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X2-STABILITY OF THE UPWIND FIRST ORDER FINITE VOLUME SCHEME
FOR THE MAXWELL EQUATIONS IN TWO AND THREE DIMENSIONS

ON ARBITRARY UNSTRUCTURED MESHES

SERGE PIPERNO1

Abstract. We investigate sufficient and possibly necessary conditions for the I? stability of the
upwind first order finite volume scheme for Maxwell équations, with metallic and absorbing boundary
conditions. We yield a very gênerai sufficient condition, valid for any finite volume partition in two
and three space dimensions. We show this condition is necessary for a class of regular meshes in two
space dimensions. However, numerical tests show it is not necessary in three space dimensions even
on regular meshes. Stability limit s for time and space schemes with higher orders of accuracy are
numerically investigated.

Résumé. Nous cherchons à établir des conditions suffisantes et éventuellement nécessaires de stabilité
L2 pour le schéma en volumes finis décentré du premier ordre, appliqué aux équations de Maxwell,
avec des conditions aux limites absorbantes et métalliques. En deux et trois dimensions d'espace, nous
proposons une condition suffisante de stabilité d'une grande généralité, puisqu'elle est valable pour
toute forme de volumes finis. En deux dimensions, nous montrons que cette condition est également
nécessaire pour une classe de maillages réguliers. En trois dimensions, des tests numériques montrent
que cette condition n'est pas nécessaire, même pour des maillages réguliers. Nous recherchons les
limites de stabilité observées numériquement pour des schémas plus précis en temps et en espace.
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1. INTRODUTION

After an era of domination by frequency-domain intégral équation techniques (mainly the method of mo-
ments [23]), the modeling of Systems involving electromagnetic waves has known a kind of "reinvention" [22]
via direct time intégration on space grids. Many numerical methods have then been used for the resolution of
the time-domain Maxwell équations. Besides Finite Différence Time-Domain (FDTD) methods based on the
Yee scheme [28] or on implicit time schemes [19], some Finite Volume Time-Domain (FVTD) methods or even
Finite Element Time-Domain methods have been proposée recently [1,16], which had already been developed
for Computational Fluid Dynamics decades ago. Contrary to finite différence methods, finite volume methods
and finite element methods based on unstructured meshes fit naturally complex geometries [7]. Finite element

Keywords and phrases. Electromagnetism, finite volume methods, L2 stability, energy methods, unstructured meshes, absorbing
boundary condition, metallic boundary condition.
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methods induce heavy computations of mass matrices, whereas finite volume methods get rid of differential op-
erators (and finite element mass matrices) using Green's formula for the intégration over finite volumes (see [8]
for a good review of numerical methods used in Computational Electromagnetics (CEM)).

We are interested hère in FVTD methods, as have been developed in the past years, not necessarily on body-
fitted coordinates [20,21] but on unstructured finite element triangulations [5=7,18] or on totally destructured
meshes [3]. More precisely, we consider a standard finite volume approximation, Le. a piecewise constant,
discontinuous, Galerkin-type finite element approximation [15], and a first order upwind flux splitting, first
developed in one space dimension [13], and available for any Friedrichs System in any dimension. As the
Maxwell System in transient state is hyperbolic and may be rewritten in conservâtive form, it is natural to use
a numerical approximation based on conservative upwind schemes. The convergence of this type of scheme has
been established for different hyperbolic équations in any dimension [10], and L1 error estimâtes of h1/2 (where
h is a characteristic mesh size) have been proved recently for a gênerai hyperbolic équation [25].

The stability of finite volume schemes has been investigated since many years. For regular, structured grids,
several méthodologies are available. The most commonly used is due to von Neumann and based on Fourier
modes [2]. It gives a resuit on the L2 stability of a numerical scheme. The modified équation analysis [27] yields
similar results - the amplification/damping of the regular solution of the modified équation - but is also only
valid on regular grids. Bot h analyses do not deal with boundary conditions. The modified équation analysis is
purely local, whereas the von Neumann analysis deals with équations posed on infinité domains or domains with
periodic boundary conditions. Finally, the concept of Total Variation Diminishing (TVD) scheme, proposed
by Harten [12], leads to L°°-stability results for finite volume schemes on non regular grids only in one space
dimension.

