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APPROXIMATION OF A FORWARD-BACKWARD PARABOLIC PROBLEM
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Abstract. We consider the analysis and numerical solution of a forward-backward boundary value
problem. We provide some motivation, prove existence and uniqueness in a function class especially
geared to the problem at hand, provide various energy estimates, prove a priori error estimates for the
Galerkin method, and show the results of some numerical computations.
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1. INTRODUCTION

We study a class of forward-backward heat equations in this report. Problems such as these arise in a
remarkable variety of physical applications which we will describe in the next section. It seems that this
problem-type has been avoided to some degree due to the nontrivial task of finding a proper formulation.

Let 2 C R? be a rectangle (0,L) x (0, H). Let o(z,y) be a smooth function (€ C*(Q) with |o|, € Leo(£2))
in © such that ¢ = 0 defines a curve C which divides © into two parts, Q4. It will minimally suffice that o is
piece-wise smooth with ||, € Loo(2) on each of finitely many segments, these being regular domains. We are
concerned with the problem

OUy — Uz + Au = f on £, (1.1)
u=0 on 80N {(z,H):o(z,H) <0} =TH, (1.2)
u=0 on 82N{(z,0):0(z,0) >0} =:TY, and (1.3)
u=0 on 90N ({(0,y),0<y < H}U{(L,y),0 <y < H} =:T. (1.4)

Some of these boundary conditions become vacuous if the sets on which they are posed become empty (or of
zero measure). We assume I'# and 1‘3 are either empty or consist of finitely many open intervals. Note that in
a region where ¢ > 0, the above equation resembles a (forward) heat equation for which one expects to prescribe
initial and lateral boundary values. Conversely, in a region where ¢ < 0, the equation becomes a (backward)
heat equation for which one expects to pose terminal as well as lateral boundary values. One easily imagines
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an interesting problem as to the mathematical structure of the solution globally as well as along the level set
o~ 1({0}) and its intersection with the boundary T'.

Because of the unusual nature of these forward-backward problems, it is important to describe their origins.
This is done briefly in two sections: Section 2 discusses the mathematical origin of the problem as a singular
perturbation limit, and gives an indication of the variety of problems that can arise in this way. Section 3
indicates briefly a number of physical situations where equations with a forward-backward character arise.

The first main results of this paper consist in establishing existence and uniqueness of a weak solution to the
problem in a certain class of functions. The essential result, in Theorem 4.2, is the precise identification of the
space of solutions. This identification requires a trace theorem, Theorem 4.1., that generalizes a corresponding
theorem in [3]. A consequence of knowing the space of solutions is that the uniqueness of the solution follows
readily, as is shown in Theorem 4.2. ]

We then formulate in Section 5 a Galerkin method for the solution of the problem. Error bounds are
given for both parts of the norm (Th. 5.1 and 5.2). In Section 6 we do some numerical computations with a
method that uses second degree polynomials. We furnish some experiments on the accuracy confirming our
results in Section 5 and examine some cases where the true solution is not known. Other numerical work
on similar equations abound; we can mention [1,2,13, 14, 23, 24, 26-28, 46,47]. Regarding this literature, we
mention that [28] is concerned with problems that do not necessarily satisfy a coercivity condition. Some
careful eigenvalue estimates are used in the analysis, and several bilinear forms are used; a form that is the
same one as used here, and a weighted form with the weight chosen to enhance the coercivity. Some numerical
results are given. Among the other numerical methods proposed, we mention [13,14]. These deal with the special
case o(x,y) = z. Both [13,14] have bilinear forms that involve integrations one slab at a time. In [14] both the
solution and test functions are discontinuous in y, and while in [13] the solution functions are continuous in y.
In very simple cases [14] is like the backward Euler method while [13] is like Crank-Nicolson. Finally, various
members of the fluid dynamics community have produced numerical solutions of the reversed flow boundary
layer problem closely associated herewith, for example [8,40].

Our results are carried out in two dimensions although it is reasonable to suppose they can be extended to
higher dimensions.

2. PROBLEMS

Problems of the form (1.1-1.4) occur in a variety of applications (to which we shall return in the next section)
and in addition have an independent mathematical interest. One source for the problem (1.1-1.4) is the singular
perturbation limit as € — 0 of the elliptic boundary value problem

—Ug, — €Uy, +ouy +Aut = f  in Q (2.1)
u®* = 0 on N

If o, < 2, a simple integration by parts and use of the Lax-Milgram shows that (2.1) has a solution. It is
shown in [35] that u¢ converges weakly to the solution u of (1.1-1.4) as € — 0. (A singular perturbation result
in a special case is also given in [12].) Different choices of the function o give rise to interesting examples
of (1.1-1.4). We cite some of these. If o(z,y) = z — 1/2, we have (with a change of variable) the forward-
backward parabolic equation described in earlier papers. In this example, depicted in Figure 1, we have a
forward parabolic equation in the right half rectangle, and a backward heat equation in the left half rectangle.
This problem arises in the theory of stochastic processes (see Sect. 3.1), in a simple model of neutron scattering
(see Sect. 3.5), in the modeling of counter-current separators (see [18]), and also in some astronomical problems
(see Sect. 3.3). It is, to our knowledge, the first example of (2.1) that has been studied. Some mathematical
properties of the solution of (2.1) in this case are given in [12,35], or [20]. A second choice of o is given by
the formula o(z,y) = (x — 1)% + (y — 1/2)2 — 1/16, see Figure 2. Here we have a situation reminiscent of fluid
dynamics and the use of the “parabolized Navier-Stokes” (PNS) equations as a simplified version of the Navier
Stokes equations to model fluid flow near a boundary. To obtain the parabolized Navier-Stokes equations, one
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FIGURE 3. o(z,y) =1 — 2y.

