JdB Ja(0)

a belongs to Hr/2+1(O7To). Then z satisfies (34) and belongs to iJ r /2 + 1(0,r0 ; Hl(dB)): because we made the
assumption that Uo|aB is in H1, We are now in a position of defining (vo,po) ^ ^T0 solution of (Prop. 2 gives
the existence of such a solution) :

dtVQ ~ i/Avo + Vpo = f (0) in
div v0 = a0 in fi(O)
v0 = 0 on r 0 (35)
VQ = z on dB

vo(O) = uo infi(0).

We associate a new velocity VQ in K^2(ü(0)) such that

vo(0) = 9tvo(0) = 0, vo|aö = v 6 - z , u 0 | r o = 0 .

We finally set (vo,^o) = (vo 4- Y0,p0)* Then (v,p) define in (32) is solution of

dtv - i/Av + Vp = f o Xv+vo - f (0) 4- ai (v0 + v, p0 + p) - dtvQ 4- vAv0 in fï(0),
divv = a2(v0 4- v) — div v0 in fï(0), , „ ^
v = 0 on r 0 U ÔB, ^ b J

v(0) = 0 in îî(0),
with

CÜI(W, g) = -ï/Aw 4- z/(Vw)2w 4- (V — Vw)ç,
and

a2(w) = ( V - V w ) . w .
We can also write that (v,p) is solution of

L(v,p) = (f o xv+vo - f (0) 4- ai(v 4 vo,p 4 Po), a3(v0 4- v), 0, 0) 4- (~ô tv0 + ^Av0) p0, 0,0),

where as(w) — 0:2 (w) — (V — VVO)-VQ. We set po = — VVo.vo. We want to use the results we obtain for the
linear problem in order to obtain the solvability of the modified nonlinear fluid problem (36) for a given velocity
on the dise. To do so we will use a fixed point theorem. We introducé the mapping

where (v2,p2) is deflned by

(v2,p2) = L-X(f oxv1+v0 -f(0) + a i ( v i +v o ,p i +Po)1as(vi +v0),0,0)
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We check that this mapping satisfies the contraction mapping principle, for a small enough time. We shall
show that the terms on the right hand side (that is to say the nonlinear terms) are defined, that we can control
their norms with respect to the time, and that each is lipschitz with a small lipschitz constant. We state now
properties on the functions a i , a2-.. We take two couples (VQ,PQ) in X£o with the velocities defined as above:
VQ = vo + VQ on the time interval (0,To). These two velocities are associated with two different velocities on
the boundary : v£, v2. The functions VQ satisfy the following assumptions

v&(0) = uo,

(H)

Lemma 7. For all (w, q) G XJp, 1 < r < 3/2, we have ai(w, q) G K^(Q(0)). Moreover, for a given real number
R > 0 there exists constants Ci,C2 and 77 dependzng only on R,r and ||(vo,po)||Xr su^h that

VT < To,V(v„p,) € Xli0,i = 1,2 with \\(vuPl)\\x^ < R,

we have

IK || CiT", (37)

||(vi +vj ,pi) - (v2 +vg,p2)||XT. . (38)

Proof. Using the Einstein convention for summation, we can make explicit ai in 2D as follows

ff1 f1 \
<*i(w,ç) = vdj ( (cof(V ƒ w))^[5 fc ï + (cof(V / w)fct]9tw I

\ Jo , Jo . /
cof(V ƒ w)fctötw j - cof(V ƒ w)Vg,

where 5̂ ^ dénotes the Kronecker symbol. In 3D the complete explicit form is more tedious to write down but
we can notice that (as in 2D) it takes the form

ai(w,<?) = 5 > , [ ( P ( V / w).V)w]+Q(V / w).Vg
j ^0 Jo

where P(V Jo w) and Q(V /0 w) are two matrices and each of their component is a polynomial function with
f1

respect to the components of V / w of degree less than 3 and of variance 1. The K? norm is composed
Jo

of two parts the L2(0,T; Hr(n)) and the ÜT/2(0,T; L2(Q)). Let us first study the L2(0,T-Hr(Ct)) part. If

(w,g) G X£, then Vw G K^+1(Q(0)) and then / Vw € ^(O.T;i? r + 1(^(0))) n i? r /2+3/2(0,r ;L
2(Q(O))).

