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A MOVING MESH FICTITIOUS DOMAIN APPROACH FOR SHAPE
OPTIMIZATION PROBLEMS

RAINO A.E. MÀKINEN1, TUOMO ROSSI1 AND JARI TOIVANEN1

Abstract. A new numerical method based on fictitious domain methods for shape optimization
problerns governed by the Poisson équation is proposed. The basic idea is to combine the boundary
variation technique, in which the mesh is moving during the optimization, and efficient fictitious domain
preconditioning in the solution of the (adjoint) state équations. Neumann boundary value problems
are solved using an algebraic fictitious domain method. A mixed formulation based on boundary
Lagrange multipliers is used for Dirichlet boundary problems and the resulting saddle-point problems
are preconditioned with block diagonal fictitious domain preconditioners. Under given assumptions on
the meshes, these preconditioners are shown to be optimal with respect to the condition number. The
numerical experiment s demonstrate the efficiency of the proposed approaches.
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1. INTRODUCTION

The basic idea of fictitious domain (domain embedding) methods is to extend a partial difïerential équation
given in a complex shaped domain to a larger but simpler domain such as a rectangle or a parallelepiped. Also,
the capacitance matrix methods have the same idea, but slightly different implementation; see, for example, [38]
and références therein. The solution of the discretized and extended partial differential équation is obtained
very efficiently using the preconditioned itérative methods. The preconditioning step can be realized using the
fast direct methods [42]. The extension of the original problem is made such that the solution is obtained as
a restriction. This can be accomplished in several ways. The following functional analytic fictitious domain
methods have been studied mostly by the French school led by Glowinski: In the optimal control approach
[2,27], the problem is formulated as a distributed optimal control problem. Another possibility is to add some
constraints to the extended problem. This can be done using boundary Lagrange multipliers [18,19,44] or using
distributed Lagrange multipliers [16,17,27,44].

Opposite to the functional analytic approaches, in the algebraic fictitious domain methods the problem is
extended so that the solution of the original problem is obtained directly as a restriction of the extended problem
without any additional constraints. In this case, the formulation is typically done at the matrix le vel. See, for
example, [1,4,6,34,39]. With the algebraic approach a lot of attention is given to the efficient solution of the
arising linear problem. It is well known [1] that for second order elliptic Neumann boundary value problems,
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the trivial extension by zero and the use of the same operator, which is extended to the whole domain, as
preconditioner is optimal with respect to the condition number. We will use this approach for Neumann
boundary value problems.

It is more dimcult to construct an optimal extension and preconditioner for Dirichlet boundary values prob-
lems. Hère, we have chosen to use the mixed formulation in which the problem is formulated as a Neumann
boundary value problem with boundary Lagrange multipliers; see [3,8]. For the saddle-point problem obtained
in this way, Kuznetsov introduced a block diagonal fictitious domain preconditioner which is optimal for the
zero extended Neumann problem with respect to the condition number [31,39]. For domain décomposition
methods a similar approach has been considered in [30,32]. Another possibility would be to use distributed
Lagrange multipliers, especially the approach considered in [17] which is well suited also for three-dimensional
problems and mixed boundary value problems.

It is advantageous to use the fictitious domain methods with a fixed mesh especially when solving the state
équation in shape optimization problems as well as in other moving boundary problems. The computation of
the stiffness matrices and load vectors for different designs is usually very simple unlike in many of the other
approaches and the solution procedure is often efficient even though the domain is changing. However, there
are some drawbacks when the mesh is kept fully rectangular during the optimization. It may lead to nonsmooth
objective functions, locking effect s and low approximation accuracy; see, for example, the review paper [22] by
Haslinger. In the shape optimization problems considered in [18,25,29], the fictitious domain method enforces the
Dirichlet boundary value in the state équation using Lagrange multipliers on the boundary. In [13,21,23,24],
a distributed control is introduced to the right-hand side and the Dirichlet boundary value is added to the
objective fonction as a penalty. In [12], the Neumann boundary condition is formulated as a constraint using
Lagrange multipliers on the boundary. In [16,44], the use of distributed Lagrange multipliers is considered.

