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ON THE MATHEMATICAL ANALYSIS AND OPTIMIZATION
OF CHEMICAL VAPOR INFILTRATION IN MATERIALS SCIENCE* **

ADI DITKOWSKI1, DAVID GOTTLIEB1 AND BRIAN W. SHELDON2

Abstract. In this paper we present an analysis of the partial differential équations that describe the
Chemical Vapor Infiltration (CVI) processes. The mathematical model requires at least two partial
differential équations, one describing the gas phase and one corresponding to the solid phase. A key
difficulty in the process is the long processing times that are typically required. We address hère the
issue of optimization and show that we can choose appropriate pressure and température to minimize
these processing times.

Mathematics Subject Classification. 76S05.

Received: November 24, 1999.

1. INTRODUCTION

A variety of materials are produced by infiltration processes. In these techniques a fluid phase (ie., a gas or
a liquid) is transported into a porous structure, where it then reacts to form a solid product. These methods
are particularly important for producing composite materials, where the initial porous per form is composed
of the reinforcement phase (Le., fibers, whiskers, or particles) and infiltration produces the matrix [1,2], A
detailed assessment of the relevant reaction and mass transport rates during infiltration requires mathematical
modeling, using a minimum of two coupled partial differential équations which describe changes in the reactant
concentration and the solid structure as a fonction of both position and time. This type of modeling can also
be extended to analyze the optimization and control of infiltration processes.

The research presented hère specifically considers optimization for a set of two PDE's which describe isother-
mal, isobaric chemical vapor infiltration (GVI). In this process a vapor-phase precursor is transported into the
porous preform, and a combination of gas and surface reactions leads to the déposition of the solid matrix phase.
During infiltration the formation of the solid product phase eventually closes off porosity at the external surface
of the body, blocking the flow of reactant s and effect ively ending the process. This is a key feature of most
infiltration processes. Isothermal, isobaric CVI often requires extremely long times, so it is generally important
to minimize the total processing times.

This paper considers the problem of determining the optimal pressure and température which correspond
to the minimum infiltration time. From a practical perspective, the nature of the porous preform is often
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predetermined by the intended application (e.#., the physical dimensions and the fiber size are invariants).
Thus, the process can only be controlled with process variables: température, pressure, and gas composition.
Note that the pressure and température détermine several different physical quantities in the model, such that
the a gênerai understanding of the optimum conditions is not immediately obvious from the basic formulation.

We adopted two stratégies to solve the optimization problem. In the first we get an asymptotic approximation,
valid when a2 (defined in Sect. 2) is small. We then used the explicit form of the asymptotic solution to get a
functional of the pressure and température that estimâtes the optimal conditions for the process. In the second
approach we get the functional numerically.

This paper is organized as follows: Section 2 présents the basic set of two partial differential équations used to
model isothermal, isobaric CVI (including initial and boundary conditions). A définition for a successful process
and a discussion on the optimization problem is given. In Section 3 an analysis of the optimization problem
is given. The analysis performed is based on asymptotic expansions as well as computations. The results of
the analysis are optimal working pressure and température. In Section 4 the effects of powder formation in
the analysis are included in the analysis; hère too the pressure and température to minimize the final time are
provided. In Section 5 a discussion of the significant of these results is presented.

2. FORMULATION

A mathematical description of infiltration requires one or more partial differential équations which describe
the évolution of the matrix (ie., the solid phase), and one additional partial differential équation for each
chemical species in the fluid phase. For a simple pore structure, the continuity équation for species i is

• V-Nt = f]virRr (1)
dt

T

where t is time, e is the void fraction of the media, d and Ni are the concentration and the flux of species %
respectively, nr is the number of the gaseous species, vir is the stoichiometric coefficients for the ith gaseous
species in the rth reaction, and Rr represent s the volumetric reaction rate of reaction r.

The basic partial differential equation(s) which describe reaction and mass-transport in porous media (i.e.,
the fluid phase) are well-established [3,6]. For example, the Dusty-Gas model [7] is typically used to describe
multicomponent diffusion and convection in a porous body.