In particular, / Vw € L°°(0,T; Hr+1 (Q(0))). Since Vw e L2(0,T; £r+1(r>(0)))> VQ e L2(0,T;Fr(n(0)))
«/o

and r > 1, Lemma 4 leads to ai(w,ç) G L2(0,T;i7r(Ü(0))). In another hand, we have by interpolation
pt

/ Vw G HP+1(O,T; Hr+l-2p(tt(0))) for 0 < p < (r + l)/2 (see Lem. 2). Therefore, for p = r/4 we have
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. But Vw € and Vq e tfr/2(0,T; L2(f2(O))), then,
o

since r > 1 and 1 + r/4 > r/2 we have ai(w,ç) G Jï r / 2(0,T; L2(Q(O))).
Now we shall estimate ai(v +v o ,p + po) for (v,p) G X^Qi 1 < ^ < 3/2. We do not précise hère the exponent %.

Thanks to the Cauchy Schwartz inequality, we get

/ '
Jo

and

Vv0

Vv < Tl/2

Then, recalling the expression of ai, there exists some constants 77 > 0 and Ci which dépends on R,r and
r s u c n t n a t

V(v,p)

We study now the second contribution iî r/2(0, T; L2(Q(0))) of the JïT£ norm.

(39)

and applying Lemma 2
<

where C dénotes a constant independent of T because the velocity v satisfies v(0) = 0. Furthermore, for T < To,
using Lemma 2 and Lemma 3 with s = p, we obtain for £ < p < 1/2 and p < (r + l)/2,

Vv0

We have the same estimate for v with a norm ||v||Kr-+2/n,0^ in the right hand side of the inequality and with a
constant C that does not depend on T because v vérifies v(0) = dtv(Q) = 0. We choose p — r/4 and e = r/S.
Then

Vvr CJ+2(Q(O)) >

and

ƒ Vv

(40)

(41)

Using Lemma 5 %%) we obtain estimâtes of the terms where Vv0 does not appear. For instance, the termsa Vv0 J djv or ( [ Vv) d3v are bounded in Ür/2(O,T; ^(«(O))) by CT r /8 . For the products in
/ k% \J0 / ki

which Vv0 appears, we cannot apply directly Lemma 5 %i) since vo(0) = uo 7̂  0. Nevertheless, we can write

v0 = (vo — uo) 4- u0 Then we use Lemma 5 11) for the terms ( / Vv ) d3 (v0 — u0) and remark that, for the
W0 / ki
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remaining terms, UQ is a data and does not depend on time. Then there exists a strictly positive constant, we
will dénote by 77 and strictly positive constant C2 which can be chosen independent of T such that

(42)

The estimâtes (39) and (42) lead to the estimate (37). We also check, using the same type of arguments that
OL\ is lipschitz (estimate (38)) . D
We now state the same type of lemma for «3.

Lemma 8. For ail w G K^+2{u{0)), mth w|r0 = 0, w\dB (E Hrf2+1{ü,T\Hl(dB)), 1 < r < 3/2, we have
a2{w)(resp.as) G KJp(Çl(0)). Moreover, for a given R > 0, for VQ satisfymg the hypothesis (H) there exists
CUC2 andr] depending only on R,r, | |vS||K;+2 ( f i (0 ) ) and | | v j | | H r / 3 + 1 ( 0 ) T o ) j f f i ( a B ) ) such that\/T < To, V(vZ;p,) e

X^0,i = 1,2 wzth \\(vz,Pi)\\xr — R> we

(43)

è) - a2(v2 + v§ ) | | ^ ( n ( 0 ) ) < C2T" [||(Vl + vj) - (V2 + v2)| |^+ 2 ( f i ( 0 ) )

Proof. We first note that 0:2 (w) is a sum of terms that can be written (Pd-i I / Vw ) ,V).w, where P^-i ( / 0 Vw J