In this paper, we investigate the L2-stability of finite volume schemes in two and three space dimensions on
unstructured meshes, for the numerical solution of the time-domain Maxwell équations. We aim at determining
the L2-stability limit on the time step, when first order upwind fluxes and the first order forward Euler time
scheme are used. Stability results on arbitrary finite volumes are available only in the case of the upwind first
order scheme: the same sufficient stability condition was established for the linear Maxwell équations (mentioned
in [3]) and for Friedrichs' Systems in gênerai [26]. We prove in this paper a twice weaker stability condition on
the time step, which has been used actually on unstructured triangular finite volume partitions [3]. This study is
first done in two space dimensions for transverse magnetic (TM) waves - ail proofs and results hold for transverse
electric waves - and then in the most gênerai case in three space dimensions (in a homogeneous medium). Finite
volumes of arbitrary shape are considered, as well as two types of boundary conditions (absorbing and metallic
boundary conditions). The energy-type method used in this paper is drawn from some finite element proofs [4].

Since first order schemes are very dissipât ive, they can not be actually used for the transient solution of
Maxwell équations. The energy method presented in this paper can be used to prove a sufficient condition for
the L2-stability of a new second order (in time and space) finite volume scheme for the Maxwell équations on
arbitrary finite volumes [17]. Higher order accuracy can also be achieved using the Monotonie Upwind Scheme
for Conservation Laws method (MUSCL) [24], and the stability limits of second order and third order schemes
are numerically investigated in the last section of this paper.

This paper is organized has follows. In Section 2, for Maxwell équations in two space dimensions (TM
waves), a sufficient stability condition is given for the finite volume method (first-order accurate upwind fluxes,
first-order forward Euler time scheme) on an arbitrary polygonal finite volume partition, with absorbing and
metallic boundary conditions. We prove that this sufficient condition is also necessary for a certain class of
regular meshes. In Section 3, the proof in the 2D case is extended to three space dimensions. The condition
is compared to the resuit of Vila and Villedieu [26] and extended to a family of implicit schemes. Finally, in
Section 4, numerical results are presented. For the two-dimensional case on different types of finite volumes, the
sufficient stability condition of the first order upwind scheme is compared with the actual stability limit of the
numerical method. In three space dimensions, we show that the sufficient condition established for arbitrary
polyhedral finite volumes is not necessary for regular grids. The stability limit of higher order schemes based
on the MUSCL interpolation are also numerically tested.
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2. THE TWO-DIMENSIONAL CASE

2.1. The two-dimensional Maxwell équations (TM)

We consider the two-dimensional Maxwell System (TM waves) in a homogeneous linear isotropic medium
(constant electric permittivity e, magnetic permeability fi and light speed c given by ejic2 = 1). The three
unknowns EZi Hx and Hy, respectively the vertical electric field and the two components of the horizontal
magnetic field are solution of the following partial differential équations:

dEz
L dt

dHx
M dt

9Hy

ÖHy

dx
dEz

dy
dEz

dHx

dy

These équations are set on a polygonal bounded domain Q of M2. Everywhere on the domain boundary dCl,
exactly one of the two possible boundary conditions is set: a metallic boundary condition (on <9Qm, around a
metallic object or inside a cavity for example) or an absorbing boundary condition (on ôfia, possibly on the
outer boundary of the domain ô£loo> see Fig. 1).

RCS of a wing Cavity résonance

FIGURE 1. Domain Q and domain boundary.

For the TM waves in two space dimensions, the metallic boundary condition reduces to Ez = 0. The
absorbing boundary condition considered here is the first-order Silver-Miiller condition, which reduces for TM
waves to Ez = c/i (nyHx —nxHy), where n = t(nxiny) is the unitary outward direction considered.

Introducing new variables u, v and w by

Ez = fin,

Hy

V
J

c
w
c '

we get the following first order hyperbolic System

dw A dw . dw n . , „,
—- + Ax— + Ay— = 0, with W =
dt dx dy
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where the symmetrie matrices Ax and Ay are given by

Ay =

This System is strictly hyperbolic, since for any couple (a, f3) / (0, 0), the matrix aAx + (3Ay is diagonalizable
in R, with distinct eigenvalues equal to

In terms of the new variables (u, v> w), the metallic boundary condition on ô£lm writes u = 0 and the absorbing
boundary condition corresponding to the unitary outward direction n = t(nx,ny) writes u — nyv + nxw = 0.