^ ft*
» D K

 K 'DKi P j£

where R is the gas constant, Be is the permeabiiity of the media, fi is the viscosity of the mixture P is the total
pressure and T is the température. T>Mió and D^i are the effective binary diffusivity for species i and j and
the effective Knudsen diffusivity of species i, respectively.

In this paper we consider the binary (two gases mixture), diffusion-limited process, with one dilute reactant
species in one spatial dimension. Under this conditions P is constant.

Describing the évolution of the matrix phase is equivalent to considering the change in the void fraction, e
(i.e., the volume fraction of gas inside of the porous solid). The évolution of e is given by:

% = -«5„(e) (3)

where u is the rate at which the solid product grows [volume/area/time] and Sv(e) is the gas/solid surface area
per unit volume of the porous solid.
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TABLE 1. Values of the constants.

Aa 6.35 x 1021 K3/2 atm-1

Vo = y/e(t = 0) 0.85
Q 55 000 K [16]
AD' lO^m diam fibers 1.54 x 10~5 atm/K

80Mm diam fibers 1.93 x 10~6 atm/K
1 diam fibers 7.7 x 10~r atm/K

The preforms used for CVI typically have a complex porous structure. However, a cylindrical pore is often
used to formulate simple models. This leads to the following expression for Sv:

Sv(e) =

where ro is the initial pore radius and so is the initial concentration of e.
These assumptions leads to the following set of équations, (for more details on the dérivation of the model

see [4]):

(5)

where

* = I (7)

c - C M ) (8)
c ~ C M (8)

V = V~e (10)

0 = Ap^^r , (12)

where L is the thickness of the preform, ro is the initial pore radius and Xo dénotes the fraction of the active
gas in the inlet (at z = 0). Q — E/R , where E is the activation energy. Dn is a lumped constant which is
proportional to the ratio of the molecular and Knudsen diffusivities. Note that a2 is dimensionless and that
(3 has units of inverse time. The time derivative in équation (1) has been removed in équation (6), which is
permissible because a pseudo steady state C profile is achieved in a short amount of time (ie., compared to the
time scale over which e changes) [5]. Transforming e to rj simplifies équation (5). Note that 77 is proportional to
Sv, so 77 can be viewed as a dimensionless surface area per volume. Values of the constants in équations (9-12)
are given in Table 1, for the case of carbon G VI from méthane, wit h a preform thickness of 2L = 3 mm.
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The System (5, 6) is subject to the initial condition

7](z,0) = 770(2:)- (13)

This paper treats only the case of a uniform initial condition, 770 (z) = 770.
The boundary conditions most often used for CVI models are to fix the concentration at the outer surface

of the preform, and to assume that diffusion occurs in from two opposite sides, such that there is no net flux
in the middle of the preform (ie., at Z = L, where L is the half-thickness of this "virtual" preform). Thus the
boundary conditions are:

c(0,t) - 1 (14)
de
dz

= 0. (15)

Wit h this model it can be shown that:

L The value of the void function in the inlet z = 0, is

77(0, t ) = 770 - | t . (16)

2. A classical solution exists and is unique for any time t < tc, tc = ̂ p-.

3. At the critical time tc = 2̂° the void function 77 vanishes at z = 0, the inlet closes completely, and the
process ends.

4. The void function 77 and the concentration function c are bounded from above and below. 0 < c(z,t) < 1,

5. For any time t < tCi the void function r)(z,t) is monotonically increasing function of the spatial variable z.
6. The concentration function c(z, t) is monotonically decreasing function of the spatial variable z and

cosh 7(1-2:)
c{z,t) <

cosh 7

where

1 = , -£-,•*• <")

The existence and uniqueness were proved by Marion (private communication) the rest of the properties were
proven in [12] in Lemme 1 to 6.