/"*
is a matrix whose component are polynomial functions with respect to the components of / Vw of degree

Jo
d — 1 and variance 1. We recall the définition of K

= L2(0, T; fT+ 1( t t(0))) H i ï r / 2 + 1 ( 0 , T;

As in Lemma 7 we have a 2 (w) G L2(0,T; Hr+1(Q(0))). The earlier estimâtes for a i in £2(0,T; Hr+l(tt{0)))
apply hère for a2 (resp. 0:3). We only need to be concern with the estimâtes in i J r / 2 + 1 (0 ,T ; (i

First if w G uq+2(£î(0)) then ( / Vw)yôfcw E H r /2 + 1(0,T; ( ^ (
0 t

Indeed we have Vw € H^O.T-.L2^^))) and f Vw e j f f^O,^ Jî r + 1(î î(0))) .
Jo

ThThen,

It remains to prove that dta2(w) G # r / 2 (0 ,T; (i/1(r2(0)))/). It is straightforward to note that it can be written
as the sum of terms of the following four types

(ƒƒ
(Vw) t J(Vw)w,

f1 ff

I V w y Vw)mn(atvw)fcj,
o. Jo

Vw)v(Vw)w(Vw)m n .
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Let us start with the two first one. By the discussion preceding Proposition 2, we have ftVw G If r/2(0,T;

We know that f Vw G iî1 + r / 4(0,T; H1+r/2(^(0))) and recall that H1+r/2(^(0)) is a multiplier of
Jo

and #1 + r /4(0,T) is a multiplier of i r / 2 (0 ,T) . Then Lemma 5 implies that

( fVw)
y

, T; (tf

We study now the second term (Vw)lJ(Vw)fei. We have Vw G iJ r / 2(0,T; ^(^(O))) . The multiplication of a
function in H1^^)) by a fonction in Hl(ü(0)) belongs to (Hl(Q(0)))f. Together with the fact that # r / 2 (0 , T)
is an algebra we obtain from Lemma 5

(Vw)„(Vw)« e

And then we get <9t(a2(w)) € Hr'2(0,T; {H1 (O(0)))') (resp. for a3).

Next we estimate a3 in H1+r/2(0,T; (
As previously a3(v + vo,p +po) can be written as a sum of six generic terms and the basic ones are

,, (/*Vv)tJ(Vvo)fcJ) (/*Vvo)„(Vv)fcl.

We consider the term

We have

( ƒ
Jo

recalling (41) we dérive

< CTr/8,
if1(0,T1L

2(fï(0)))

and then

(45)

(46)

since the other terms can be handled in the same way (each constant can be chosen independent of T since v(0) =
rt

0tv(O) = 0). We estimate now dta3 in the U r/2(0,T; (^(«(O)))7) norm and consider dt(( ƒ Vv)u(Vvo)fc0
Jo

f1

a generic example. We have again two types of term to study: ( / Vv)y (V9tv0)fci and (Vv)y (Vvo)fci-
t °

First we consider ( /
Jo

as

o
We have that Vôtv0 is bounded in # r / 2 (0 ,T; (^(^(O)))') independently of T. The estimate (41), Lemma 4
i%)i Lemma 5 ti) (we write dtvo = (<9tvo — ötvo(O)) + 9tvo(O) ) lead to:

< CT r / 8 , (47)
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where C is independent of T. We deduce from Lemma 1 that the condition 9tv(0) = 0 provides a bound
pt

of Vv in tfr/2+1(07
T; (il1 (£3(0)))') independent of T, so the same estimâtes hold for ( ƒ Vv) t ;(V9 tv)w and

Jo
(f VvQ)t3(Vdtv)ki.
Jo

Finally we study (Vv)^(Vv0)^.