simply omits the second derivatives in the direction of the boundary. The resulting system is parabolic in
nature, and so can be solved numerically by marching forward in the time-like direction. If there are regions
of separation and reverse flow, this marching procedure becomes unstable which is not surprising since the
marching procedure is attempting to generate an approximate solution to a backward parabolic equation. This
difficulty has been the object of several papers [7,40]. Our second example may be regarded as a simplified form
of the PNS equations with a region of reverse flow. We cite some further choices of 0. If o(z,y) = 1 — 2y (see
Fig. 3), we have a forward parabolic equation in the lower rectangle and a backward parabolic equation in the
upper rectangle. The problems in the two rectangles are independent of each other, and it is not hard to see
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FIGURE 5. o(z,y) = (z — 1/2)? + (y — 1/2)%? — 1/16.

that the solution on the line y = 1/2 is given by the two point boundary value problem

It turns out that the solution u is continuous across the line y = 1/2. If o(z,y) = 3 — = — 5y, see Figure 4,
the zero line of o is tilted. In this case, it would be interesting to show that u is continuous across the zero
line of o, and to identify the solution on the zero line. In the case o(z,y) = 2z — 1, our solution is obtained
without boundary conditions on the top or bottom of the square. As a final example, see Figure 5, we mention
the choice o(z,y) = (z — 1/2)? + (y — 1/2)® — 1/16. Here one has a backward region imbedded in the square.
Our theory gives a solution to this problem. As with all these examples, it would be interesting to determine
the regularity of the solution across the zero line of o.

At times one considers the problem on a half-space or a semi-infinite strip. Recently, the problem arose
in [10], as part of the solution of (u + uP); = Ugzy + Uyy — U in case (c) where 1 < p < 3/2. With ¢, 7 replacing
z,y, their function is nontrivial:

o(¢m) =pf(¢om) - %n,

p
where v > 0 and [ [p; vodnd¢ = M > 0. By the properties (i) through (vii) of vy derived in [10], one sees that
the zero set of ¢ must behave as depicted in Figure 6 below. There is an even symmetry about ¢ = 0. The
fashion in which the forward-backward character arises here is similar to that in Section 3.2 in that one seeks
similarity or traveling wave solutions. The interesting character under study arises in the moving frame.
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Historically the problem goes back to [21,32] — viewed as parabolic problems with degenerate coefficients,
to [16]) where the forward-backward problem was treated for the first time and to [15] where the results of the
former were announced. Note also the paper [22], which treats a general class of degenerate parabolic equations.

3. MOTIVATION FOR A FORWARD-BACKWARD HEAT EQUATION

In this section we present five different physical problems that are modeled by the forward-backward heat
equation.

3.1. Randomly accelerated particle

Certain stochastic processes involving the motion of a particle undergoing random acceleration lead to de-
generate type equations such as the one we are describing in this paper. A complete derivation and analysis as
well as original references are given in Franklin and Rodemich [11].

Consider the problem of determining the time 7'(z,y) that it takes a particle which is restricted to move on
the line segment [—1,1] with initial position z and initial velocity y undergoing random acceleration to reach
either of the boundaries z = —1 or z = 1. In the derivation in [11] it is assumed that the particle experiences an
acceleration due to white noise so its velocity follows a Brownian motion. They work with the time probability
density function p(z,y,t) and an equation is derived for it by postulating that if a particle starting at position
x with velocity y reaches a boundary in time ¢ then a particle starting at * — yAt with velocity y + Ay should
reach the boundary at time t — A¢. They conclude after a formal probability argument with the following
initial/boundary value problem for T*:

aT  19°T
T for —l<z<1, —oo<y< oo, (3.1)
1
T(z,y) = O(m) for |y| large and —1 <z < 1,
T(1,y)=0 for y > 0 and T'(—1,y) =0 for y < 0.

Equation (3.1) is an example of (1.1) if one switches z and y.

3.2. LaRosa’s electron beam model

Solar type III radio bursts have since the 1950’s been explained by non-thermal beams of electrons being
accelerated in solar flares. The physics of electron beam propagation through the solar corona is not yet
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completely settled, but in [23,24], a nonlinear theory is proposed that seems to at least explain several of the
phenomena observed.

Let the beam electron velocity distribution function be denoted by f, it specifies the measure of how large
a population of electrons at location z and time t travel at velocity v. At the leading edge of the beam it is
considered appropriate to model the diffusion of electrons by the quasi-linear plasma diffusion equations, which
in [30] (pp. 131-133) have been derived for one dimension:

TWpe

fi=

W f.)o. (3.2)

elle

It describes how electrons that are traveling sufficiently fast create Langmuir waves, hence plasma energy, and
acts as a diffusion. W is the wave energy distribution in velocity space and f is integrated over all components
of ¥ normal to the beam direction. Here wy. denotes the wave frequency of the beam which is on the order
of 100 Hz, n, denote the beam density which we later will relate to the background electron density (n.) and
np/ne € (1077,107%) (from what is termed a weak to a strong beam), and let vy denote the average beam
velocity which is on the order of 101° cm s™!, as well as the front velocity vsront- Adding the possibility of
inhomogeneity of the beam, i.e., the effect of drift within the distribution f due to varying velocity, the classical

diffusion equation is modified by adding a convective derivative term to the homogeneous beam equation as
in [30] (p. 135) to:

