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AROUND 3D BOLTZMANN NON LINEAR OPERATOR WITHOUT ANGULAR
CUTOFF, A NEW FORMULATION

RADJESVARANE ALEXANDRE1

Abstract. We propose a new formulation of the 3D Boltzmann non lmear operator, without assummg
Grad's angular cutoff hypothesis, and foi intermolecular laws behavmg as l /r s , with 5 > 2 It mvolves
natural pseudo differentïal operators, under a form which is analogous to the Landau operator It
may be used in the study of the associated équations, and more precisely in the non homogeneous
framework
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1. INTRODUCTION

In this paper, we introducé a Pseudo-Différential approach of the Boltzmann 3D non linear operator, when
one does not assume Grad's angular cutoff hypothesis

For functions /(f), v E M3, this operator has the following form

) ( v ) ^ f [ dv1duj{f(v>)f(v'1)-f(v)f(vl)}B(\v-vll\ ( V~Vl u)\) (11)

Above VjVi E M3, and vf = v + (vi — v> w)w, v[ = v\ — (v\ ~V^UJ)LÜ dénote the so-called post collisional velocities,
for a given u £ S2, unit sphère of M3

As mdicatedj the collisional kernel B(.,.) is a given function of the relative velocity | v — v\ \ and on the angle
v — Vi

v-vi\
For the précise physical framework, we refer to [14,15].

In most of the mathematical works concerned with the associated homogeneous and non homogeneous équa-
tions, one assumes the angular cutoff hypothesis of H. Gr ad. Roughly, this means that

W (1.2)

For instance, one can consult the papers [21,22,24,25,33].
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On the other hand, it is well known since the outset of the mathematical studies on the Boltzmann équation
(actually this has led Grad to his cutoff hypothesis), that (1.2) is almost never satisfied for real physical
interactions.

Indeed, see [14,33], in 3 dimensions, B has the following typical form

v —
v —

(1.3)

which is a cross section close to that given by forces in ^-, with s > 2. The parameters 7 and v are given by

7 = 7(5) = I^P " = ^(s) = I^T ' ( }

For such values, one checks that (1.2) fails to hold, and this is called the non cutoff case. It explains one of the
main difficulties in giving a meaning to Q(f,f)(v) in (1.1), for non smooth ƒ, as the usual splitting of Q into
the gain and loss terms is meaningless.

There are only few papers concerned with that case.
For the homogeneous équation, that is without dependence in the variable x (the position), Arkeryd [10,11]

has dealt with the existence, when entropie bounds are assumed on the initial data. His work was extended
recently by [23,30].

Note that such solutions are built with few informations, that is only moments and entropie estimâtes are
known.

In the 2D homogeneous and non cutoff case, more informations are available, and in particuliar, regularity
results have been proven to hold by Desvillettes [17-19], see also [20].

Let us also mention the paper of Pao [27] about the linearized Boltzmann operator again in the non cutoff
case.

We recall the work of Ukai [33] on the non homogeneous équation in the non cutoff case, where he produced
local (in time) solutions in the Gevray class.

We would like also to mention the related papers [4,8,26,31] showing regularity estimâtes from the entropie
dissipation rate.

As a final remark, we point out the paper [9], where not only assumption (1.3) is improved, but also produces
weak solutions without the way introduced herein.

In this paper, we propose a new formulation of Q in the non cutoff case. Previous formulations exist already,
see for instance [32], but our strategy will be different hère. Indeed, our formulation introduces a pseudo-
differential approach to Q, and as such, is more adapted to a functional treatment of the Boltzmann équation.

This way has been settled up in [1,2] in the 3D linear context, where we gave an analysis of the structure
of the associated (non) homogeneous équation, exhibiting new features, and among these ones, the so-called
irreversibility, or what seems to be one mathematical traduction of this physical notion.

The present paper is concerned with the non linear situation, that is for the operator Q as given by (1.1),
with the assumptions (1.3) and (1.4), and some généralisations.

In Section 2, we display this décomposition of Q. It is given by Theorem 2.1 and shows clearly the différence
between the cutoff and non cutoff cases. In particular, in the non eut off case, the operator Q acts on ƒ as a
pseudo-differential operator of strictly positive order, but with an exotic positive symbol. This fact was already
noticed by Pao in the linearised setting [27], but using older tools from pdo theory.