Unlike usually, we will use meshes which are fitted to the boundaries and they are moving during the
optimization. Hence, the considered method is a combination of the boundary variation technique and the
fictitious domain method. Some of the advantages of the fixed mesh fictitious domain approach are lost due to
this, namely, the mesh génération is a bit more complicated and the discrete state équation must be formed in
each itération. The important aspect is that the state and adjoint state équations can be very efficiently solved
although the mesh is moving. Also, by choosing this approach, we get rid of the typical problems with the fixed
meshes such as nonsmooth objective functions, locking effects and low approximation accuracy. The moving
intjbh approach was used in [43] for solving shape optimization problems with subsonic full potential flows.

The rest of this paper is arranged as follows: First, the shape optimization problems for Dirichlet and
Neumann boundary value problems are formulated. Next, the parametrization of shape, the mesh génération
and the finite element discretization of the state équation are considered. Then, the sensitivity analysis with
the adjoint state technique is introduced and efficient solution procedures for the arising linear Systems are
constructed. In the last section, the numerical experiments demonstrate the efficiency and the robustness of
the proposed methods.

2. FORMULATION OF THE SHAPE OPTIMIZATION PROBLEMS

Let ^ i n and QOut be given non-empty bounded domains in IR2 such that Oin Ç fiout. The class of admissible
domains ü is defined by

O = { S ] C M 2 | Oin C Q Ç nout, fï is open and simply connected,

ü has £-cone property} .

For any Q, € O, the state équation in the case of a Neumann boundary value problem reads:

{ —Au + cu = f in H,
du (2)

m = g on an,
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or in weak form

rFind u G Hl(ft) such that

/ (Vu- Vv + cuv)dx = / fvdx + ƒ gvds \/v E H1 (fi),
, Jvt JQ Jdn

(3)

where ƒ G £2(^)5 g € ^(ôfî) , and c > 0 is a constant. In the case c = 0, we assume for the existence of solution
the compatibility condition

gds = O. (4)
n Jon

For any Çt E O, the state équation in the case of a Dirichlet boundary value problem reads:

f-Au + cu = / in f2,

\u = 0 on dn,

or in weak form

'Find u E H£(n) such that

r* v + ^ / f H v pffiro^ ( 6 )

(Vu • vv + cuv) dx = ƒ j v dx vv E HQ{\1),
JQ

where again ƒ G £2(0) a nd c > 0 is a constant.
Let us assume that O is equipped with an appropriate topology. Let J : O x Jf1(f2out) - ^ I b e a continuous

cost functionaL Then, the optimal shape design problem reads

( , ) (7)

with u being the solution of (3) or (6) depending on the type of the state équation.
According to Haslinger, Neittaanmàki [26], Pironneau [37] and Sokolowski, Zolesio [41], the following theorem

holds.

Theorem 2.1. The optimal shape design problem (7) has a solution.

3. DlSCRETIZATION AND SENSITIVITY ANALYSIS

3.1. Parametrization of the shape

In order to solve the shape optimization problem (7) numerically, the boundary of the domain Q must be
parametrized using a finite number of design parameters. Let the vector of design parameters a = (ai, 0:2, •..,
am)T E M171 define the boundary curve. One possible way to perform this is to use the B-spline curves or the
Bézier curves; see [7], for example. Then, the design parameters (or variables) are the nodal coordinates of the
key points defining the Bézier or B-spline curves. Since the design parameters in o: define uniquely the domain
Çla, in the following, the cost functional is assumed to be of the form X(a, u) instead of J(Qa,u).

An arbitrary domain Q must have given geometrical properties in order to be acceptable, that is, it must
belong to the set ö. Correspondingly, an acceptable design parameter vector a must belong in set of the
admissible designs [/ad C Mm, which is assumed to be compact and convex.
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A/y. I

FIGURE 1. An example of triangulations 7> and TQQ for a circle.