2.2. The upwind first order finite volume scheme in 2D

2.2.1. Introduction

We assume we dispose of an arbitrary partition of the domain Q, int o a finite number of connected polygonal
finite volumes (each one with a finite number of edges). For example, this assumption covers the two cases
of vertex-centered and element-centered finite volumes [6]. For each finite volume or "cell" 7ï, Vi dénotes its
area. We call interface between two finite volumes their intersection, whenever it is a polygonal line. For each
internai interface a%j = % f) Tj, we dénote by ïiij the intégral over the interface of the unitary normal, oriented
from % towards Tj. The same définitions are extended to boundary interfaces (in the intersection of the domain
boundary dVLm \j dQ,a with a boundary finite volume), the index j corresponding to a fictitious cell outside the
domain. Finally, we dénote by Vi the set of indices of finite volumes neighboring the finite volume % (having
an interface in common). The conservative finite volume scheme is written:

yyn+\ _ mn
V

where the index i is linked to the cell %, At is the time step and W/1 is an approximate for the average of W
over the cell % at time tn. In the sequel, superscripts n are omitted whenever the explicit forward Euler scheme
is considered. The upwind first order numerical fluxes Fij are given for internai interfaces by

Fij = Mij
 + Wi + Mij-Wj, (2)

where ± superscripts stand for positive and négative parts of a matrix by means of diagonalization and the
matrix Mij is given by

Mij = Axriijx + AyUijy, with fkj — (nijx,nijy)- (3)

For a boundary interface, the missing value Wj in the fictitious cell is given by

f interface in <9ftm: Wj = Wi = QjWi,
\ interface in dÜa: Wj = Wi = 0, ^
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with

— C — (5)

On the metallic boundary <9Hm, the missing value Wj in the fictitious cell is the mirror state for the boundary
condition u = 0, whereas on the absorbing boundary 9Oa, the first-order Silver-Müller condition is applied in
a weak variational way in the boundary flux (incoming waves are not taken into account). The consistency of
this weak treatment is more clearly justified by the following genera! expression of the flux for any W:

Z
n, 'JX

2.2.2. Matricial properties

For each interface a^, let M^ be the matrix such that

Mij=c\\nij\\Mij.

The following elementary equalities hold:

fiji = -riij, Mji = -Mij,

At the same time, geometrical properties hold for each cell %\

= -Mij.

ftij - o, J2
interfaces of 71 interfaces of T%

(6)

(7)

(8)

The matrix Mij is diagonalizable, with eigenvalues Ao = 0, A_|_ = 1 and A_ = —1, corresponding respectively to
the orthogonal eigenvectors

= I nij
ijx

± = [ nijy

where fiijX and Uijy are the components of the normalized normal
parts of Mij are given by

j | | . The positive and négative

n.•13y \
± 2
nijy

\ 2 ' 2

We have the following remarkable identities:

M ±, M±Mr. = 0. (9)
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2.2.3. Energy estimâtes
We aim at giving and proving a necessary and/or sufficient condition for the L2-stability of the upwind

first order finite volume scheme (1-3) with boundary treatments (4-5). We use an energy approach, where a
quadratic form plays the role of a Lyapunov function of the unknowns Wi, We propose the following discrete
energy, directly derived from the expression of the total electromagnetic energy:

?W? W?. (10)

We investigate under which condition (s) this energy is non-increasing. In that case, the conclusion that the
scheme is stable is straightforward, since the energy is a symmetrie definite positive quadratic form of all
numerical unknowns. We propose for the energy variation AS = £n+1 — Sn the:

Lemma 2.1. Using the scheme (1-5), we have A£ = -Ai.Ti + A£2.T2, where

internai

interfaces

metallic

+ E cW
interfaces

absorbing

v Wi + E '
interfaces

and T2 - Y" —
Vi

E
2 0 0
0 0 0
0 0 0

and Wj dénotes the fictitious state (4) for metallic and absorbing boundary interfaces,
the notation ||X||2 in the expression of T<i stands for tXX.