A better lower bound on the concentration function c(z,£) is needed for our optimization technique, This
will be done in the following theorem:

Theorem 1. Let c(z,t) be the solution of (5) for t <tc, then it is bounded from below by

*•« >- f2^^! <18>
where 7 is defined in (17).
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Proof. We first note that the fonction
cosh 7 (1 — z)

cosh 7
solves the équation

= 0. (19)

with the boundary conditions w(0) = 1, wf(l) = 0. To complete the proof we need the following comparison
Lemma:

Lemma 1. Let, for 0 < z < 1

^ (a{z)^\ - b(z)u = 0; 0 < b < B (20)

~ U{z)~\ - B(z) u, = 0; 0 < a < A, (21)

where a(z),b(z),A(z),B(z) are C1(0,1) functions. With boundary conditions:

u(0) = w(0) > 0,

lu(l) = | W ( 1 ) = 0.

0 0

(22)

(23)

Proof We quote Lemma 3 in [12] that shows that it, w > 0 and J^u, ̂ ^ < 0.

By multiplying équation (20) by w, équation (21) by u and subtracting the two équations we get:

w(aufy — buw — u(Awf )' — Buw = 0 ,

which is equivalent to

(wau'Y - {uAw'y = (b-B)uw + (a - A)u'w' < 0.

Then by integrating between z and 1 and making use of the boundary conditions we get:

wauf — uAwf > 0.

we get équations (22) and (23) by solving this inequality.
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From the Lemma it is clear that

We are ready now to prove the theorem. We consider équations (6) and (19) and identify

A{*) = f(Vo),B(z) = a2T]o , u = c{z,t),

and
{ \ t( \ uf \ 2 cosh(7(l - z))

a(z) = ƒ (77), b(z) = a2
V, w= ^

Since 77 < r/o and ƒ (77(0, t) ) < ƒ (77) < f(r]o) we can apply Lemma 1 to get (18).

D
The parameters a2 and /? depend on the three key process variables: T, P, and Xo. Process optimization

during CVI is achieved by setting these variables to optimal values. In isothermal, isobaric CVI the infiltration
kinetics are controlled by diffusion and the déposition reaction. To achieve relatively uniform infiltration,
diffusion must be fast relative to the déposition rate. This is typically accomplished by choosing processing
conditions that resuit in a slow déposition rate, which usually leads to long infiltration times. Thus, the primary
basis for process optimization is to obtain the desired amount of infiltration in the shortest possible time.

We will thus defme what is a successful process:

Définition 1. A process is called successful if for some time tf < tc

V(zi,tf) < M o (24)

v(O,tf) = kovo (25)

k0 < 1; k0 < fei, 0 < Z! < 1.

Equation (24) states that the final values of the void function 77 should be small in the interval between the
inlet and the point z1 (note that r}(z,t) is monotonically increasing function of the spatial coordinate z). In
most problems of interest z\ — 1. Conditions (24) and (25) state that the void function should be uniformly
small.

We can détermine explicitly the final time, tf, in fact from (16, 25):

tf = (l-ko)voj (26)

Note that the time for the process to end decreases as a function of (5 (itself a function of the température and
pressure, given in (12)).

In the next theorem we will establish the fact that one can always find parameters a and 0 (actually, pressure
and température that détermine a and 0) to achieve a successful process, in fact we can state:

Theorem 2. For ail 0 < ko < fci < 1 there exist température and pressure such that there is a successful
process.

Proof. Property 1. stated that 77(0, t) = 770 — fi , so we can always satisfy (24) for the final time tf defined in
(26). The harder part is to show that we can always choose a to satisfy the uniformity condition (25).

By intégrât ing équation (5) we get

ri(zutf) = 770- f' ^c(zut) dt (27)
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We change variables

r = E(t)= 7,0 - | t , (28)

and note that £7(0) = 770, E{tf) = fco rço, dr = — § dt. Prom Theorem 10 we get:

rvo
c(zi,r)dr

For a successful process we demand that rj(zi,tf) < fci r/0, this will be satisfied if we choose a such that:

[ cosh7 ( l -2 i ) l ^ ( o t ) ) 1 -
L cosh 7 J 1 — ko

Since j " " ^ 1 < 1 we have to find a s.t.
1 —«0

cosh 7(1-2:1) [1 -fci
cosh 7

a can be made small enough such that the left hand side will be as close to 1 as needed.
The goal of the analysis m the followtng sections is to find the température and pressure that mmimize the

final Urne tf for achievmg a successful process.