3.2. Discretization of state équation

In the discretization of the variational problem (3), the standard piecewise linear finite éléments are used
resulting in a linear System of équations

= fa. (8)

Therefore, we must have an algorithm which can triangulate an arbitrary domain Q, in O. In the following, we
assume that the characteristic mesh step size h is fixed and, for simplicity, we omit it from our notations. Let us
dénote the triangulation for the domain Q by Ta = {rjfyk^i,... }M, where r^ is the fcth triangle in the triangulation
Tçi. The topological changes in the triangulation during the numerical solution of a shape optimization problem
would cause some problems such as the discontinuities in the cost functional of the discretized problem. In
order to avoid these dimculties, we shall keep a fixed topology of thc triangulation during the solution.

Let Qo be a domain in <D, for example, the initial guess for the optimal domain. Let II be a rectangle such
that fiout C n and II is independent of h. Moreover, let there be a rectangular grid covering for II. The
triangulation Tu is constructed by dividing each cell of this grid into two triangles. This is performed in such a
way that a polygonal approximation

= U (9)
T€TPcTn

for fio is obtained. In (9), Tp is the triangulation for the polygon P. In Figure 1 (a), an example of a
triangulation TP is shown for a circle.

Let ipQ : P —> Ù be a homeomorphism, that is, a one-to-one mapping between P and Ù such that both
IJJQ and its inverse are continuous. Furthermore, let Vn,r • T —*• M2 be the linear approximation of Vn in
the triangle r € Tp which coincides with ipn in ail vertices of r. Now, the triangulation for the domain Q is
given by TQ = {^£2,T(T)}T€TP- These mappings can be constructed, for example, using an explicit formula, the
Laplacian smoothing [14] or combining either of these with a local fitting procedure as in [4,5]. An example of a
triangulation TQ for a circle obtained using the function ipn constructed in Section 5.1 is shown in Figure 1 (b).

For the regularity of the triangulation obtained in this way, we have the following conditions:

Assumption 3.1. Let the Jacobian of I/)QIT be denoted by DipQ^r. There exists a constant c\ independent of
the mesh step size h and the domain Q G Ö such that

maxCond
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where Cond[*] is the spectral condition number. Furthermore, it is assumed that the resulting mesh on the
boundary dft is quasiuniform, that is, the ratio between the lengths o f the long est side and the short est side o f
triangle on 9Q is bounded from above by a constant c<z which is independent of h and Q.

For a typical triangulation constructed in this way, the distance between the boundary 9Q and its approxi-
mation using the triangulation Ta is O(h2) if 90 in C2.

3.3. Sensitivity analysis

The discretized shape optimization problem reads now

min J{ot\ (10)

where J{ot) = T(GL, ua) with ua being the solution of (8). The relation between the solutions of the approximate
and continuous shape optimization problems has been extensively studied in [26], for example, and it will not
be addressed in this work.

The shape optimization problem (10) can be seen as a constrained minimization problem in Rm. Each cost
functional évaluation requires the solution of the state équation which can be a computationally very laborious
task. Thus, efficient optimization methods are preferred in order to reduce the number of évaluations of the
cost functional. Usually, gradient-based optimization methods are used. For these methods, the cost functional
must be smooth enough. For example, the sequential quadratic programming (SQP) algorithm [15] requires
that the cost functional is at least twice-continuously differentiable.

In order to obtain the gradient of the cost functional with respect to the design parameters, we perform the
sensitivity analysis for an arbitrary design parameter aki 1 < k < m using the w,ell-known adjoint équation
technique, see, for example, [26], First, we differentiate the state équation (8) with respect to ak and obtain

. du Ôf OA
dak dak oak

Next, let q be the solution of the adjoint équation

ATq = Vul(a,u), (12)

where the right-hand side is the gradient with respect to the state u. Now, the partial derivative is given by

Therefore, we must know how to compute the partial derivatives ^7-(a, w), ^7-, J~~ for ail k and the gradient
VuX(a, u) in order to be able to compute the gradient of J with respect to the design. All these can be obtained
in the standard manner; see, for example, [10,26,33,37,41]. The adjoint state équation (12) can be solved in
the same way as the state équation.