Let us mention that we shall not discuss the usual questions, such as existence, regularity or even asymptotics
of the full non homogeneous Boltzmann équation, in the non cutoff case. But the resuit (or method) presented
hère is used in at least two papers (and already in [1,2]): in [5], where we produce renormalised solutions and
in [7] where global solutions are build for some small initial data. Also, an other important application for the
linearised operator is actually worked out [6].
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The final Section 3 is concerned with the so-called Boltzmann-Coulomb case, an important cross section
occurring for instance in plasma physics [12,14,16]. As such, it stands outside the non cutoff case, but we show
that the method of Section 2. applies for this collisional kernel.

Some results of this paper have been announced in [3].

2. DÉCOMPOSITION OF Q

We give hère a pseudo-differential décomposition of the 3D Boltzmann non linear operator Q as given by
(i.i).

For practical purposes, we consider the associated quadratic bilinear operator (not symmetrie) which writes
for f = f(v). g = g(v)7 smooth functions of v G M3

Q(f,g){v)= f f
JK3 JS?

V —

V — Vl
(2.1)

where the notations are those of Section 1.
We recall that the collision kernel B is given as

B
V —

V —
= = l 7) — 7J i \^

and the critical parameters are defined by

6 1 S X

(2.2a)

(2.3)

and we always assume 5 > 2.
The formulation of Q announced in the Introduction is given by

Theorem 2.1. Let Q be the Boltzmann 3D non hnear operator given by (2.1), with B} 7 and v given by (2.2a)
and (2.3). Then, one has the décomposition

Q(f,g)(v)=~Cf
s f dag(a±v) \ a \^\ S(a).D T"1 (ƒ)(.,)

+ C'9.f{y). f da\a \^\ S(a).D f1 (g)(a + v)
JR3

v~Vl

Above, we used standard pdo notations. Cf
s %s a fixed constant dependmg only on s, and given through (2.19)

and (2.23). S(a) dénotes the orthogonal projection operator over E0^a, the hyperplane through 0 and orthogonal
to a, and

v-vi\,
V —

V — v' — v
tf-vftH*-

One has Bc >0,Bce Lloc(M.3 x S2), and more precisely

Bc(.,.)<C\Vl-v v-2 D
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Remark 2.1. Note that the last term behaves exactly like a Boltzmann operator with ciitoff^ cf. the papers
mentioned in Section 1.

Remark 2.2. Let us comment on the first term of the décomposition given by Theorem 2.1. There are at least
two way s to consider this term. One may intégrât e in a first, then in £, or reverse the intégrations. In the first
way, setting

f
Ja

= f da I a
J

I Z / - 1

l is clearly homogeneous with respect to the variable £. Furthermore, if we assume g > 0, (1+ | v \2)g G L1,
then l is well defined, and one has a bound as

The bad point is the lack of control on derivatives of Z, and thus the standard pdo theory does not apply.
In the second way, we fix a, and introducé a cutoff around the smgularity | S(a)£ |, that is a fonction </>,

smooth and such that

<j> : M+ -> [0,1], = 0 for t > 1. = 1 for t < 1/2.

Then, we split | S(a)Ç l^"1 as

Now, the first term is bounded, while the second one has no singularities, for fixed a, and is still homogeneous
for large | S(a)£ |.

In f act, we can say more. Prom

S(a).D r1 0(| S(a).D \)(f)(v) = ƒ

let us consider a basis of M3, with first vector j ^ , and express £ and v in these coordinates. Then the term
above writes as

where /2>3 dénotes Fourier transform with respect to the last two variables. Now, as <j> has compact support,
we get that | S(a).D l^"1 </>(\ S(a).D \)(f)(v) is well defined.

Furthermore, we see that | S(a).£ \v~l {1 — <j>(\ S(a).£ |)} is a good symbol, as in particular it is supported
outside the set | S(a)^ |> 1/2. But this method is difficult to apply in the non linear setting of the Boltzmann
équation, when assuming the usual entropie bounds.