Proof. We use another expression of numerical fluxes Fij :

/ ~ ~ \ c r ~
pr.. _ r | i ^ . ii / M^W- 4- M~W• 1 — — II?? • II M- (W- 4- W') —

T-3 II WW y t j i • %j 3 J 2 " ^'' [ J V 3'

Using the same notat ions (fictitious s ta te Wj and j|J>T|j2 = tXX)) we get easily:

= Wj — i and

~cAt

c2At2

Vj) - Mk

The terms Ti and T2 appear naturally. The terms of Ti can be reorganized in sums by interface. Terms can be
paired for each internai interface aij, which yields

internai

interfaces

metallic

+ E 2cii?

interfaces
absorbing

+ E c\\*
interfaces

Mi

+
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Elementary recombinations (including interfaces of the metallic boundary <9O

internai

145

m) yield

tWjMjiWJ+
tÙWij\Mij\ÛWij]

interfaces
metallic

+ J2 [
interfaces
absorbing

+ *Wi \Mi3

interfaces

where, for metallic interfaces, D^ is the symmetrie part of the matrix \Mij\ + (Mij — | M Ï J | ) C and is equal to
the value given in the lemma. Using the second property of (8), we have

o =
cells

internai

interfaces

interfaces of

dQ,m U d^a

which yields the correct development for the term T\. The second equality of (8) inside each cell and the
définition of M^~ are used to obtain the global resuit for T2. We have:

iji-Wi + Wj) - \Mij\ Y-
i

E [^

This concludes the proof of the lemma.

2.3. A sufficient stability condition in 2D

We propose the following stability:

Theorem 2.1. Using the scheme (1-5) on arbitrary polygonal finite volumes as described in this section, the
energy £n defined in (10) is non-increasing, and therefore the scheme is L2-stable, if the time step At is such
that

cAt < min —~, wüh Pi =

Proof. We first dérive an upper bound for the term T2 in Lemma 2.1. We use the following equality, which is
easily obtained:

1V±%2 lvxzk (ii.)
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II - I I 2

For each term X^ defined relatively to the cell % by Xi — pCjeV; M^jAWij , we get

<AWij w- *w- AWik

£

Since the terms 1 + hij.riik involving normalized normals are positive, using a U2xy < x2 + y2"-type inequality
yields

i;j

A sum on ail cells yields an interesting upper bound for T2'.

The sum by cell can be split into a sum by interface. Using the définitions of Wj for boundary interfaces (4-5),
we get

internai

interfaces

metallic / - 2 0 0 \ r p A 2 1 / ~ 2 ° °
Yl *Wi I 0 0 0 ' Mfj 0 0 0

interfaces of dQm \ 0 0 0 / ^ % ^ \ 0 0 0

absorbing p

interfaces
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Adding the terms for T\ given by Lemma 2.1 and using the diagonalization matrices Tij of the symmetrie Mij
(ie. Mij = tTijAijTij, with A»j = diag (0, c\\nij\\, -c||nij||)), we finally get

internai
AS cAt

/ 0

0

interfaces o

absorbing
lrf--II* W-*

interfaces of dna

0

0
0

0 0

0

0

- 2 0 0

0 0
0 0

\

Wi

Thus, under the condition of Theorem 2.1, the energy variation A£ is négative and the discrete energy Sn is
non-increasing. Then the scheme is L2-stable. The discrete energy is bounded and all numerical unknowns as
well.

2.4. Optimality of the suffleient stability condition on regular meshes

It is uneasy to prove the instability of a scheme by means of energy estimâtes. Even if the energy can
increase, no conclusion can be drawn because the évolution matrix for the field W (see matrix A in (19)) is not
symmetrie. However, one can show that the sufneient condition of Theorem 2.1 is also necessary for a class of
regular meshes (with il = R2 or with periodic boundary conditions). We have the following:

Proposition 2.1. We consider a finite volume partition for which
(i) a red or green color can be laid on cells, such that neighboring cells have different colors,
(ii) the following uniformity is required: 3 (P, V) such that (VTï, Vi/Pi = V/P).
Then the scheme (1-2-3) is unstable if cAt > 2V/P.

Proof: Let us introducé the following particular field

_ ƒ Wr = *(1, 0, 0),
Wv = *(-!, 0, 0),

if % is green,
if % is red.