4. A MOVING MESH FICTITIOUS DOMAIN METHOD

FOR ELLIPTIC BOUNDARY VALUE PROBLEMS

4.1. Neumann boundary conditions

For the discretization of the variational form (3), we construct continuous piecewise linear finite element
subspaces Vh and Vn approximating i/1(O) and HQ(U) using triangulations TQ and 7n, respectively. By using
the Courant basis functions for Vh, we obtain for (3) the System of linear équations

Aaua = fa. (14)
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The system (14) is solved using an itérative scheme

D(uk
a
+1 - uk

a) = fa- Aau
k
a, (15)

which is accelerated with the CG method. Hère, D is an asymptotically optimal preconditioner for any SlGÖ.
Let us now consider the construction of the preconditioning matrix D. By substituting the Courant basis

functions for Vn into the bilinear form

b(u,v) = ƒ (Vu- Vv + cuv)âx UyVeH^TT), (16)
Ju

we obtain a matrix having the block form

Bu Bi2\
B21 B22)>

where the subscripts 1 and 2 correspond to the nodes in the polygon P and the nodes outside P, respectively.
Now, the preconditioning matrix D is the Schur complement matrix

D = Bu — B12B22 -Ö21. (18)

Remark 4.1. For simplicity, we have chosen to use the Sobolev space HQ (II), which corresponds to a Dirichlet
boundary value problem, in the construction of the preconditioner D. Another possibility is to use the space
H1 (IL) corresponding to a Neumann or a Robin boundary value problem. This choice should yield a slightly
better preconditioner in terms of the condition number considered in Theorem 4.1; see [6], for example. In any
case, we must have Ker D C Ker Aa.

The multiplication of a vector by JD" 1 can be performed emciently in the following way: The vector is
extended with zero values in the nodes outside Û. Then, the System of linear équations is solved with the
matrix in (17) and the extended right-hand side. Since the triangulation TQ is based on a rectangular grid, the
matrix in (17) is separable, that is, after suitable permutation it can be expressed in a tensor product form.
Therefore, the solution with this matrix can be performed with a fast direct solver, for example, the cyclic
réduction method [40,42]. This requires O(N log N) floating point opérations, where N is the dimension of the
matrix B. Finally, the resuit of the multiplication by D~l is the restriction of the solution of the extended
problem to the nodes in Ù.

The next theorem guarantees that the condition number of the preconditioned System behaves well.

Theorem 4.1. The discrete state problem corresponding to Neumann boundary conditions can be solved to a
prescribed accuracy, independent of h, using O(N log N) floating point opérations.

Proof. From Assumption 3.1 and the results in [6], it follows that there exists a constant c3, independent of the
mesh step size h and the domain Qa G 0 , such that

C o n d D " 1 ^ < c 3

on the subspace (KerA^)-1. This implies that when the preconditioned conjugate gradient (PCG) method is
used to compute the solution of (14) with a prescribed accuracy, the number of required itérations is bounded
from above with a constant which is independent of h and Cla. As one itération of the PCG method requires
O(N log N) floating point opérations the resuit follows. D
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4.2. Dirichlet boundary conditions

The direct discret izat ion of the variât ional form (6) for the Dirichlet boundary value problem would lead to
a System of linear équations for which it is not simple to construct an optimal preconditioner with respect to
the condition number. Instead in our approach considered in [31,39], the Dirichlet boundary conditions are
enforced using boundary Lagrange multipliers; see [3,8]. A related although different approach with boundary
Lagrange multipliers is studied in [19]. For this purpose, we introducé the following bilinear forms and the
following linear form:

a(u,v) = ƒ (Vu- Vv + cuv)àx + <T ƒ uvds, u,v G H1 (Si), (19)
Jn Jan

mb(X,v) = (A, v) A G iJ-*(3fi), v G H1 (SI),

f(v)= f f vàx, veH\SÏ),
Jn

where {•, •) dénotes the duality pairing between H~z(dSl) and Hï(dCt). The nonnegative constant a in (19)
makes the bilinear form a(u,v) coercive. It is chosen such that c + a > r\ > 0 with 77 independent of h. The
coersivity of a(- ••,•••) is required for the construction of the block diagonal preconditioner in the form (22),
(23); for details, see [28,30,31], for example. Now, we have the following saddle-point problem:

rFind (u, A) G H1 (Ü) x H~^(dSl) such that

a(u,v)+mh{\,v) = f(v), , , (20)
K J K } W V(^,M)€iï1(^) xfT-ï(ôfî).