TTWpe

ft+vfz:

('UWf'v)v

MeNe

for £ > Ziont and with a constraint due to nonlinear! effects: f W€ = 0,v) dv < Wiy, expressing that there
is an upper limit to the energy in the beam, i.e., energy is absorbed into the plasma beyond a certain energy
level. Some names of physicists involved in the theory behind these nonlinear effects are: Zakharov, Tsytovich,
Rudakov, and Papadopoulos. In such a beam with a distribution of velocities, fast electrons will out-pace slower
ones. At the front of the beam, the density of fast electrons increases in comparison to the slower electrons. This
creates a finite positive slope (f, > 0) at the beam front. This allows for energy generation there in the form
of plasma waves. At the back of the beam, however, f, < 0 and these slower electrons may re-absorb energy
from the waves generated by the fast electrons at the head. Supposing this re-absorption is so efficient so as to
allow almost all of the energy generated by the fast particles to be re-absorbed later by the slow ones, then the
beam may maintain its energy and propagate large distances without losing energy to the background medium.
The beam length, denoted by Az, turns out to be on the order of 10° cm. The beam may then travel 10 to 100
times its length, i.e. as far as into interplanetary space. One may thus consider a steady-state approximation
in which vgront and Wiy, are considered to be constant throughout most of the life-span of the electron beam.
Here we introduce a new variable moving with the front: £ = Z — vgontt. Rewriting the drift-diffusion equation
in the new variable, seeking traveling wave solutions (or as LaRosa terms it, a steady-state solution), yields:

TTWpe
v — =
( 'Ufront)ff m

(W fo)o, (3.3)

elle

which is a forward-backward heat equation identifiable with our own, when we set z = v and y = { and
0 =1—1xzo/z and there is a first-order term (W/z) f if we choose to differentiate through rather than keep the
divergence form (zo = Vfront)- (3.3) is coupled with an energy equation, with vVgont > vg, one has

TW.
('vg - 'vfront)W{ = —n—pEDQva7 (34)

€

indicating exponential decrease of W with increasing £. See also [4,6].

1The term here refers to strong turbulence modulational interactions, see [23,24].
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3.3. Prandtl boundary layer equations

A nonlinear forward-backward heat equation arises in two-dimensional fluid flow near a boundary when

separation occurs. To derive this problem we start with the nondimensionalized Navier-Stokes equations for a
viscous incompressible fluid,

G+ (@ -V)i=—-Vp+Re 'A% and V- 7=0

where @ = (u,v) is the velocity and p is the pressure. We examine the flow near a boundary, assume it is
primarily unidirectional, require no-slip boundary conditions so % = 0 on the boundary, take the Reynolds
number, Re, as large, and assume steady flow, %; = 0. Away from the boundary the flow is primarily inviscid.
To focus our analysis on the boundary layer we make the variable change § = v/Rey and & = v/Rev which
balances the important viscous and convection processes. We obtain for the z-velocity equation,

u% +v% __% +Re_1& +@
oz 8y Oz 0x2’  Qy?
the y-velocity equation,
op ou Ov
— =0 d —+—=0.
Oy e Bz + oy

Dropping the small terms, noting that p is independent of y so its behavior is completely determined in the
inviscid region we have

du  Ou O%u
u$ —r—’t)-a—y—a—y2~— s (35)
and
Ou Ov
—+—=0. 3.6
oz + Oy 0 (3.6)
Typical boundary conditions associated with (1, 2) are
u(z,0) = v(z,0) = 0, u(0,y),u(z,1) are given functions. (3.7)

In the mathematical analysis of (3.5, 3.6, 3.7), it is assumed that u > 0. (See [34] or [33].) In some important
problems there are regions where the flow “separates” from the solid boundary, with a backflow region next to
the boundary. A typical situation is shown in Figure 7. Here, there is depicted a “separation region” near the
z-axis in which the flow moves to the left. The values zs and z i are respectively called the separation point
and the re-attachment point. (Fig. 7 is essentially the same as Fig. 2, with the z and y axes interchanged and
the fluid mechanics would be more reasonable if we had a wall rise along y = z, > 0, say, rather than lie flat
along the z-axis.)

Following (1.2-1.4), since 0 < zg < zgr < 1, the boundary conditions (3.7) are still appropriate for the
problem with separation. However, the presence of a separation region complicates the solution process. In the
case of no reverse flow, (3.5) is a forward parabolic equation, so there is a possibility that (3.5) can be solved
by a marching procedure, moving in the positive = direction. With the presence of the reverse flow region, the
marching becomes unstable because one is solving a parabolic equation in the unstable direction. A way around
this difficulty has been proposed by Fligge-Lotz and Reyhner: in regions where u < 0, one simply drops the
uu, term and continues solving the system in a forward direction. The Fliigge-Lotz and Reyhner technique is
inconsistent with the equation (3.5), and results in an inaccurate solution. Modifications of the Fliigge-Lotz
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FIGURE 7. o(z,y) = u, the first component of the velocity

and Reyhner method have been proposed in [7] that involve iterations in the separated region. These modi-
fications are in the spirit of [47] and, if convergent, retain consistency with (3.5). It would be interesting to
establish the convergence of the [7] iterations. See also [31,41-45].

3.4. Transport during flow reversal

The forward-backward heat equation emerges in the modeling of the transport by convection dominated flow
of temperature or a pollutant or salt in the the boundary layer of a fluid undergoing a flow separation or reversal
(see [38,39], for a specific examples).