Assuming the mesh is infinité or periodic boundary conditions are set (with identification of corresponding
vertices), elementary calculations prove that, if (Vi, W? = Wi), then (Vi, W?+l = XW?), with A = 1-cAtP/V.
Hence, the field is clearly amplified (À is real), and the scheme is unstable as soon as cAt > 2V/P.

This result is valid for regular rectangular finite volumes, for the triangular finite volumes resulting from a
diagonal, uniform or alternate eut in a regular rectangular mesh, and for other regular triangular meshes as
shown in Figure 2. The sufficient and necessary condition of Theorem 2.1 and Proposition 2.1 is equivalent to
the condition proposed by Depeyre [9] for uniform Ax x Ay rectangular finite volumes:

— — < 1

Ax Ay ~
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FIGURE 2. Examples of regular meshes with colored cells.

3. THE THREE-DIMENSIONAL CASE

This section has many similarities with the previous one. Many définitions, although they differ from the
two-dimensional case, could be straightforwardly deduced in three space dimensions. We have chosen to shorten
définitions and proofs whenever it is possible.

3.1. Equations

We now consider Maxwell équations in three space dimensions (homogeneous linear isotropic medium with
no source, with parameters e, /J,, with e/ic2 = 1). The vector field V = *(Ex, Ey, Ez, Hx, Hy,Hz) vérifies:

dEx
L dt

dEy
L dt

dEz
L dt

M dt

dHy

tl :

dHz

dy
dHx

dz
dHy
dx

dEy
dz

dEz

dx
dEx

dHy
dz '

dHz

dx '
dHx

dy '
dEz

dy '
dEx

dz '
dEy

As previously, équations are posed in a bounded domain Cl, with two kinds of boundary conditions, a metallic
condition n x E = 0 or a first-order Silver-Müller absorbing condition (in the unitary outwards direction n), i. e.

n x È = —C/J, n x (nxÊY

Using the variables

M M A* /

(13)

(14)
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the Maxwell System can be transformed into

dW . dW A dW—- + Ax— + Ay—-
at ax ay

dW n
z~- = 0,

az

where the symmetrie matrices Ax, Ay and Az are given (using c = — c) by

Ax =

/O 0 0 0 0 0 \
0 0 0 0 0 c
0 0 0 0 c 0
0 0 0 0 0 0
0 0 c 0 0 0

\ O c O O O O y

/O 0 0 0 0 c\
0 0 0 0 0 0
0 0 O c O O
Ö O c Ö Ö Ö
0 0 0 0 0 0

0 0 0 0 0

/ O O O O c 0 \
O O O c O O
0 0 0 0 0 0
O c O O O O
c O O Ö Ö O
0 0 0 0 0 0

This System is (non strictly) hyperbolic, since for any non-zero vector n = t(nxiny,nz), the matrix nxAx +
nzAz is diagonalizable in R, with three double eigenvalues equal toUyAy

3.2. The upwind first order finite volume scheme in 3D

We assume we dispose of an arbitrary partition of the domain Çl into a finite number of connected polyhedral
finite volumes (each one with a finite number of faces). For each cell 7 ,̂ Vi represents its volume. The définition
of cell interfaces â - (which are now polyhedral surfaces), normals n -̂ and normalized normal fiij can be derived
exactly like in two dimensions, as well as fictitious cells for boundary interfaces. The conservative finite volume
scheme is again written as in (1), where Wf is an approximate for the average of W, now defined in (14), over
the cell % at time tn. The matrix Mij in the upwind first order numerical fluxes (2) is now given by

Mij = Axriijx with n^ — (15)

For all interfaces a -̂, the définition of M^ (6) and the properties (7-8-9) still hold.
For a metallic boundary interface (condition rïlj x È = 0), the missing value Wj in the fictitious cell is still

given given by (4) where the matrix dj is now given by

= ( -h + 2 ülj nij

v
03 (16)

-> t ->
where O3 and /3 are respectively the zero and identity 3 x 3 matrices (the tensor fiij ftij being also a 3 x 3
matrix). It is clear that the metallic boundary condition is enforced in a weak variational way, since the electric
field E at the boundary, nearly equal to the first three components of /z(Wi + W^)/2, is actually parallel to rïlj.