mb(fjL}u) = 0,

Remark 4.2. For simplicity, we only consider the homogeneous Dirichlet boundary value problem. The non-
homogeneous boundary condition u — g on dû, g e H^(dSÏ), can be treated as follows: In the équations (20),
the terms a JdÇîgvds and rribifag) are added to the first and second right-hand side, respectively.

Similarly as with the Neumann boundary value problem, we deflne a continuous pièce wise linear finit e
element subspace Vh approximating H1 (SI) using triangulations TQ. For the Lagrange multipliers in H~
we construct using VQ the finite element subspace

This choice of Ven implies that the duality pairings in the formulation (20) can be expressed by L2 (
products. By using the Courant basis fonctions for Vh and Van, we obtain for (20) the System of linear équations

where the matrix blocks A and M h correspond to the bilinear forms a(u,v) and rribifau), respectively. Due to
the choice of V^, (21) has a unique solution which coincides in SI with the standard finite element solution.

Now, the preconditioning matrix D has the compatible block diagonal form

s
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where the matrix block D is the same one as in (18). The matrix block S for the Lagrange multipliers has the
form

(23)

where Mbb is the Nb x Nb boundary mass matrix obtained as the restriction of the N x Nb matrix Mb on the
boundary nodes. Hère, hb and Nb dénote the char act eristic mesh step size and the number of nodes on the
boundary dfl. The matrix A is the scaled discrete finite element counterpart of the one-dimensional operator
— ̂ 2" with the periodic boundary conditions. The mesh used to discretize this one-dimensional operator is
uniform, and, thus, A has the form

A =

/ 2 - 1

- 1 2
(24)

The form (23), (24) for the preconditioner block S is obtained by applying the Friedrichs' inequality and by using
a well-known Schur complement preconditioner for Poisson-type problems considered, for example, in [9,11].
The multiplication of a vector by D can be computed emciently as explained below. The multiplication by
the matrix block D~x can be performed in the same way as in Section 4.1. Since we use mass lumping, Mbb is
a diagonal matrix and the multiplication by Af^1 is simple and inexpensive opération. The direct computation
of the matrix Aïï + (c + a)hbl would be rather expensive, but the multiplication by it can be performed using
the FFT requiring O(Nb\ogNb) floating point opérations. For details, see [9,11], for example.

Remark 4.3. The quality of the preconditioner (23) détériorâtes as c + a or the diameter of Q, grows. However,
it works weil under the assumptions that diameter of fi is O(l) and 0<?7<c-!-<7<2/ with rt independent of h
and v is O(l) [30].

Since the matrix C is symmetrie but indefinite, the preconditioned conjugate gradient method cannot
be used. For example, the preconditioned minimal residual (PMINRES) method is suitable for this kind of
problems [20,36].

Theorem 4.2. The discrete state problem corresponding to Dirichlet boundary conditions can be solved to a
prescribed accuracy, independent of h, using O(N\ogN) floating point opérations.

Proof. From Assumption 3.1, Theorem 4.1 and the results in [28,39] it follows that the eigenvalues of the
generalized eigenvalue problem

Cw = piDw

belong to the set [771,772] U [773,774], where the constants 771 < 772 < 0 < 773 < 774 are independent of the mesh step
size h and the domain Cta G 0 . This guarantees that the number of required PMINRES itérations to reduce
the norm of the residual by a prescribed factor is bounded from above with a constant which is independent of
h and îîa . D

5. NUMERICAL EXPERIMENTS

5.1. Construction of the triangulation

Let us consider the geometrie configuration shown in Figure 2. In order to construct triangulations, we
parametrize the boundary curve d£l by using two Bézier curves with each curve having nine control points,
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FIGURE 2. The geometrical configuration for our shape optimization problems.