One full correct way is explained in [5] and makes a deep use of results from [28,29] and références therein,
producing renormalised solutions for the Boltzmann non homogeneous équation. Other applications of Theorem
2.1 (or method of proof) are also given in the linear (or linearised) context, see for instance [1,2,6]. D

Remark 2.3. One may allow other kernels B. We just mention the following one, which is used in [5,7], as it
leads to the easiest mathematical analysis. Assume that we take

B(.,.) - x(l t>i - v' |)1 Î—-, (2.2b)
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with the same exponent v and where x is a positive (say smooth) function. Then the method of proof of
Theorem 2.1 applies again, and in that case, we get

Q(f,9){v) - -Cs f dag(a + v)X(\ a |) | a \"\ S(a).D r 1 (ƒ)(«

• C'J{v) f daX(| a |) | a |"| S(a).D I""1 (g)(a + v). (2.4)

Note that we have only two terms compared with the previous assumption (2.2a).

Remark 2.4. On the formulation given by Theorem 2.1, the link with the Landau operator, see [30-32] for
instance, is more clear. •

The rest of the section is devoted to the proof of Theorem 2.1.

Prooi (of Theorem 2.1).

Firstly, since vf = v 4- (v± — v, u))tv, we have v — v
— v

— v

It follows that v — f i

V\ — V

and

— v

v — v |
Vi — V

, u; ) LÜ. In particular, one has the relation

(2.5)

Q(f,9){v) = ( ( { f { v ' ) g ( v [ ) - f ( v ) g { v i ) } \ v - V l (2.6)

Note that 7 4- y = — > 0 as 5 > 2. Next, we write (2.6) as
s — 1

Q{f,g)(v)= f f {f(v')g(v[) - f(i

Noticing that (v\ — vl),(vf — v) = 0, we deduce that

Q(f,g)(v)= f f {f(v')g(v[) - f

that we split as

- «') + («' - v' - v \v
(2.7)

V' — V

with

/ v')g(v[) - f(v)g(Vl)} \ V l - v '
v —v

(2.8)

(2.9)

(2.10)
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Q2(f,g)(v)= f f {/(w')ffM)-ƒ(«)»(«!)}

X [ { | VX - V' | 2 + \V' - V - I Vi - V'

Our next task will be to analyse each of these two terms.
Let us begin with Q2) &

n<A set

1
v' - v \u ~ V ' | 2

Bc dépends on the same variable as B, as {| vi — v! |2 +

| Vx-V' \2=\Vl-v |2 | l - | (

Of course Bc > 0. Next, consider the function

v1 ~ v

V' - V

} 2 =\V-Vl |7+^ a nd

\

J

(2.12)

j :t e

for all a e l 3 - {0} fixed. Then

and as —— = -, 0 < —-— < 1, we deduce that
Zi S ~~~ X. Zi

<B*m^.) me-

(2.5)

v — v \~ v I \vi « | | ] — a;) |2

we get

, .)=C\v1-v

Recall that 0 < 1 - ( 7 ^) < 1 , - 1 < I / - 2 < 1 and - 3 < 7 < 1. Note also that

(2.13)

(2.14)

and therefore Bc is

integrable over S2, for fixed ^i — v. In conclusion, we have shown that Q2 given by (2.11) behaves exactly like
a Boltzmann operator with a cutoff type kernel, and this is one part of Theorem 2.1.

Next, we consider Q\ given by (2.10). We first transform it using the Carleman représentation, see [13,34].
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Lemma 2.1. Assume (2.2a) and (2.8). Then Q1 given by (2.10) wntes

+ v)-f(v)g(a + v-h)}\a\^. D

Proof. We perform the same transformation as used recently by B.Wennberg [34], which transforms the intégral
over S2 of (2.10) into an intégral over a plane. In fact, this idea goes back to Carleman [13].

The important différence with [34] is that we keep in the computations the loss term —f{v)g(vi).
Let us go into the details, referring to [34] for some geometrical insights and for some earlier références.
Let EViVt-v for the plane normal to vf — v and containing v, v! describing R3. We write v' = qui + v. For

fixed CÜ and v, we may also express v\ as v\ = qw + v'^ so that dv\ becomes di^dg. In the same way, expressing
v' in polar coordinates with origin at v, dv' becomes q2dqduj (recall we are in 3D). Therefore, we get

dviduj — dv'xdqduj ~ -^dv[dv'}

where d̂ ^ dénotes the usual Lebesgue measure on EV)V'-V and dv' the Lebesgue measure in M3.