On the absorbing boundary, the first-order Silver-Müller condition is again applied in a weak variational way
in the boundary flux (incoming waves are not taken into account), i.e. Wj = 0.

For energy estimâtes, we proceed exactly like in Section 2.2.3 for the two-dimensional case. The Lemma 2.1,
giving the energy variation AS = S71*1 — Sn', still holds, with the following new expression for D^:

(2TU3 O3
Dt3~\ 03 03
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where Uij = Uj Uj + tUj tUj is the tangent projector on the considered metallic boundary interface. Actually,
Dij in the expression above is again equal to the symmetrie part of the matrix |MÏJ| + (Mij — \Mij\)Cij, where
dj is now given in (16).

3.3. A sufficient stability condition in 3D

We propose the following stability:

Theorem 3.1. Using the scheme (1-2-15-4-16) on arbitrary polyhedral finite volumes as described in this sec-
tion, the energy £n defined in (10) is non~increasing, and therefore the scheme is L2-stable, if the time step At
is such that

cAt < min —-, with Pi — V^ ||n^-||.

Proof. The proof is very similar to the proof of the Theorem 2.1 for the two-dimensional case. The dérivation
of an upper bound for the term T2 in Lemma 2.1 requires a three-dimensional version of the equality (11), given
in the following:

Lemma 3.1. We have

M- M- = « M

where the state vectors W££, W^ W~k^, W^ are given by

Wïjk = l(*ijfc» Ujh X Hij), W^ - t{Ujk, tijk XUik),
Wïjl = t(™ij x tijk, tijk), W^b

ó -
 l{nik x Ujk, Ujk),

where Ujk is a unitary vector, orthogonal to both hij and hik-

Proof. The symmetrie matrix Mij is diagonalizable, with double eigenvalues Ao = 0, A+ = 1 and A_ = — 1. The
vectors W^£ and W^% (resp. W^ and W^j) are orthogonal eigenvectors of Mij (resp. Mifc) for the eigenvalue
A_ = — 1. Then it is easy to show that

l[/ /] (17)
(18)

Noticing that *W^W^ = 'w^Wj* = 1 + f^.fi* and 'w^W^ = *W^W^ = 0, we easily get the
announced resuit for M^ M~kl which complètes the proof of the lemma.

2
Again, for each term Xi =

2
5 w e n a v e

U,k)evf

= E C2|l"iIIKfc" (l + 4-n^) [ C ^ A ^ ) {'WZW*) +



L2-STABILITY OF THE UPWIND SCHEME FOR CEM 151

As in the two-dimensional case, the terms 1 -f-n^-n^ involving normalized normals are positive. The use of two
"2xy < x2 +2/2"-type inequalities and the recomposition of the matrices M^ and M^k using (17-18) yield easily

- En )̂ = f E
A sum on all cells yields the same upper bound for T2 as in (12). The sum by cell for T2 can be split into a
sum by interfaces. Using the définitions of Wj for boundary interfaces (4-16) and the diagonalization of Mij
(Mij = *TijAijTij, with Ay = diag(0, 0,c||n^||,c||7%||, —c||nij||, -c| |n^||)), we finally get

AS < cAt J2
interfaces

metallic

interfaces

absorbing
'T ^

interfaces of dU{

Thus, under the condition of Theorem 3.1, the energy variation A£ is négative and the discrete energy £n is
non-increasing. Then the scheme is L2-stable. The discrete energy is bounded and ail numerical unknowns as
well.

3.4. Compléments

3.4.1. Comparison with another stability result

The stability condition of Theorem 3.1 can be compared with another theoretical gênerai result presented by
Vila and Villedieu [26]. They show that a £2-stability is achieved under a condition yielding a twice smaller limit
time step than the conditions proposed in this paper. One can show that their condition, for the Maxwell System
in three dimensions, yields a certain monotonicity property to the scheme (the concepts of total variation [12]
or local extrema [14] diminishing schemes being unavailable for Systems in more than one dimensions). The
present monotonicity is given in the following:

Proposition 3.1. Using the scheme (1-2-15-4-16), under the condition cAt < minj; ~t, with Pi defined in
Theorem 3.1, each state vector is transformed into a "convex" combination of neighboring states, i.e.