FIGURE 3. A Bézier curve approximation for a half of a circle, the Bézier control points and
how they can move during the optimization.

one for the upper half and another one for the lower half. The control points on the points (—1, 0) and (1,0)
are fixed and the other control points are moving in the ^-direction. The design variables o^, k = 1, . . . , 14,
are the absolute values of the y-coordinates of the moving control points and we require that they satisfy the
constraints 0.15 < ak < 1.5. The set of admissible designs O contains all domains which are possible to obtain
by using this parametrization and constraints. Thus, it holds that (ÎC [—1, 1] x [—f, f] for all ficO.

The initial domain D,Q ior optimization is chosen to be the Bézier curve approximation of the circle of radius
one and center at the origin. The Bézier curve approximation for the upper half of this circle is shown in
Figure 3. The rectangle II used in the construction of the triangulation for Q is II = [— | , | ] x [—|, | ] .

The actual triangulation for an arbitrary domain Q C O is constructed in two steps. First, the triangulation
7h0 is formed for the initial domain OQ using the local fitting procedure introduced in [5]. An example of this
is shown in Figure 1 (b). Also, the polygon P and the associated triangulation Tp are implicitly formed in this
step. In the second step, the triangulation TQ for Q is obtained by moving the nodes of TQQ. In this particular
case, it is sufficient to move the nodes only in the y-direction. In the next paragraph, we explain how this is
done in detail.

Let us consider a node (x°, y°) of the triangulation TQ0 such that y° > 0. The case y° < 0 is treated
analogously. Let the upper half of the boundary dQo be defined by the Bézier curve (£>(£, it°), b(t,v0)), where

lthe polynomial b(t,w) ~ Y^lt=o ~~ t)t/wt defines the components of the curve and the control points of
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the curve are (u°, f0), i = 0,. . . , k. There exists t such that x° = b(t,u°) and 0 < £ < 1. Now, let a be the
vector containing the design variables defining the domain Q and let the associât ed control points for the upper
Bézier curve be given by u and v. Then, only v dépends on oc and u — u°. The new coordinates (x, y) of the
node (ar°, y0) are given by x — x° and y = b(t,v)y°/b(t,v°).

The mesh for the initial domain fulfills the conditions in Assumption 3.1, since the local fitting procedure used
satisfies the same conditions [5]. It is not so clear does this hold for the combined mesh génération procedure.
When the Bézier curves defining the boundary are of sufficiently low order and the box constraints for the
design parameters are strict enough, Assumption 3.1 holds. On the other hand when the Bézier curves are
of sufficiently high order and the box constraints are loose enough, the boundary can oscillate so wildly that
the mesh can be broken and, thus, Assumption 3.1 is not fulfilled. However, this situation is not désirable
for any shape optimization algorithm and one usually tries to set the constraints in such a way that it can be
avoided. It is difficult to give explicit limit s for the degree of the Bézier curves and for the box constraints
in order to Assumption 3.1 to hold. Hence, we will numerically study the validity of Assumption 3.1. In our
shape optimization experiments, the numerical values for the constants C\ and c<i in Assumption 3.1 are given
in Table 2 and Table 4.

5.2. Shape optimization with a Neumann BVP

We choose the state équation to be the Neumann boundary value problem:

(25)

where g(x,y) = — 2V4 — 3x2 and ƒ is a function having a constant value which is chosen in such a way that the
condition (4) is fulfilled.