Assume u represents temperature or the concentration of some other substance. Let (p,g) be the z and y
components of the fluid velocity. Then if convection, diffusion, and some type of reaction are involved in the
transport the equation is

Ou du

— +qg— —€cAu+du=
Paz Ty f
where f represents some heat or pollutant sources. Assume 0 < € < 1. We again examine the boundary layer
behavior. In the usual singular perturbation analysis one introduces the solution v of the reduced equation

ov v
p%+qa—y+)\v_f

and seeks an approximation to the difference w = u — v. One has

@—+ @—e 8—2?}+& +Aw=0
Pz q@y 0z2 = Oy? -

Suppose g(z,0) = 0 as is reasonable if there is no flow through the boundary. Write g(z,y) = go(z)y + O(¥?).
Introduce the stretched variable 7 = y/+/e, and set W(z,n) = w(z,y). Then

o vy —1/20W 0P D%
_— + —_— —— - /= =
Py (goy + O(y*))e on €32 a + 2w =0
S0
Ow ow  9*w  B*w L
g et it - /2
P52 + qo”n 92 o922 o + 2w = O0(e’/?).
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Replacing the right side by 0, one obtains a parabolic equation for 1, with z the time-like variable. If the
function p changes sign in a region, the equation is forward-backward equation.

3.5. Neutron scattering

An example of the forward-backward heat equation occurs in the scattering of neutrons. In a simple case,
the scattering medium is contained between two parallel planes perpendicular to the z-axis and placed at z = 0
and z = 1. The dependent variable of interest is the density u(z,v) of neutrons at position z and velocity v.
Suppose the the neutrons have constant kinetic energy, so v may be taken to be a unit vector. Suppose also
that « depends only on p = v - e,, where e, is the unit vector along the z-axis. The density function which we
now write u(z, i), is given by a linear integro-differential equation known as the linear Boltzmann equation:

1
Hu, + ou = o / p(p, v)u(z, v)dv.

-1

Here, p(p,v) gives the probability that a neutron at position z and traveling in direction v is scattered to the
direction . The quantity os, known as the scattering cross-section, gives the fraction of neutrons at z that
encounter scattering, and the quantity o, known as the total cross-section, gives the fraction of neutrons at z
that are removed from the neutron population at (z, ), either through scattering or absorption. This equation
is considered in the infinite slab 0 < z < 1 and for —1 < pu < 1. For u > 0, u(z, u) represents neutrons moving
in a positive z-direction, whereas for u < 0, u(z, 1) represents neutrons moving in a negative z-direction. The
equation is generally considered with boundary conditions that represent a specified source of neutrons entering
the slab at the boundaries z = 0 and z = 1. So we have for boundary conditions

u(0,p) = go(p) for 0 < p <1, u(l,pn)=g1(u) for -1 < pu<O0. (3.8)

This integro-differential boundary value problem is discussed, for example, in [19,48].

In a certain energy range, p(u,v) has a significant maximum when v = u. (This is discussed in [5], where the
following equation is derived.) In this case, we may approximate the integral by expanding u(z,v) in a power
series around v = y and retaining only the first 3 terms. We get

1 1 1 1
/lp(p,, v)u(z,v)dv =~ u(z, p) + u,(z, ) /_1(1/ — wp(p, v)dv + Eu,m(z, ) /_l(y — 1)?p(p, v)dv,

which leads to the forward-backward equation

pitiz + ou — @)y — b(p)uy, = 0 (3.9)
for appropriate functions a(x) > 0 and b(p). In addition to the boundary conditions (1), one imposes
u(z,£u) = 0, which corresponds to the requirement that there are no neutrons moving in a direction parallel
to the slab.

4. EXISTENCE FOR THE FORWARD-BACKWARD HEAT EQUATION

In the spirit of a classical paper by Baouendi and Grisvard [3], we aim at proving existence and uniqueness
of a weak solution to forward-backward heat equations lying within a certain class. We start by assuming that
o € C*(Q). Define the following spaces:

F = HOO(Q) = Ly(H}),
®={pec FNC(Q): ¢(z,0) =0 if o(z,0) < 0Ap(z,H) =0 if o(z,H) > 0}
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equipped with the norms:

lull = llull?, @) + luel? @

and
1915 = 1913+ 5 [ o(@.0l6(@ 0P da— 3 [ ofa, B)(e, )P da.
rg e

Then define the following bilinear form:

E(u,9) = //Q [—u(aq&)y + //Q UzPz + /\uqb] (4.1)

over the product space F' x ®. Suppose ¢ € ®, then

6.0 =~ [[ soo+ [[ &+38.