As v' — v = qtü, we have also V\ = (v' — v) + v'l9 and as q2 =\ vf — v |2, we get also d^idwdw

Finally, using the relation | v' — v\ \ = \ v[ — v \, we obtain the following expression for Q

f
jR3

v — v i

For vf fixed, we make the change of variables v[ —> a — v[ — v\ that is v[ = a + v', and we find that it also
writes

/ 2 d V ' [ {f(vf)9(a + v') - f(v)g(vf - v + a + v')} \a + v'-v \^ da,
v ~ v

then, again a = a' + v — v\ getting (change af to the notation a at the end)

Q(f,9)(v)= [ , ;
 2dV\y+2 f {f(v'M<* + v)-f{v)g(a + v')}\aF+"da,

Jm3
v, \ v v I JE0 v_v,

and making the change i n u ' , h~v — v\ noticing (a, h) — 0, we conclude the proof of Lemma 2.1. •

Next, we introducé the

Déf in i t ion 2 .1 . For ue S2,v e M3, let

f3g(u,v) = f g(a + v) | a |7+1/ da.

We set Qi = Qi^ + Qi,2 where

Qi,i(f,9)(v) = J^y£

Now, we can start with Qi,iï for which one has
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Lemma 2.2. Let Qi,i be given by Définition 2.1. Then, there extsts a fixed constant Cf
s dependmg only on s

(or u) such that

QiAf>9)(v) = ~Cf
s f dag(a^v) \ a [*+»{ S{a)D I""1 (f)(v).

The value of Cf
s may be found below. D

Proof. According to Définition 2.1, (3g{—u,v) = /?fl(u,?;), so that making the change of variables h —• —h, one
finds

J^^ ^ y (2.15)

Writing h in polar coordinates, h = rco>, wit h r =| h |, u> = •:—r, we get also
I h I

Qi,i(/>0)(v)= / d r / dw—{/(v + nx;)+ / ( t ; - rw)-2 / ( r ; )}^(a ; ,v ) . (2.16)

Next, letting ƒ(£) dénote the Fourier transform of ƒ, (2.16) writes

Qi(i(/,fl)M= / àtf{î)e*v f dw/3fl(a;>i;){/+OO^(c^w + c - ^ w - 2 ) ) . (2.17)

^R| */sj U0 r J
By classical homogeneity arguments, one has

f %{e%r* w + e - t r € w - 2) = - C a I f .o; l1'"1, (2.18)
./o r

*L(2-e"-e-")- (2-19)

Turning to (2.17), we have obtained

QiAf,9)(v) = -C. f dÇf{Ç)e*v f dLü/3g(u>,v) | ̂  \u~x . (2.20)
JR\ JSI

Next, again from Définition 2.1, one has

Pg{u,v)= f daöa^o9(a + v)\a\'r+u, (2.21)
•'Bi

according to which (2.20) transforms into

QiAf,9)(v) = -C. f dÇf(Ç)e*v f du f daôau=og(a + v) \ a \^\ ÇM \"~\ (2.22)
Jm Js* Jm
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that is also

f f ~ c . \ f
Qi,i(/, 9)(v) = - / d£ / da/(C)e*c v$(a + v) \ a | 7 + l / ̂  Cs / da; | Ç.a; l^"1 > , (2.23)

and again, we define the constant Cf
s as

âu\^r1)=C's\S(a)4r1. (2.24)

Getting back to (2.22), we find

QiM 9)(v) = -Cs f à£ [ da | a \i+v g(a + v) | 5(a).f I""1 ƒ(0e'c " (2.25)

which is nothing else than the expression given in the statement of the Lemma. •

In the same way, one has the following result concerning Qit2-

Lemma 2.3. Let Qi}2 be gwen by Définition 2.1. Then} with the same constant Cf
s as m Lemma 2.2, one has

QiM>9)(v) = C'a.f(v). f da | a \f+v\ S{a).D l""1 (g)(a + v).