The cost functional in the shape optimization problem measures the distance between the solution of the
state équation (25) and a given target function ud- The exact form of the cost functional is

^ / t " » a < L B ' ( 2 6 )

- A u
du
dn

= ƒ

= 9

in

on

where the orthogonal projector P : Hl{0) —> {v e iJ1(O) | (v, 1)L2(^)
 = 0} is defined by

P(v) = v~ — — / vdx.
v J Meas Ü Jn

The purpose of the projector P in (26) is to make the value of J(aJu) insensitive to functions which belong
to the kernel of the operator defined by the state équation (25), that is, functions with a constant value. The
target function in (26) is chosen to be

ud(x,y) = - -x2 -4y2.

The value of the cost functional for the ellipse x2 -f 4y2 = 1 is zero and it is also an admissible design. Thus,
the ellipse is a solution to this shape optimization problem.

In the forming of the system of linear équations (14), we are using mass lumping, that is, the numerical
intégrations are performed using the "trapezoid" quadrature rule. Then, for example, the right-hand side is
given by

+ MT
bgn), (27)
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FIGURE 4. The mesh for the target ellipse when n = 33.

TABLE 1. The results from the shape optimization with the Neumann bvp.

n

33
65

129
257
513

nodes

349
1313
5145

20321
80877

iter

23
28
27
23
23

eval

28
29
28
27
27

cost

5.622
2.810
1.1.76
5.894
3.084

X

X

X

X

X

io-7

10"8

io-9

io-11

io-12

dist

2.424 x
6.238 x
1.233 x
8.196 x
7.710 x

lu"2

io-3

io-3

io-4

io-4

time

6.6
27.7

139.1
561.6

2750.4

where the vectors ƒ„ and gn contain the nodal values of f(x, y) in Q and g(x, y) on dfl, respectively. Furthermore,
M is the mass matrix and Mb is the matrix obtained by discretizing the bilinear form mb(X,v) in (19). The
matrix P in (27) is the orthogonal projection onto the subspace Im A and it is given by

n
N

i \

V
where N is the size of the problem. The discrete cost functional is

1
2MeasO

(u~ud)
TPIMP(u-ud),

The optimization is performed using the E04UCF subroutine in the NAG library [35] which is an implementation
of the SQP algorithm. In the itérative solution of the state and adjoint state équations, the initial guess for
the solution is the zero vector and the stopping criterion is 11^11^-1 < 10~13[|ro|[r)-i- The vectors r0 and
Vk are the residuals computed from the initial guess and the approximation of the solution aft er k itérations,
respectively.

In Figure 4, the target ellipse is shown when n = 33. If the mesh for the final design were plotted also int o
Figure 4, they would be less that one line width apart. We have collected the results from the optimization runs
in Table 1. This table contains the following information: n is the number of nodes in both x- and y-direction
in the rectangular mesh for II. The number of nodes in Q is "nodes". The number of SQP itérations and
cost functional évaluations are "iter" and "eval", respectively. The final cost function value obtained in the
optimization is "cost". The Euclidean distance between the vectors containing the design variables for the final
design and the target design is "dist". The CPU seconds required to perform the optimization run on HP
9000/C160 workstation is given by "time".

Table 2 contains information about the linear problems and their solution during the optimization. This
table contains the following information: n is the number of nodes in x- and y-direction in the mesh for II. We
have considered separately the solution of the state équation with the initial design, all solutions of the state
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TABLE 2. The solution of linear problems during the shape optimization with the Neumann
boundary value problem.

n

33
33
33

65
65
65

129
129
129

257
257
257

513
513
513

which

first
ail
last

first
ail

last

first
ail
last

first
ail
last

first
ail
last

Cl

3.703
15.336
13.920

3.986
13.593
12.097

5.843
18.326
16.785

4.942
16.742
15.229

5.511
17.998
15.957

C2

1.516
2.528
2.371

1.755
2.977
2.742

1.721
2.427
2.215

1.600
2.772
2.530
1.794
3.180
2.829

Vs
0.322
0.154
0.162

0.327
0.156
0.165

0.329
0.157
0.165

0.330
0.157
0.166

0.331
0.157
0.166

1.301
2.497
2.388

1.230
2.423
2.288

1.557
2.637
2.481

1.285
2.569
2.412

1.394
2.822
2.647

iter

19
34
34

20
34
37

25
36
39
22
36
36

24
38
40

équation and the adjoint state équations and the solution of the state équation with the final design. In "which"
field, these are denoted by "first", "all" and "last", respectively. The upper bound for the condition numbers
in Assumption 3.1 is c\ and the upper bound for the ratios of the mesh step sizes on dCt is c2. The smallest
nonzero eigenvalue and the largest eigenvalue of D=1Aa are given by 773 and 774, respectively. The condition
number in Theorem 4.1 is the ratio of these two values. The number of PCG itérations is "iter" and, in the
case of ail solutions, it gives the average number of itérations.