3. ANALYSIS OF THE OPTIMIZATION PROBLEM

The final time, tf is given by (26) and it is a decreasing function of fi(P,T), given in (12). However ƒ?
can not be taken arbitrary large without violating the uniformity condition (24). The optimization problem
involves therefore maximizing /3(P, T) with the constraint 77(21, tf) < fci 770- However the expression for 77(̂ 1, t /) ,
équation (27), tf is an intégration boundary, which makes it a non-standard optimization problem. In order
to overcomethis difficulty we make a change of variable, (28), and use the définition for a successful process,
(25), to convert the intégral boundaries to constants, as was done in the proof for Theorem 2. This change of
variable converts the optimization problem to a standard one.

In order to express this constraint explicitly in terms of P and T we can use either by asymptotic expansions
or by direct numerical solution of the System (5, 6).
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3.1. Asymptotic expansions

In most of the application the parameter a2 is small, and therefore it makes sense to expand the solutions
in power of a2. The formai expansion t the order of a2 is:

c(z,t) ~ 1-a2 (z-Ç\ -£=r (29)

E

Prf
ADT)

4)[(i)^(Il)] ,30,

and for ƒ (77) =

where, again,

= %-f*- (31)

In the following theorem we shall prove that the asymptotic expansion is accurate for order O(a4).

Theorem 3. For all 0 < z < 1} t < tf the différence between the exact solution and the asymptotical approxi-
mation is O(a4).

Proof. By integrating (6) between z to 1, dividing by ƒ (77) and integrating between 0 to z one gets

c(z,t) = 1 - j f / ( t ? (
1

C | t ) ) ƒ a2
V(Ç,t)c(t;,t)àtdC (32)

and for 77 we get, by integrating (5) from 0 to t:

8 f1 fm

7\{z, t) = T]Q - - / c(z, T) dr = 770 - ƒ c(2, e) de. (33)

In (32) we use the bounds, c < 1 that E < 77 < 770 to get

^'-""^(-T)- ( 3 4>

and upon substituting (34) into (33) one gets

' -T jy , w)de- (35)

The bounds (34) and (35) can be further refined. Consider, again, the equality (32), but now we use the estimate
for 77 from above (35) and the estimate from below to c (35) to get

H )̂
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In the same way we can get a better estimate estimate from below in c:

( „2 \ PVo „ / r ~3 ~4 \ rvo H?0 —^ de

- ? ) ƒ 75î*+atl»(i-7+5)/ -"wr^ (37)
To get an upper estimate on c we use estimate (34) together with rj > E and

to get

c < \-C?E(Z r : , \ •„. .—d<
Jo

(38>

Using the Lipschitz continuity of l/f we get:

cKl-a2-—- [z-~)+aiEil0\L _ _ _ + — / d e + - — - - — + — (39)
f{E)

where L is the Lipschitz constant of 1// , and by substituting into équation (33)

77 > E + a2 (z-~ ) / - ^ - de

(40)

Thus the différence between the exact solution and the asymptotical approximation is O (a4).
In the next subsection the numerical results and the asymptotic expansions are compared, to demonstrate

the validity of the expansions in the range of relevant a2.
The asymptotic expansion (30) is used to get an explicit form for the uniformity constraint (24) in terms of

the température T and the pressure P. Substituting (30) into (24) gives:

30^ -^2)^(1)^(1-1)] < M o . (41)

Substituting a2 from (11) yields the following form for the uniformity constraint

J(P,T) < (*i-fcö)f}o, (42)

where, using the explicit form of ƒ (77), see (9), we get

JiP.T) - S^e-^-^J^A)^!-!)]. (43)
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Thus uniformity is assured if

where

770 (ki — ko)
BQ = (45)

Aa3(Zl - zl

B2 = log(^) . (47)

These results can now be used to approximate the température and pressure that minimize the time for a
successful process. Recall (see (26)) that the final time tf is inversely proportional to (3 given in (12). The final
time tf is therefore minimized if the function