We know on one hand that Vv0 is bounded in i7r/2(0)T0; i?1(Q(0))). On the other hand since v(0) = 0, we

obtain Vv = / V<9tv and estimate (15) with X = L2(S1(O)), s = 0, e = 1 - r/2 implies:

Then we get

l|(Vv),J(Vvo)feJ||^/a(oiri(^(n(o))V) < CT1-^2. (48)

We have the same type of estimâtes for (Vv)lJ7(Vv)fcj and (Vvo)z:?(Vv)fcj.
Then the estimate (43) is satisfied. The same kind of argument enable us to obtain (44) on 0:2- Indeed, for
instance in 2D we can write:

ft ft
a 2 ( v j + v i ) - a 2 ( v g + v 2 ) - cof / V(vJ + V l ) : V(vJ + vx) - cof / V(v2 + v2) : V(v2 + v2)

Jo Jo

= cof ƒ (V(vJ + Vl) - V(v2 + v2)) : V(vè + vx)

+cof %* V(v2 + v2) : V ((v2 + v2) - vj + V l) .

We remark that we have two type of terms: cof / V^>i : V$2 with for % = 1 or for % = 2: dt $*(()) = ^i(O) = 0.
Jo

We follow the same ideas as for estimate (43), noticing moreover that

IIV ((v2 + v2) - vj + v ^ H ^ H l < II (vi + vj) - (v2 + v2)||
_L | | v l _ V 2 | |
^ IIV6 V 6 \\

This ends the proof of Lemma 8. D
It remains to study f o X w - f (0). We suppose that f e C°°([0,T] x Rd).

Remark 5. Our interest is not to have the minimal regularity on the force f.

Lemma 9. For all v 6 ÜL£.+2(£Ï(0)), we have f o ̂ v € K^(Q(0)). Moreover, for R > 0 there extsts C and r\
strictly positive constants which only depend on R>r and | VQ \Kr+2,Q,0,, such thatMT < To, V(vï,pï) E X£o,2 =

1,2 such that ||(v2)pz)||Xr < R, we have

(49)

Y T

f o Xv1+vJ - f o Xv2+v§ II n (0) ) < CT* ||Vl + vj - (v2 + v o
2 ) | | K . + 2 ( n ( o ) ) . (50)I n(0))
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Proof. First we prove that fo^vG K£(Çl(0)) for all v e
pt

Recalling that the regularity of Xv is the regularity of / v, we know that Xv € HP+1(O,T\Hr+2~2p(Q(0)))
Jo

r + 2
withO <p< ——.

First, we choose p = ——, then Xv e # 3 / 4 + r / 4 (0 ,T; # r / 2 + 5 / 2(Q(0))). And thus using the Sobolev injections

Xv e C0([0,T];C2(Ü(0))). Consequently,

f oxv

because r < 3/2.

Thentaking^= ^ j ^ , weobtainxv G i ï7 / 4 + r / 4(0,T; i7r/2+1/2(Q(0))). But r > 1, then^v e ^ ( [ 0 , ^ ; C°(Ô(0))).
Therefore,

f oxv G C ^ M Î C ^ O ) ) ) C ffr/2(0,T;L2(îî(0))).
FinaUyf o x v G /

Next we estimate ||f oxVo+v - f(0)||Kr(n(0)) for ail v e KJ+2(n(0)) which satisfies v(0) = 9tv(0) = 0 and
v|dQ(o) = 0.
We set

g = f °Xvo+v

We check that g(0) = 0 and deduce that g = ƒ ôtg. This yields

and then

We choose 1 — e = r/2, it gives

HslliïT-/2(o)T,L2(n(o))) — ^ r î

But

Under the assumption that f is C°°, we obtain that for any T,T < To,

Furthermore,
9tg(*,0 - (Ötf)(t,Xv+vo(^O)+ÖtXv+vo(

,O) + (V + V0)(t,0(Vf)(t, Xv+vo (*,
We conclude that for ail T <T0

with a constant C depending on f, R and VQ. In summary, we have

||f o Xv+vo - f (0)||tfi(o,T,L2(ri(o))) < CT T . (51)
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have already estimated g in £2(0, T;.Next we study ||g||L2(0 T Hr(n(o)))- ^ e n a v e alrea<dy estimated g in £2(0, T; £2(^(0))). In order to simplify the
présentation we dénote by dx all the first order derivatives with respect the spatial variables.