Simple algebra yields that ¢(o¢), = 3(c¢?), + 30,¢* and the following formula:

~[[ e [[ 40 goe

L L
= - [ s mat [ Fe@ods [[ g+ goe

=[] g 0-ge g [ e -5 [,

Applying Poincaré’s inequality:

E(¢,9¢)

If, %=

where we explicitly may exhibit cq = (7/L)?, we finally get, for some 6 € (0,1),

B9 2 (0 -0) [[ v [[ Geasr-gonetsg [ o3[ ast

which coerces ||@||2 provided there exists p > 0 such that cq + A — %ay > pon . This holds if
1 . =
A= 59 > —(w/L)* on Q, (4.2)

which is the same result obtained by [29] in their Corollary 3.2. using — and allowing — some more terms in the
pde. In conclusion,

E(¢,9) > all¢||3,

with @ = min{1l — §, u6}. Next we show that E(-, ¢) at fixed ¢ € ® belongs to F*:

Bwe) =~ [ ulod)+ I/ e 2t < Clulle ol
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which allows us to use Lions’ projection theorem ([25]: Chap. 3, Sect. 1) to conclude that

Proposition 4.1. Suppose o € C1(Q) and (4.2) holds. Then if g € Lo(H™1Y), there exists u € La(H}) such
that

E(u,¢) = (f,¢), Voo (43)
Taking the strong form of the equation in distributional sense, as the solution u € F,ugz, € Lo(H ') in which
space also f lies. One would therefore naturally wish to seek u so that also ou, € Lo(H ™). If we are sufficiently

lucky, this will also provide uniqueness.

4.1. A generalized trace theorem

The plan is to develop a tighter variational formulation (evidently, the use of ® is a bit crude) employing a
formula of Green’s type which in turn necessitates a theory of traces with o as a weight. For this we require a
further assumption on 0. We suppose that o € C%(Q) and that

o(z*,0) =0= 0,(2*,0) #0 and o(z*,H)=0= o,(z",H) #0. (4.4)
The assumption (4.4) implies that o has at most a finite number of zeros on the lines y = 0 and y = H. Each
of the 5 examples in Section 2 satisfies this assumption. The assumption can be relaxed considerably; in fact,

if o(z,0) = sgn(z — z*) in a neighborhood of a zero of o, the proofs given below go through.
Let

B={u€ Ly(H}): ouy € Lo(H 1)} (4.5)

equipped with the norm:

H
luld = lual? + / louy|%-: dy.
Let also
A={ue Ly(Hp) : uy € Lo}

Theorem 4.1. Suppose 0 € C*(Q) and satisfies (4.4). Let A and B be defined as above. Then A is a dense
subset of B. Furthermore, the trace maps

u+— u(z,0) and u— u(z, H),

defined for all u € A, are extendable to B as bounded operators and the trace boundedness,

L L
/ (lo]ul?)(z, 0) dz + / (o), H) dz < Blull3,
0 0

holds.

The proof of this theorem will come after some lemmas. We start by dealing with a half-line. Suppose for the
moment that o is defined and continuously differentiable in the closed upper half plane, and that o(z,0) > 0
for > zo where z € (0,L) and that o < 0 to the left of zo. Define R% = {z € R: z > zo} and

B = {u€ Ly(H'(RY)) : ouy € Lo(H H(RY))} (4.6)
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equipped with the norm:

o0 o o<
s = [ a2y dady+ [ ol do
0 Jzo 0 +

‘We shall demonstrate that « € B has trace on y = 0 in a weighted La-space.

Proposition 4.2. Let B be defined as above. Then for every v € B, v(z,0) is measurable in R, and there is
a constant k such that, for all v € B:

[ el (@,0)dz < kvl (4.7)

This proposition will be proved via two lemmas, but first some more spaces are needed: Let us introduce
W = {u € Ly(H*(R)) : ouy € La(H H(R))}
equipped with the obvious norm (inherited from the B space) and
V =W né&RL)NCeRY, H(R))
where &’ (]R ) denotes the set of distributions over RZ = R x RY of bounded support.

Lemma 4.1. (i) V is dense in W, and (ii) the trace map u +— |o|*?u(z,0) defined for all u € V is extendable
to W as a bounded, linear operator from W to La(R).

[S
S
~3
D
SH
=
-
b={
ct
2]
E.
iR
(e
[¢']
w
ct+

o show that W N &'( Ri) is dense in W. There exists a ¢ € C§°(R) which satisfies
0<¢(z) <1, ¢(z)=1for —1<z<1, and ¢(z) =0 for |z| > 2.

For a given u € W, let

un(z,y) = ¢(%)¢(z — %o Ju(z,y) for z € R,y € R,.

Then u,, € &’ (@) NW. Using Lebesgue’s dominated convergence theorem, we may show that u,, tends to u in
Ly(H*(R)). Let us now show that |o|(0u,/8y) tends to |o|(du/dy) in La(H~1(R)). We have that

71 @) = oo (D22 Ly, )

The first term on the right-hand-side tends to |o|(0u/dy)(z,y) in Lo(H}(R)). Now for the second term: as
¢(z/n) = 0 for |z| > 2n we have |z — zo|¢([z — zo]/n)/n < 2 and — with o Lipschitz — ¢([z — zo]/n)|o|/n is
also uniformly bounded. Lebesgue’s theorem now shows that this term tends to zero in L,(H°(R)) and hence

in Ly(H *(R)). The remaining part to show in (i) is done by smoothing, using well-known techniques with
mollifiers.



ON A FORWARD-BACKWARD PARABOLIC PROBLEM 907

(ii) Let uw € V. Since 0 € C(R), the weak derivative |o|, is a bounded function given by the formula:
loly =0y if 0 >0, |o|y = —0y if 0 <0, and |o], = 0 if 0 = 0. We have

[ oot obe = - [ ([ ot i) o
-9 / lo(z, y)|u(z, y)uy (z, y)dedy — / / o(z,y)|y|u(z, y)|?dzdy

||Uuy||L2(H-~1(R)) + ||“||L2(H1(R)) + |||ff|z,1||Lm||UHL2 (4.8)
Cllull3.