F(P,T) = | e - « / T (48)

is maximized under the uniformity constraint (25). Inspection of (48) shows that in order to maximize (3 we
have to take the equality sign in (44). Substituting this into (48), it is easily verified that the following function
must be maximize:

G(T) = ^ T 1 / 2 - ^e~^T. (49)

This indicates that the final time tf to achieve a successful process is minimized by choosing température and
pressure satisfying

T3/2eQ/T = £lQ ( 5 0 )

A)

P - ^(Q-T). (51)

Moreover the minimal final time £^in is given by

in _ 2(l-fc0)log(l/fco) AaQ 2 1
*' ~ kT^o ^xf{Zl~Zll2)T^{Q-T) (52)

Where the température T is given by (50). •

The explicit formulas (50-52) lead to the following observations:

1. The minimum final time, ty1111, decreases as AD decreases {Le. as the molecular diffusion becomes domi-
nant).

2. tyin decreases as ki increases. This reflects the f act that increasing fei amounts to relaxing the uniformity
condition.

3. As z\ increases toward z\ = 1, the minimum final time t™m increases.
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0.1 1

Pressure (atm)

01 1

Pressure (atm)

FIGURE 1. J Curves obtained both numerically (solid lines) and by asymptotic analysis (dotted
unes). Conditions on or below these lines will satisfy the imiformity condition (Eq. (3.35)).
Conditions above this line do not satisfy the uniformity condition. Ail cases hère correspond to
Xo = 0.1, with. (a) h = 0.15, AD = 1.54 x 10~5, (b) h = 0.15, AD = 7.7 x 10~7; (c) ki = 0.7,
AD = 1.54 x 10~5; (d) ki = 0.7, AD = 7.7 x HT7.

3.2. Computational results

In the previous subsection the asymptotic expansion of 77 was used to define a functional J(P, T) such that
each pair P, T that satisfies J(P, T) < (ki - k0) 770 leads to a solution that satisfies the conditions for a
successful process, (245 25). The optimal P and T was then obtained based on the final time. This resuit is only
approximately correct since the asymptotic expansion was used to approximate condition (24). This section
uses numerical solutions of (5, 6) to create a "numerical J functional", (t.e. a functional relation between P
and T that ensures a successful process).

Two algorithms were used to solve this problem: one based on a finite différence approximation and one
on spectral methods These are described in the Appendix. The schemes were run with fc0 = 0.1, z\ = 1
and fei = 0.15 or 0.7. Note that fci = 0.15 corresponds to relatively uniform infiltration while k\ = 0.7 is
relatively non-uniform. Although most applications require relatively uniform infiltration {%.e.y lower fci), there
are some cases where a non-uniform profile may be désirable. Two reasons for a higher k\ are that it enables
faster infiltration times, and it produces materials with lower density. For example, both of these attributes
are désirable during the formation of thin carbon-carbon composites for bipolar plates in proton exchange
membrane (PEM) fuel cells [17].

Three values were taken for AD) 1.54 x 10"5, 1.93 x 10~6 and 7.7 x 10~7 (see Tab. 1). Plots of the numerical
and the asymptotic J curves are presented in Figure 1, plots of tf vs. P are presented in Figure 2.

In Table 2 we present optimal pressure température for given AD and k.
The process is very sensitive to changes in the température T, as can be seen, for example, by comparing

the results for P = 0.1atm» T = 1309 K, vs. P = Q.latm, T = 1449 K. Increasing température by 140 degrees
decreases the final time by a factor of 55 and produces an infiltration profile which is much less uniform. This
occurs because of the strong température dependence of the déposition reaction. As the fibers size increases tf
decreases slightly and the minimal time occurs at lower pressures.