V 0 )

3c (f ° Xv+vo) - Öxf (0) = (dxf) O Xv+vo^Xv+vo -

= (pxf) ° Xv+vo - 9a;f(0) + ( /

Vo

We notice that (dxf) o xv+vo(0) = 9xf (0), we have
ll(Öxf) ° XV+VO - dXf(0)\\L2(OjTtL2(Q(O))) < T \\{dxf) O Xv+V

And thus the same study we did previously but with dxf mstead of f leads to

||(öxf) o xv+vo - ö,f(0)||L2(0)T)L2(Q(0))) < CT,

where C dénotes a constant depending only on f, R and VQ. We have in a same way,

(9xf)oXv+v0
L2(0,T,L2(Q(0)))

< C

< CT \\dx{y
L2(0,T,L2(Q(0)))

Using Lemma 2, we get

with C independent of T. In summary

||ôa(f o xv+vo) - ôxf(O)||La(OiTiL2(n(o))) < CT.

We can obtain the same kind of estimâtes for the second order derivatives. The inequality (49) is satisfied since
r < 3/2. The estimate (50) can be obtain using a Taylor formula applied to f which is by assumption C°°, and
using also Lemma 2 and 3 as we did previously. D

We now consider the mapping S\ as follows

where (w2,<?2) is defined by

x( f oXw1+v0 - f(0)+ ai(w
1 (-9 tv0 + z/Av0, po, 0,0).

^3(vo + wi),0,0)
+ z/Av0, po, 0,0).

Proposition 3. Let R\ be a real number, Ri > 0. There exists a time T\, 0 < 7\ < To, such that for all
T <T\ S\ has a unique fixed point (v,p) tn

Bi = {(w,g) € X^o | ||(w,g) - L~l(-dtv0 + z/Avo,po,0,0)||x. < i j j .

Indeed, the study of the linear problem (proposition 2) and the estimâtes of the nonlinear terms give us the
estimate ||(w2,<?2) ~ L~x{—dty_0 + ^Av0, po,0,0)|| < CT11. We deduce that for a given constant Rx, there exists
a time 7\ (depending on ||uo||Hr+i(n(O))ï IIV&IIH''/2+1(O,TO,HI(ÔB))' ^ an<^ ^x) s u c n t n a t ' ^or a11 ^ - Tl - ^° ' ^
maps Bi into itself and is a contraction. This ends the proof of Proposition 3 and the proof of Theorem 2. D
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Remark 6. The time I \ dépends continuously on ||vö||HT./2+i(o,r0 H
l{dB)) anc^ ^or a ^ ^ > 0y for ail vb such

that llvbll̂ r/2+wo To H1 (dB)) — K, there exists TK > 0 such that T\ > TK-

To summarize, for a strictly positive given constant R\, an arbitrary time TQ, and a velocity v& given on the
rigid body boundary then the problem (12) has a unique smooth solution (v,p) for small enough time T <T±.
Indeed, let (v',p') be another solution, then (v' — vo,£>' — po) is a fixed point of Si; from propositions we know
that for T < Ti, the fixed point is unique. Now we study the coupled problem.

3. COUPLED PROBLEM. PROOF OF THEOREM 1

Let (wG,0~Ê) G iT*/2+1(0,T) x iF/2 + 2(0,T), be respectively the center of gravity velocity and the rotation
angle of the rigid body. To them we associate the velocity v^ defined by

(52)

To the function v& we associated (v,p) = (v + vo,p + po) where (v,p) is the unique fixed point of the mapping
Si with V\QB = Vfc (proposition 3). For the sake of simplicity we dénote by 6 the vector 9R. Associated to
the previous (v,p), we define now (wg, 0 ) solutions of the Newton équations:

at

m = ƒ (p-K
JdB

+ (Vv)T)v) cof

(53)

ƒ
dB

(exp([~0* A])G^c) A [(p - ï/(Vv + VvT)v).( cof dx,

with the following initial conditions

) = wo; 0(0) = 0; ^ - ( 0 ) = ^ o -

In order to prove the principal resuit of this paper, we verify that the mapping S2

( w G l 0 > ) h - ?