D
Proof. As in the proof of Lemma 2.2, we find first

QiM,9)(v) = f(v) i dr f du;^{Pg(uJ,v)-pg(iü,v-roj)},
Jo Js% r

and introducing Pg(u)}^) for the Fourier transform of (3g{u),v) with respect to the variable v, we get

j^ e

Shifting u) into —o;, one finds also

Qi,2(f>9)(v)=f(v) f dcu [ d^(a , ,^ u {/ + O O ^(2-e— *»-?«»)). (2.26)
JSI JWL\ Uo r )

The curly brackets term is nothing else than Cs \ £.u) \u~x as given by (2.19) and (2.23), so that

Qi,2(/,ff)(v) = +C9.f{v). f du f dè$g(u>,Ç)e*v | tw r l • (2.27)
Js?t Jm
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Next. we express J5g{Lü, £) in terms of /3ff, and we have the following computations. where we use the same trick
as in (2.21)

a

dco \

ff f -<k l(
JM.3 Jgj Ji^3

= +C s . ƒ(*;). f di f du f dk f dag{a + k)
*/]R| «/SJ JK| ^E3

= ƒ (u). f d$ f dk f d a \ a |7+z/ s ( a + /c)e~^ fce^ w J Cs f
JE| JEj 7^3 |̂  JS^LJ a=0

which, in view of (2.23), yields

ff
Q i 9i ƒ. ojfi?) — C_. f(v) I I \ a \ G S(a).

Finally

ff
Qi,2{fi9)(v) = +Cf

5./(i>). ƒ da / d£ j a |7+ l /

7R3 JE?
and we recognize the expression settled in the Lemma.

Collecting all the above results, the proof of Theorem 2.1 is ended.

(2.28)

(2.29)

D

Remark 2.5. We would like to produce a second formulation of Q, although we have not found a rigorous
functional framework in order to use it.

This formulation is still based on the Carleman transform as used in Lemma 2.1. But this time, we proceed
directly from (2.1). Then, one can show that

QU> ƒ)(*>) = [ da f T^Tïöa h=0 {f(v - h)f(a + v) - f(v)f(a + v - h)} x 1 a + h p+v da. (2.30)

In this intégral, for fixed v, we make the change of variables in a as a + v = w, that is a = w — v, getting

Q ( f J ) ( v ) = f f T^T2S(v_w)h=o{f(v-h)f(w)-f(v)f(w-h)}x I v-w + h |T+" dtü. (2.31)
JRl JR3

h\
 n \

Noticing \v — w + h \^+v=\ v-w-h \^+1/ as (v - w).h - 0, we split (2.30) as

Q(f, ƒ)(«) = Qi(f, ƒ)(«) + Q2(f, ƒ)(«),

where

{f(v - h)f(w) li -f(v)f(w) \v-w 7+1/1
(2.32)

and

d/i
Or\ h

(2.33)
-f(v)f{w -h)\v-w
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Now, note that in (2.31), we have a différence operator of step h applied to the function of v\ v —> f{v)f(w) \
v — w |7+L" while in (2.32) it applies to the function of w : w —> f(v)f(w) \ v ~w |7+l / , with w and v respectively
fixed.

Then using the ideas of proofs of Lemma 2.2 and Lemma 2.3, one obtains

S(v - w).Dv r 1
v-w

C'a f dw\ S(v - w).Dw r " 1 (f(v)g(w) \v-w | T + " ) , (2.34)

with the same constant Cf
s as in Theorem 2.1.

Note that this second formulation seems easier to handle than the previous one, but it turns out that the
mathematical analysis appears to be more involved. In particular, the pdo acts also on the weight function,
while in the formulation given in Theorem 2.1, this one was part of the symbol. Yet, one advantage over the
first one is that we can consider more gênerai kernels B (see Remark 2.3). Here is one important example.
Assume that B is given by

Vl

V —
= X ( i v - -Vl

(2.2c)

where x i s a given positive (say smooth) function. Then (2.33) holds t rue , provided the moment \v-~w | 7 + i / is
turned into \ v — w \1+v x ( | v - w |). D

3. COULOMB DÉCOMPOSITION

In the following, let again ƒ be a smooth function. The Boltzmann Coulomb operator is given (essentially)

Q(f)(y) = v-v1
(3.1)

Above, 6 > 0 and ö « 1 is a fixed constant.
The mam result of this section is given by