When the uniformity requirement dictâtes kx = 0.15 in (24), the condition J(P,T) = (h - ko)r]o yields P
and T such that a2 ~ 0.01. In this case the asymptotic expansions agrée well with the numerical results. The
predicted température to assure uniformity differs by only few degrees from the one obtained numerically, and
tf differs by less than 10%. However when k\ was increased to 0.7 the asymptotic expansion is less accurate,
because, in this case, a2 ^ 0.1 is not sufiiciently small (see Tab. 2). In ail cases, however, the asymptotic
results agrée qualitatively with the numerical results. The curves obtained numerically were almost parallel to
the asymptotic, and the points of minima are almost in the same place. The asymptotic results are conservative,
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FIGURE 2. Times which correspond to conditions on the J curves in Figure 1, with values
obtained both numerically (solid lines) and by asymptotic analysis (dotted Unes). The filled
circles show the minimal time. (a) kx = 0.15, AD = 1.54xlO~5; (b) k\ = 0.15, AD = 7.7xlO~7;
(c) fci = 0.7, AD = 1.54 x HT5; (d) fci = 0.7, AD = 7.7 x 10"7.

TABLE 2. tf for the optimal P and T.

1.54
1.93
7.7

1.54
1.93
7.7

AD

x
x
X

X

x

io-5

io-6

io-7

io-5

io-6

in-7
J-W

fcl

0.15
0.15
0.15
0.7
0.7
0.7

P

6.59817
0.83
0.334636
3.11577
0.393241
0.15489G

Numerics
T

1201.69
1260.76
1288.52
1334.74
1408.2
1444.02

tf

57703.5
56363.4
55757.3
1416.3
1379.66
1363.1

Asymptotics
P

7.75487
0.964282
0.373109
7.70548
0.965
0.372904

T

1194.85
1253.56
1282.26
1265.71
1331.69
1364.25

tf

63436.4
61971.3
61309.3
5139.93
5014.01
4957.04

they always overestimated the final time, and gave more restrictive conditions on P and T for uniformity i.e.
P and T obtained by the asymptotic analysis never predict a successful process if it does not exists. However,
since P and T obtained by the asymptotic analysis may be much different from the optimal ones (obtained by
the numerical analysis), tf may be much larger then the minimal value (See Tab. 2).

4. HOMOGENEOUS NUCLEATION

CVI processes can be limited by homogeneous nucleation (i.e., powder formation) in the gas phase. This
effect has not been treated in previous CVI models because it generally occurs outside of the solid preform.
However, powder formation can impose serious limitations on CVI operating conditions during the formation
of carbon and oxide matrices. Thus, this phenomena imposes a constraint on the allowable CVI operating
conditions. In practice, the nucleation rate dépends on the reactor configuration, as well as its actual value.
For the current analysis, we assume that powder formation limits CVI when the nucleation rate exceeds some
allowable level, Jiim. With this in mind, the following constraint can be presented. (For the dérivation on this
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2Û0

Too Much Powder Formation

1250

Violâtes Uniformfty Constraint

Curve" from '1 Curve"

0.04 0.06
Pressure (atm)

0.08 0.10
0.00 0.02 0.04 0.06

Pressure (atm)

0.08 0.10

a)

FIGURE 3. Effect of homogeneous nucleation for k\ = 0.7, Xo = 0.01, AD = 1.54 x 10~5; (a)
The numerically obtained J curve (uniformity constraint, Eq. (42)) and the I curve (nucleation
limit, Eq. (53) with Anm = 2.0 x 1021). (b) Limiting time as a function of pressure. The left
part of the curve is determined by the numerically obtained J curve and the right side is
determined by the I curve, with the minimal time shown by the filled circle. The dotted line
corresponds to the approximate J curve which was determined with asymptotics.

constraint see [4].)

= (XoFr/T exp(-A7/Tm) (53)

where A\[m is the maximal nucleation rate spécification and the two constants, Aj and m are determined
empirically to fit the nucleation model. A good fit to the expérimental data of Loll et al., see [13,14], was
obtained with m = 1.5, A/ = 750000 Km, and Aiim = 3.3 x 10~17 atm2/K2'5. The value of Aiim, however,
is somewhat arbitrary, since it reflects a threshold for a given reactor. By varying ^4nm, it is possible to
assess different tolérance levels for powder formation. For example, recent carbon CVI experiment s at Oak
Ridge National Laboratory tolerate higher powder formation levels than those described by Loll et al. with a
threshold value that corresponds to A\im = 2.0 x 10~21 atm2/K25 [15].