IA A

This proves (ii) employing (i). O
Lemma 4.2. There exists an extension operator P such that
P e L(H'(RY), H'(R)), (4.9)
and |o(-,0)|Pu = Q(o(-,0)u) where Q is another extension operator satisfying
Q€ L(H'(RY), H'(R)). (4.10)
Proof. Explicitly, for any v € H*(RY), let (in the style of Calderon)

2
(Pu)(z) = u(z), for z>z, (Pu)(z Z aru(zo + k{zo — z)), for z < .
k=1

In order for Pu € H'(R) and hence also C°, we must have

2
Y ok =1 (4.11)
k=1
In order to create the commutativity, we see that
2
(Qu)(z) = v(z), for z > zo, (Qu)(z) = Zﬁkv(:vo + k(zo — z)),0 for z < zo.
k=1

Matching |o|P with Q o ¢ is achieved by Bro(zo + k(zo — ),0) = ar(—o(z,0)), so we set

o(z,0)
0’(.’1:0 + k(.’,vo — CL’),O)

Br = —

(6578

To have @ be continuous in the topology mentioned, we may show that the adjoint of Q satisfies Q* €
L(H'(R), Hj(R%)). By a simple integration-by-parts argument we see that

(Qu)(z) = u(z) + ,;% (zo + x(;—(—)):c)/k O)U($o+x0k—x)

and the new compatibility condition at zg,

lim 30 220t (20 —@)/k0) ( i—f 720, ) -1, (4.12)

T—xTo+ 1 k (l' 0) k—1 _+_($0, 0)
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arises. By the hypothesis (4.4), o(zo + (zo — z)/k,0)/c(z,0) € W1>(0,z0) for k = 1,2. The two-by-two linear
system for (ax)i_;, (4.11-4.12), is well-posed as its determinant is nonzero. O

Proof of Proposition 4.2. Suppose v € B. Using the extension P from Lemma 4.2, we have

Pv€ Ly(H™(®)), and  Llo[Pv= Qo) = Q(a(g; ”)) — Q(ov,) + Q(oyo) € Lo(H\(R)).

The mapping B 3 v+ Pv € W is thus bounded. Now, to use Lemma 0.4, we get

[ o@0h@ora < [ lo@0lenE o de < [Py < ki,

0 — 00

which ends the proof. 0

Proof of Theorem 4.1. The density follows by well-known techniques. For the trace-boundedness, let us con-
centrate on verifying this property for the mapping:

u — u(z, 0)

for xo <z < L:
Pick ¢ and 1 to belong to C!([zo, 00) x [0,00)) in such a way that

o(z,y) =0, for y > %H or > %(xo + L),
Y(z,y) =0, for z < zwo + ZliL’ and
¢(z,0) + ¥(z,0) =1, for zp <z < L.

We now split u locally as follows:

v(z,y) = o(z,y)u(z,y), for 0<y<H and 2o <z <L,
v(z,y) =0, for y>H or z > L.

We let w(z,y) = ¥(z,y)u(z,y) for 0 < y < H and 20 < z < L. Then v € B and

o0

vl < ki||lulls, where / a(z,0)|é(z,0)u(z,0)|* dz < kki”]lu“%,

—0Q

due to the Proposition. On the other hand, we have

w € Ly(HE(0,L)), Bw/dy € Ly(H™Y(0,L)),

H /L H
ow o ow 9
—|*dzdy + — l5-2 < .
/o /0 lé?wl zay /0 l By 5 o,y < kallulz

Using an interpolation result by Lions and Peetre, the trace of w on y = 0 is in Ly, and one obtains

L
[ 1@, 00u(a, 00 do < kalul
0
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A similar bound holds with ¢ present in the integrand. By stringing together the recent bounds, we see that

L
[ o(z,0)lulz, 0)[2 dz < kallul3.

0

Applying this inequality the finite number of times it takes to account for changes of sign of ¢ on y = 0 or
y = H ends the proof of the theorem. O

4.2. Uniqueness for the forward-backward heat equation
Now we tighten up the variational formulation. We first form a Green type formula.

Corollary 4.1. For u,v € B the following formula holds

Ou d(ov) )=

L L
(a’a—y,v) + (u, /0 o(z, H)u(z, H)v(z, H) dz — /0 a(z,0)u(z, 0)v(z,0) dz. (4.13)

Proof. Both sides of the equation are well-defined due to the definition of B, that oy, € L°°, and the trace
Theorem. Both are continuous, linear functionals on B x B. It thus suffices to verify this identity on the dense
subset A. Here

Ou 8(ov)
oc—uvdxdy + // u——->dzdy = // (cuv) dzd
//n Oy 4 o Oy v ) 4

L
- / o(z, Hyu(z, H)o(z, H) dz — /0 o(, 0)u(z, 0)v(z, 0) dz,

0

which ends the proof of the corollary. O

From the identity in the Existence Proposition, u being a distributional solution to the original forward-
backward heat equation, we get for all ¢ € @,

a, 6(0¢)) au a¢

220 + D, g) = <a’y‘ ‘“H )

Since @ C B we may apply the Corollary and get

/ o(z, 0)u(z, 0)¢(z, 0) dz — / o(z, H)u(z, H)$(z, H)dz +(6u a—i = (a 5:9)
0 0

for all ¢ € ®. Integrating by parts yields

u ,,  ,Ou 09
—(@,45) = (%,%>

and taking into account the b.c. for ¢, we see that
/ o(z,0)u(z,0)¢(z,0)dz — / o(z, Hyu(z,H)¢(z,H)dz =0
9 r#

for all ¢ € ®. This gives a weak imposition of the initial and terminal conditions on u since those traces are
now well-defined by the trace theorem.
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Theorem 4.2. Suppose o € C?(Q) and satisfies (4.4). For every g € Ly(H ™) there exists a unique solution
u € B satisfying (1.1-1.4).