has itself also a fixed point. To do so, we first check that the mapping £2 is correctly defined, then that, under
some assumptions, it maps B2 int o itself, and is a contraction, with B2 defined by:

B2 - j(wG ) î) e

||WG - ||

In the latter définition R2 is a given strictly positive constant and (w^o, 0 0) are solutions of

m- /
dB

= f
JdB dt

(54)

dB
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with the following initial conditions

= WO; 0*0(0)= 0; ^ ( 0 ) =

Let ( w c 9 ) E ̂ 2. First, we extend (w^, 9 ) on the time interval (0, TQ), where To dénotes an arbitrary chosen
time. To do so, we consider V/Q — w<£0- Then, by Lemma 1, there exists an extension <fi of wG — WGO in

suchthat

- wG0Ilif

where C is a constant independent of T. Then </> —wGo is an extension of wg. We dénote by WG this extension.
We have

+ C ||wG

Therefore, if ||wG — WGO||JH-^/2+1(O T) — ̂ 2> then there exists an extension of wG to the time interval (0,TQ)

such that,

II W GIIH- /2+I(O,T0) ^

with the constant Ro which dépends on To, i?2, uo and on f, but not on T. We use the same argument to
extend ~t in Hr/2+2(0,T{

denoted by 6 , such that

extend ~t in i7 r/2+2(0,T0). So, if T - l?o\\ < R>2 we obtain an extension of 't to (0,T0), also
II \\Hr/2+2(0,T)

< Ro-

To these quantities, we associate v^ defined by (52). Since 9 G i7r/2+2(0,T0), the operator exp([ 9 A]) belongs
to iJ r /2 + 2(0, TQ). In order to get this result, we write the exponential function with the help of its serie expansion
and we note that J7 r /2+2(0 ïTo) is an algebra. Consequently, vb € if" /2+1(0,T0; Hl(dB)) for any positive real
number l. Furthermore, we have a bound for v& :

<

< C(Ro).

dt

To the boundary velocity v& we associate thanks to the above sections a velocity and a pressure (v,p) =
(v + VQ,P + PO)- The velocity and the pressure (v,p) is the fixed point of the mapping1 5f. The couple (v,p) is
defined over the interval (0,Tf ) with Tx

6 < To and Tx
6 dépends on jR^ T0) ||vö||Hr/2+i(OiTo;Jïi(OB)) Huo|lH'-+1(n(o))

and f. Nevertheless, the time T2
fe can be the same for all the mappings Sf. This results from remark 6, and

from the fact that for (WG, 9 ) G B2j the associated velocity v& is bounded in iJr/2+1(O,To;i^(9i3)) with a
bound depending only on Ro. We dénote by T\ this time. Taking into account the regularities of v and p, there
exists a unique solution ( w G , T ) G i/ r/2+1(0,Ti) x i/ r/2+2(0,Ti) of (53). Thus the mapping S2 is defined.
We shall prove that S2 maps B2 into itself, for a mass and a moment of inert ia sufficiently large. We study
||wG — WGollijr/2+i/o T\ and \\ 9 — 9 o • We first restrict the analysis to the 2D case or the case of

1We add here the exponent b to underline the dependency of Sf and v§ with respect to V5.
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the sphère since then the following équations are satisfied

d(wG - wG0)

633

m-

J'
az

= (P- ^(Vv + Vv
T)v) cof (Vxv).n - / (po(0) - v{V + VT)u0).n

JdB JdB

= / (exp([lf A])G^r) A [(p - i/(Vv + Vv
T)v) cof (Vxv).n] (55)

- / G^x A [po(0) - i/(V + V r)u0 .n] .