TTAn+i _ M..y[rn + Y^ N- -Wn
vvi — iyttwi -r l^jeVi JV*J vvj »

Vi, Vj G Vi: Na and Nij are symmetrie and positive.

Proof The finite volume scheme (1) can be rewritten

We then choose Vz.Vj e Vi; Ni3 = -At/Vt M^ and Vi, Nit = I6 - At/Vi 52jeV. M±. The matrices N^ and
Na are clearly symmetrie and the matrices N^ are positive. Finally, if cAt < min^ ^-, the matrices Na are
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also positive, since VÎ, VW, we have:

W = *WW - ^ Yl *WM±W > %WW ~^Y1 cWHij^WW > ( 1 - ^ ^ *WW > 0.

This complètes the proof of the proposition.

3.4.2. Implicit time schemes

The upwind first order scheme described above can be coupled with an implicit time scheme. Formally, the
scheme (1-2) can be written

where Wn is an approximate of the field at time tn and A is a non-symmetric évolution matrix, depending only
on the geometry and the light speed c. Similarly, the discrete energy (10) can be written

where the block-diagonal matrix E is symmetrie definite positive. In terms of matrices, Theorem 2.1 is
equivalent to

cAt < min —- => EA H V̂EA is négative. (20)

We consider the following family of implicit time schemes:

W n + 1 - Wn + AtAWn+ö
} with W"-+B = (1 - 6>)Wn + <9Wn+1, (21)

where 9 is a Hxed parameter in ]0,1]. This time scheme is second-order accurate if 6 = 1/2, and first-order
accurate otherwise. We have the:

Proposition 3.2. Using the scheme (1-2-15-4-16) on arbitrary polyhedral finite volumes, with numerical fluxes
based on the field Wn+e as proposed in (21), the energy £n defined in (10) is non-increasing} and therefore the
scheme is L2-stable, if the time step At is such that

cAt(l-28) <min^-
% Pi

The scheme is unconditionally stable if 9 > 1/2 and at least conditionally stable if 6 < 1/2.

Proof. We have successively:

= wn+e + ( 1 - 9) At A Wn+e,

= £n + 2AttWn+e

The conclusion of the proof is based on the implication (20) for (1 — 29) At instead of At.
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FIGURE 3. Total discrete energy £n in function of the time for two regular triangulations.
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FIGURE 4. £n in function of the time (right) for an unstructured triangulation (left).

4. N U M E R I C A L RESULTS

4.1. The two-dimensional case wit h T M waves

We consider regular meshes of a square domain, wit h a metallic boundary condition everywhere on the
boundary. The total electromagnetic energy is plotted in function of the time for several numerical simulations
with different time steps and finite volumes. Starting from a regular square mesh (30x30 squares), a first
triangulation is obtained by cutting (in a constant direction) each rectangle in two triangles (right-top partition
in Fig. 2). In the sequel, we dénote by A£max the maximal time step for which the stability condition given
by Theorem 2.1 or Theorem 3.1 is achieved. Here, the energy is non-increasing if At = A£max and the scheme
is clearly unstable above this sufncient and necessary stability limit (see Fig. 3, left). It is also the same if
the rectangles are eut in alternative directions, as in the left-bottom partition of Figure 2 (see Fig. 3, right).

For the non-structured triangulation presented in Figure 4, the stability limit for the time step is close to
1.23 • A£max, as shown in Figure 4. This is probably due to numerical diffusion and energy dissipation in larger
triangles. However, the condition given in Theorem 2.1 is actually sufncient. If the finite volumes are different
from triangles, for example médian dual cells [6] based on the previous triangulation, a similar resuit is obtained,
with a stability limit around 1.196 • Atmax (see Fig. 5).

On structured, regular, rectangular partitions it was also observed that the stability condition given by
Theorem 2.1 is necessary and sufïicient. For example, for two partitions (30 x 50 and 30 x 100 rectangles) of
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FIGURE 5. Sn in function of the time (right) for médian dual cells (left) in the triangulation
of Figure 4.
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FIGURE 6. £n in function of the time for two regular rectangular meshes (30 x 50 left and
30 x 100 right).