Proof. Existence is already proved. Suppose g = 0. By the argument in the proof of the Corollary, specifically
letting © = v in (4.13),

15}
2(0’—1‘—7u>+<0'yu;u> :/ a-uz __/ O'U2,
%y T re
so that
ou 1 N 1 s 1 5
<08y,u>——5(0yu ,1)+§/Pfou —E/P‘iau .

However, as we are dealing with a distributional solution to the homogeneous partial differential equation, we
get

du 0%u du Ou
_— = —_— = —{—, — —/ .
<0-ay’u) <a$2 )\’LL,U) <a$’ax> \AU,’U.)

When we combine these two identities, we see that

(g, ug) + (A — %ay)u,u) = —% (/I: ou® — /I,E auz) <o,

H
+
whence — using once more the argument in the proof of Proposition 4.1 — | almost everywhere in Q, u = 0 as

required to complete the proof. O

It is easily seen that each of the 5 examples of Section 2 satisfies (4.2) and satisfies (4.4) for sufficiently
large A.

5. GALERKIN METHOD

In this section we introduce and analyze a higher order finite element method based on a cross-product space
of continuous piecewise polynomials of possibly high degree. Higher order methods have not appeared in the
earlier papers cited here.

5.1. Energy properties of the continuous problem

We shall gather a few identities and inequalities of energy type that will be useful for our discrete method
to be introduced and analyzed in the next subsection.

Let us, in addition to our earlier hypotheses on the coefficients, assume, instead of (4.2), that

1
A— 5% >0 in Q. (5.1)

This assumption applies to all the examples of Section 2 for which A is sufficiently large.

We now give some discussion of the boundary value problem (1.1-1.4). We start with a formal manipulation.
Suppose u is a suitably smooth solution of (1.1-1.4). Let ¢ be a suitable function on  which vanishes on
z = 0, L. Multiplying both sides of (1.1) by ¢ and integrating by parts, one obtains

/ [o(z, y)uyd + ugdy + Augldzdy = / fodzdy. (5.2)
Q Q
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Now set ¢ = u — which warrants the formal identity as true since we established earlier that u € Ly(Hg) and
ou € Ly(H™') so that (5.2) could be considered as a consequence of Theorem 4.2 — and use the boundary

condition to write

0 1 5 1, 1 [* o \y=H
[o(z, y)uuy + M dzdy = = [ (ou®),dzdy + [ [N — S0y |u” dzdy > o(z,y)u(z,y)?|,_, dz > 0.
Q Y ) 2 Ja v Q 27 2 y=0

Using these inequalities we obtain

/ uzdmdy < / ufdzdy.
Q Q
From this and the Poincaré inequality, it follows that a solution w of (1.1-1.4) satisfies

/uidxdyg C’/ f2dzdy (5.3)
Q Q

which is our first energy inequality.
We now write another, related, energy inequality for (1.1-1.4). First, consider the two point boundary value

problem
—Uze +Au = f, u(0) =u(L) =0,

with A > 0. Write the solution operator for this equation as u = T\ f. The energy formula gives

(e uz) + M, w) = (fu) = (f, Tnf) = |ITN 2 £I1%

Hence, since f =T Lu,
(5.4)

lesall? + X2 = IT22(T ) |2 = 75 2l
Now we consider the problem (1.1-1.4). We write (5.1) as —ugz + Au = f — ouy, so u = Thf — Th(ouy).
Multiplying both sides by ou, and integrating over (0, L), we obtain

(u, 0uy) + (0uy, Ta(ouy)) = (Taf, ouy).

Integrating over (0, H), we get the identity

L H H
! /0 [o(z, Hu?(z, H) — o(z,0)u’(z,0)] dz + /Q[)\ - —;—oy]uzdmdy +/0 HT;/Q(auy)ide = /0 (T f, ouy)dy.

2
One now gets the following stability inequality for the forward-backward equation,

H H
/ 1732wy < [ 17325 1Py, (5.5)
0 0

Now we return to the equation u = Ty f ~ Tx(ouy). Multiplying by T /2 and using the triangle inequality,

{]T;l/zull < ||T;/2f|[ + ||T;/2(auy)||. We therefore obtain

H 5 H
| T+ i ou) Py <2 [ 1T Py,
0 0
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Using (5.4), we get

H H
/0 luell? + Mull? + [T (0uy) [ ?ldy < 2 / 1T fl2y

which is our second energy identity. We shall next develop a similar structure on the discrete level.

5.2. Discrete Galerkin method

(5.6)

Now we give a precise description of our numerical method. For this, we use the subspace S of S? ® S{ and

of {ue H(Q) :u=00nTH UTY UT,} where S? is the set of continuous piecewise polynomials on (0, L) of
degree p and S} is the set on (0, H). The numerical method takes the form: find % € S such that

H H
/ [((oty, W) + (Uz, W) + A(%, W)|dy = / (f,w)dy, forallwe S.
0 0

(5.7)

In order to study stability along the lines of earlier energy inequalities, we introduce a discrete variant of the

operator T): let
Tap:S8* —=S8:8"5g9g—Thrg=%2€S

be defined by

(Z2,We) + A2, W) = (g, w) YW €S.
We also introduce a discrete L?-projection operator Py: let

Pp:8*—>8:8>59g—~>Pg=3G€S
be defined by

(g,w) = (g,w) VYweS.