. We first have:

< Ri -

IdB

We write (v,p) = (v + VQ,P + Po) = (v + v0

VT < Tx,

since (v,p) € Bi, and since the center of B\ is bounded by C(i?2, uo, f). Secondly, from (35) and Proposition 2,

+ l|voll^+2m,nU < C [HuoH^r+i^o)) + ll̂ llirç.o(n(O)) + Î Uff/a+^O.Toîlf'foB)) + il^olli^QCO))] 'rn(o)) ^ 0

We recall that <JQ belongs to K^2(Q(0)) and satisfies the initial conditions: cro(O) = 0 and dtcro(O) —

((Vuo)
T.V)uo- On an other hand, z = uo|ae + a(t)w = uo|aö + w / ao, thus

Ja(o)

Finally, VQ is an extension of vb — z which satisfies VQ(0) =

This allows to conclude that

m

= 0. Then

< Cm
dt

(wG -

and

J - t/ o < CJ ^(t-r0)
(56)

where the two constants are indeed independant of m and J since they depend only on the right hand sides of
(55) that depend only on v, p, UQ, po> 0, and not on m and J. Consequently, if the body has a mass and a moment
of inertia large enough, 52 maps B2 into itself. In the gênerai 3D case more nonlinearity rises in the équation of
6 , noticing they appear with a lower order of dérivation in time, they can be controlled in small time. We thus

have to add in the right hand side of (56) a contribution C(R\, R2, uo,f, w0, ^o)p 0 ~ ~^o that
H \\Hr/2+l(0,T)

can be bounded by C(Ri, i?2, uo, f, w0, ip o)pT so that the same conséquence holds at least for a small enough
time.
Remark 7. This condition over the characteristics of the rigid body is a sufficient condition to have the stability
of f?2. Nevertheless it does not seem to be very natural. We should have the existence for small time enough of
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a solution for all kind of dise without restrictions. But for the time being we do not have estimâtes that enable
us to eliminate this condition.

We shall show that under similar assumption the mapping S2 is a contraction. We consider (w^, 6 z) with

% — 1, 2 in £?2 and we associate (vz,pz) = (v2 + Vg,pz + pQ) and (w^ , 6 t). We recall that vf, is a lifting if the
initial and boundary values v0 and vbl and that this velocity is the sum of : VQ (depending on v£) and v0, which
is independent of v^. Therefore again in the case of 2D or of a 3D sphère, if we subtract the équation satisfied
by (WGM 6 i), for ̂  = 1,2, and we rearrange the terms so that the différences vi — v2 and pi — p2 appear, we
obtain

m • J | | 0 i - 02\\

r + exr -exp([T

C

where C is a constant depending on the data and on R\ et R2 but which is independent of T. Then

- WG2||^r/2+i(0)T) + J — V 2

C

Now we estimate

jffr/2+2(0,T)

^+3/2/ÖBxx + exp([ 0 I A ] ) — exp([ 0 2

respect to vfel — V(,2, with

d(exp([TtA]))
dt

(57)

We recall that

- i/Avt p2 = f

z) — div

H-

+

v t(0) = 0

in îî(0)
in fi(0)
on r 0 U
in fi(0),

(58)

We subtract the équations satisfied by (vi,pi) and (v2,P2)- The approach we use at the previous section and
lemma 7, 8 and 9 leads to the following estimate:

f + C 11̂0 ~ ̂ L '

Using the définition of VQ for i = 1,2, we get

For all T < T\, we have C T n < l thanks to the way we choose T\. Then there exists a constant we dénote by
C such that:

r < C (59)
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The estimâtes (57) and (59) yield

0 1 - 0 2 <

635

m||wG1 -

C ||vw

(60)
r/2 + 2(0jT)

Furthermore,

exp([if IÀ ] ) - exp([1?2A])

We shall estimate

apply Lemma 5 ii). We hâve

with respect to i — . We want to

< C(T0) dt2

We recall that exp([ 6 ^A]) are matrices depending on the cosines and the sinus of the various components of
the vector 0iRi. So using the séries expansion of cosines and sinus, combining the terms in order to make
appearing the différence 9 i — 0 2 and then applying lemma 5 ii), it cornes

Hr/2(0,T)
< C(R2) i - 0

Thus

The estimâtes (60) and (61) lead to

C(||WG1 ~

/2+i (0,T)

\\9\ -

~ 0 2 (61)

(62)

Then the mapping S2 is a strict contraction for a mass and a moment of inertia of the dise large enough. The
gênerai 3D is treated as before. This conclude the proof of Theorem 1. D
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