Theorem 3.1. The Boltzmann-Coulomb Q gtven by (3.1) may be wrttten as

with

«) = -a(v,Dv)(f)(v),

+oo -2

where C is a fixed > 0 constant, \x — . ö_ 2 and t > 0. D
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Remark 3-1- The above resuit is only but a prelimmary step m the construction and study of associated
solutions For instance, ît should provide at least small solutions, as shown m the non cutoff case m [6] Note
that a weak formulation is already sufïicient, see [9], but, and agam as m Section 2, we expect that ît will prove
useful, at least for regularity questions or m a hnearised context O

Remark 3.2. One has the followmg estimâtes

\ l l ( \ ^ \ ) \ \ t i ( \ ^ \ ) \ ^ , \ ^ \ ^ \ ) \

Proof (of Theorem 3 1)
Firstly, we make use of the Carleman's lepresentation as m Section 2 to get

• _ v 3

as | vi — v | = | v[ — vf | and then

= f I j d V ' 15 / {MM) ~ f(v)f(v' ~ V + «i)
JRl, \V —V\ JEVV_V,

{MM) f()( i)} j ^ ^
EVV_V, \V[-V'\-

Here and below, recall that Eaip dénotes the hyperplan passing through a and orthogonal to j3
For vf fixed, make the change a = v[ — vf to obtam

{/(«')ƒ(« + V) - f(v)f(v' -v + a + </)i 15 /
~ v I JEV_V, V_V,

| Ji 15
I, ! v ~ v I

then, for fixed v' make the change a' = a — v + v1 and then the change for vf fixed, h = v - vf to obtam finally

JRI I h \ JEOH \a-h\-

We split Q accordmg to

(3 2)

where

| a - h | -

M = ƒ M f ^E f {/ (« + «) - / (a + f ~ h)}l^^>ô (3 4)

Let us first study Q\ Proceedmg as m Section 2,

v) = [f(Ç)e* vSymb(v,t), (3 5)
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where

f dh f
Symb(f ï^) = / / f(a-\-v){l — a

jRl\h\ JEQ h

f°° f dr f
= / / ~s / da.f (g + ?/){! - cos(rü;.£)>l r2 > 3

Next, note that, as ô > 0 and 5 << 1, one has denoting ji = , ö > 0, ia|2+r2 ^
Therefore, one obtains

Symb = C / /(a + t;) / dco f
sin2(r | cu.i

-dr.

Let us set

a = -dr.
|

and only if r > /x | g |.

(3.6)

(3.7)

Actually, note that the sole difficulty arises when a = 0. We now study a. One has first, making the change of
variable r' = r \ UJ.Ç \ that

a = / do;
;,o;a=0

sin2r
a

2 sin2r
dr)

Note the brackets term above is of the form ^ ( | a A £ |). Actually, we can push the computations a little
further. Start from

a =
|2 sin2r
l

Therefore

with

a =
sin2r.

= ƒ d ü ; | a ; . y ^ ^

Shifting into the usual polar coordinates, one has also

b = ƒ cos20sin01cos,9<-

(3.8)

(3-9)

(3.10)
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If ^ 7 ^ 1 > 1, so that r > \i \ a A £ |, then

-f
Jo

h= f* cos26>sin6>d6> = i
Jo 3

Else, if ,J"Ag. < 1, so that r < ji \ a A £ |, then

cos TÏATT)

1 r 3

3/i3 | a A£ |3

Finally, we obtain (if [ a A £ |= 0 then b = 0)

1 I r 3

Getting back to (3.9), we have finally obtained

a —

00 , sin2 r , 1 1 r3

a A

l|QASI ' 3/i3 | aA£ |3-

1 r 3

r

Next, set

00
 J s in2r

dr—s—,

and

Then

sin2 rdr.

a = A a A

In conclusion, in view of (3.7), the symbol is given by

(3.11)

(3.12)

(3.13)

(3-14)

(3.15)
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There remains to analyse Q2 as given by (3.5), and in view of the preceding steps and Section 2, it writes as

Q2(f)(v) = f(v)C [ [ r^{S^\ a A £ |) + 5M(| a A £ |)}/(Oe*-(a+fl)d£- (3.16)

This ends up the proof of Theorem 3.1. D

Acknowledgements, I would like to thank Kamal Hamdache, from the beginning of my studies. He suggested some
questions, and also quite without purpose, puts me on the (right?) way.
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