the unity-square, the total electromagnetic energy is plotted in function of the time for different time steps in
Figure 6, and its variation is as announced.
Finally, we have made some numerical tests using time and space schemes with an higher order of accuracy,
on structured and unstructured partitions of triangular fmite volumes. More precisely, we have considered the
extension of the MUSCL method [24] to unstructured triangular meshes [11] with no limitation, for which the
numerical fluxes (2) are replaced by Fij = M^Wij + Mij^Wji, where Wij and Wji are interpolated states on
both sides of the cell interface atj. In the present case (triangular finite volumes ),.W ĵ (and symmetrically Wji)
is given by

Wij = Wi + \ [(1 - (3)(Wj - Wi) + /? VW(7l).Gt<2j] ,

where VW{%) dénotes an approximate gradient of W on the cell % (see [18] for several possible expressions of
the local gradient on triangles), Gi dénotes the gravity center of % and finally f3 is an upwinding parameter. On
regular rectangular grids, this spatial scheme is actually second-or der accurate and even third order accurate
for 0 - 1/3.
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We have considered the following explicit multi-step Runge-Kutta time schemes with low storage:
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w* =
w•n+l _

and
= Wn + AtAW*

W* = Wn + ^

= Wn + — AW*

where A is the operator deflned in (19). These schemes are actually second and third order accurate, since A
is linear. In order to remain coherent, we have tested a "second order scheme" (resp. "third order scheme")
based on the second (resp. third) order Runge-Kutta scheme and the MUSCL extension with j3 = 0.5 (resp.
0= 1 /3 ) .

On a structured partition of triangles, the stability limit observed numerically for the second order scheme
is very close to Atmax given in Theorem 2.1. It is shown by total energy plots in Figure 7 (left). One can
notice that the total electromagnetic energy is almost constant if At = Aimax- For the third order scheme, the
stability limit for At is signifkantly different from A£max: it is around 1.885 • Atmax (see Fig. 7 - right).

structured triangular finite volumes
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FIGURE 7. £n for the second (left) and third (right) order schemes on a regular triangulation.

On the unstructured triangulation of Figure 4 (left), the stability limit observed numerically for the second
order scheme is around 1.22 • Atmax (see energy plots in Fig. 8, left), which is again very close to the stability
limit for the first order upwind finite volume scheme (see Fig. 4, right). For the third order scheme, the stability
limit is again significantly different from 1.22 • A£max: it is around 2.38 • A£max (see Fig. 8, right).

4.2. The three-dimensional case

We consider regular meshes of the unity-cube in three dimensions, made of rectangular parallelepipedic
éléments. We use metallic boundary conditions on the whole cube surface. For several grids, char act erized
by the numbers nXi ny and nz of éléments in the three directions (we can assume nx < ny < nz with no
loss of generality). Numerical tests are summed up in Figure 9, in which the total electromagnetic energy is
plotted in function of the time for different time steps and sets (nXiny,nz). One can notice that, in all cases,
in terms of Ax = l/nx, Ay = l/ny and Az = l/nZy the observed limit time step for stability is very close to
At = A^ Az/(Ay + Az). We can prove this condition is necessary for stability: since Aa; > Ay > Az, the
given At is indeed the minimum of the three "two-dimensional" limit time steps based on regular rectangular
two-dimensional grids of sizes Ax x Ay, Ay x Az and Az x Ax.
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FIGURE 8. £n for the second (left) and third (right) order schemes on an unstructured triangulation.
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300

On unstructured meshes based on tetrahedra, the upwind first order finite volume scheme has an observed
stability limit which is, exactly like in the two-dimensional case, a little larger (with the same order of mag-
nitude) than the stability limit given in Theorem 3.1, probably again because of numerical diffusion in larger
finite volumes. Finally, it was observed that the higher order schemes based on the MUSCL method and ex-
plicit Runge-Kutta schemes lead to numerical stability limits [7] which are very similar to those in two space
dimensions.
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5. CONCLUSION

In this paper, we have proposed a sufïicient condition for the stability of the first order upwind finit e volume
scheme applied to Maxwell équations in two and three dimensions. Energy estimâtes lead us to sufïicient
stability conditions on arbitrary finit e volumes wit h metallic or absorbing boundary conditions. The stability
condition happens to be also necessary for regular meshes in two dimensions only. Finally, the condition seems
to be also sufficient for schemes of higher accuracy in time and space, and an energy-based stability study of
these schemes should be the subject of further investigations.
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