5.3. Shape optimization with a Dirichlet BVP

In this test example, the state équation is the Dirichlet boundary value problem:

1 u = O on dfl,

where f(x,y) = 10. In this shape optimization problem, the cost functional is

where the target function is Ud(x, y) = l — x2 — 4y2. Again, the ellipse x2 + 4y2 = 1 is a solution to this shape
optimization problem.

This problem is discretized in the same way as the Neumann boundary value problem. In this case, the initial
guess in the itérative solution of the state and adjoint state équations is the right-hand side vector multiplied

by D . The stopping criterion for the itération is the same one. The constant a appearing in (19) and (23)
has the value one. The approximate mesh step size on ÖQ denoted by hi in (23) has been chosen to be 1/N^
where Nt, is the number of nodes on dQ,.

Table 3 contains the same information as Table 1, but for the Dirichlet boundary value problem. Also,
Table 4 is rather similar to Table 2. The eigenvalue bounds in Theorem 4.2 are given by 771, 772, 773 and 774 in
Table 4. Now, "iter" is the number of PMINRES itérations. The SQP itération histories are shown in Figure 5.
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TABLE 3. The results from the shape optimization with the Dirichlet bvp.

n nodes iter eval cost dist time
33 349 18 28 2,235 x 10"7 4.289 x 10"3 10.9
65 1313

129 5145
257 20321
513 80877

14
17
17
17

20 1.383 x 10"8 2.768 x 10"3 37.0
27 8.628 x HT10 1.928 x 10~4 250.1
27 5.737 x 10"11 2.479 x 10~4 1123.1
27 3.782 x 10~12 7.140 x 10"5 5805.7

TABLE 4. The solution of linear problems during the shape optimization with the Dirichlet
boundary value problem.

n

33
33
33

65
65
65

129
129
129

257
257
257

513
513
513

which

first
ail

last

first
ail
last

first
ail

last

first
ail

last

first
ail

last

1 '

0.01

13 le-4

g le-6

ü le-8

le-10

Cl

3.703
145.785
13.950

3.986
124.860

12.101

5.843
149.764
16.784

4.942
131.741

15.228

5.511
162.768
15.957

\

-

c2

1.516
3.436
2.295

1.755
4.163
2.715

1.721
3.474
2.212

1.600
3.932
2.530

1.794
4.390
2.829

\

\

m
-0.573
-0.644
-0.607

-0.573
-0.647
-0.609

-0.565
-0.646
-0.606

-0.569
-0.648
-0.608

-0.570
-0.648
-0.609

Y

m
-0.420
-0.265
-0.351

-0.409
-0.221
-0.337

-0.403
-0.217
-0.327

-0.386
-0.197
-0.297

-0.381
-0.196
-0.290

X e D
X

^ X

V -

m
0.830
0.187
0.508

0.772
0.159
0.502

0.735
0.153
0.501

0.728
0.150
0.481

0.725
0.149
0.469

n= 33
n= 65
n=129
n = 257
n = 513

O O D-

X X X

1.408
7.728
2.448

1.337
7.522
2.335

1.614
8.178
2.523

1.373
7.986
2.447

1.467
8.784
2.678

0
-H

D

X

- &- -

-

-

-O -D

X X

&- - A

iter

31
66
61

34
76
65

37
78
69

38
82
71

41
88
76
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FIGURE 5. The SQP itération histories for the shape optimization with the Dirichlet boundary
value problem.
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