The effect of adding the powder formation constraint can be seen from Figure 3, where the i-curves are
defined by équation (53). As seen from the left plot, the new constraint limits the pressures and températures
to values which are below both the I and the J-curves. For a given pressure, the minimal tf corresponds to
a température on either the I or J-curve (whichever is lower). Thus if the minimal tf found in Section 3 (ie.
when P and T are on the J-curves) to the left of the /-curve, then the additional constraint does not change
the previous results. If, on the other hand, this point is on the right of the /-curve then, the minimal tf occurs
at the intersection between the / and J-curves. This point can be clearly seen as a cusp in the tf vs. P in the
right plot.

A complete assessment of Xo effects requires solutions with the full Dusty Gas model, because large values
of XQ violate the assumption of a dilute reactant gas. However, considering only values up to XQ = 0.1
provides useful insight into optimizing dilute Systems. Without the homogeneous nucleation constraint (i.e., as
A\{m —> oo), the minimal time is inversely proportional to XQ> and the optimal pressure and température do
not vary with XQ (see Sect. 3). However, homogeneous nucleation limits the operating conditions when Aiim

is low enough, as illustrated in Figure 3. The effect of this limitation on the optimal conditions and on the
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FIGURE 4. Effect of Xo with AD = 7.7 x 10 7: (a) optimal pressures; (b) optimal températures;
(c) minimum infiltration times.

minimal time are shown in Figure 4. These results lead to the following conclusions:
1. As in Section 3, the asymptotic results are in good agreement with the numerical results for k± = 0.15,

where a2 ~ 0.01, and much less accuracy in the case k\ = 0.7 where a2 ~ 0.1. In bot h cases, ho wever,
the asymptotic results agrée qualitatively with the numerical results.

2. Notwithstanding the dilute reactant gas restriction, tf are monotonically decreasing functions of Xo, thus
it is advisable to work in the "highest" Xo possible. However since the optimal P is also a monotonically
decreasing functions of Xo, this value of XQ is limited by the lowest operational pressure. For example
for working pressure of about 0.01atm) the maximum allowable XQ is only 0.05, for 200Mm diameter fibers
{AD = 7.7 x HT7).

3. For a given Xo-, as the fiber diameter increases P and tf decrease and T increases. But unlike Section 3,
the différences hère are significant. This occurs because the homogeneous nucleation condition forces us
to work in a région where the dépendance on AD is much stronger.

4. The homogeneous nucleation constraint causes the optimal température and pressure to vary with XQ.

Note that the minimum infiltration time is dramatically increased when there is a significant limitation
imposed by homogeneous nucleation. In gênerai, the process must be operated at lower pressures to avoid
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powder formation. Some increase in the corresponding optimal température accompanies this decrease in
pressure.

5. CONCLUSIONS

Minimizing infiltration times for isothermal, isobaric CVI is important because processing times are typically
very long. The work presented hère provides a detailed assessment of the pressure and température which
will minimize the total required time, based on a simplified model for a single, dilute reactant species. This
formulation makes it possible to understand the basic physics of the problem in terms of a relatively small
number of lumped parameters. The basic objective of this optimization problem is to obtain a density profile
with a prescribed amount of uniformity, in the shortest possible time (Sect. 3). The asymptotic results are
particularly useful, because they make it possible to détermine optimal conditions without doing numerical
calculations (under conditions where a2 is small enough). Based on comparisons with the numerical results,
the asymptotic forms are also qualitatively accurate when a2 is larger. Thus, the asymptotic results provide
a clear understanding of how the optimal conditions are related to the key parameters for the problem. The
effects of homogeneous nucleation were also analyzed, as an additional constraint on the basic optimization
problem. This issue has not been considered in previous work on CVI modeling, however, it can limit operating
conditions in Systems were powder formation is significant (e.g.t the formation of carbon matrix composites).
The results obtained hère provide a quantitative assessment of the conditions where homogeneous nucleation
imposes limitations on infiltration conditions. When thèse limitations occur, powder formation also increases
the minimum infiltration time.
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