We then claim the following commutative property.

Lemma 5.1. T) p, Py, = PpTH p-

Proof. 1t suffices to verify that Ta pf = T nPrf for all f € S*: f T\ pf = 2 € S, then (Z;,w,) = (f, @) which

in turn equals (P, f,w) for all @ € S. Hence Z = T , Phf.
Lemma 5.2. T) 1, is a symmetric, positive definite operator with a square root defined on S.

Proof. f T pnf =2¢€ S and Th pg = W € S, then
(Tk,hf)g) = (E)g) = (21;,’111;;) + A(Zaﬁ)) = (f) ’lI)) = (f3 T)\,hg)

and if f = g € S, then (Tanf, f) = (22, Zz) + A(Z,2) > 0, unless Z and hence f vanish.

(]
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We will also frequently use the inequality

H
/0 (02, 2) + A(2, 2)]dy > 0. (5.8)

We first show the existence and uniqueness of the Galerkin solution as well as a stability inequality, analogous
to the two energy inequalities given above for the exact solution.

Theorem 5.1. The system (5.7) has a unique solution, and the following stability inequalities hold:

H H
/0 (e li? + l1al|? + |73, Paziy |12ldy < C / A2 + 1o Pufl?]dy. (5.9)

Proof. In (5.7), first set & = @ to obtain the identity

H H
[ (0,8) + (a2, ) + M@, Dy = [ (£,2)dy.
0 0
Using (5.8) and the Poincaré inequality, we immediately get
/[ui + u?)dzdy < C/ f?dzdy. (5.10)
Q Q
In (5.7), next set W = T potly, and note that (Ug, (Th r0ly)z) + AU, Ta n0Uy) = (G, 0lg). We then have
H H
/ ((oly, Txnoty) + (4, 0ly)|dy = / (f, T, notiy)dy.
0 0
Using the fact fhat
(0y, Tr,10y) = (Paoily, PuThnoty) = (Pruody, TanPaoiy) = [Ty} Paoty|?,
which follows from Lemmas 5.1 and 5.2, and also using (5.8), we get
B o1 A1
| TPy < 0 [CUTER IR + lalPldy. (5.11)

Combining (5.10, 5.11), we get (5.9). From either of these inequalities we obtain the uniqueness, and hence the
existence, of a solution of (5.7). a

We now consider error estimates for the finite element approximation. We first make a naive attempt to get
an error estimate. Notice that the true solution satisfies a relation analogous to (5.7)

H H
/ [(oty, ©) + (e, o) + A, B)]dy = / (f,@)dy, Vi€ S. (5.12)
0 0
Let € = u — @ be the error in the finite element solution. Subtracting (5.12) from (5.7), we get

/ H[(aéy,'d)) + (B2, Wg) + A&, W)|dy =0, Vi € S. (5.13)
0
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Let 4@ be an approximation to v in S, such as an interpolant of u or a projection of u onto S using some inner
product. Let é =4 — 4, so

é=(u—1a)—é. (5.14)

Inserting this into this (5.12) we then get

/0 [(0y, @) + (&, Wz) + A&, w)]dy = /0 [(o(uy — dy), @) + ((ue — Us), Wa) + Mu — %, W)]dy.  (5.15)

Theorem 5.2. One has
llu — dfl1,0,0 < Cllu — 11,0

Proof. Setting @ = é in (5.15) and using (5.8) we obtain
/ e2dzdy < / [0€(uy — ty) + éx(uz — tz) + Né(u — @)]dzdy.
Q Q

Hence, using also the Poincaré inequality, f|e||1 0.0 < Clléllio.allu—1al1,0,s0 Ié100 < Cllu=al1,q. Using (5.14)
and the triangle inequality, we get the result.

Theorem 5.2 gives a bound for one portion of the error. It is also of interest to bound the other portion,
{J lloéy (-, y)||%1dy} /2. For this we require several lemmas.

Lemma 5.3. T ’/h Py, is a bounded operator on S with bound independent of h. More precisely:

2

o 4L
| miore <3

/ Ifllkddy  VYfesS Vh>o0.
0

Furthermore, Ty, = (T;’/h2 Pp)2.

Proof. Suppose f € S, then ||T;f,f(f)||2 = (Tanf, ) < ITan(H)I IIf]l. We next use that |Thx(f)llo
2L/7|T\n(f)]1 by Poincaré’s inequality and then that |Th n(f)I? < (Toxnf)z, (Trnf)z) + MTan(£)II3
(Tonf £) < [Tan(Hllo [Ifllo- This implies the asserted bound. Since Pof = f for f € S, Ty/2Py sat-
isfies the same bound. To connect to P, observe that, for f € S*, Th n(f) = PuaTOn(f) = ThnPr(f) =

T2 (TN Pa(f)) = T2 Pr(T 3 Pu(f))-

hIA

O

Lemma 5.4. T/\l/2 is an isomorphism from H~1(0, L) onto L%(0, L) with the following equivalence:
2
173271 = 1111

Proof. Suppose f € H™Y, then [|Ty/?(f)[|? = (Taf, f) < ITxfllallfl|-1 and, at the same time, | T3/%(f)]> =
(T5f, £) = (B fas (Taf)z) + MDLTAF) > (Ta )z, (Taf)z) = ITafII2 50 that T3/ ]| < ||f]|-1. Conversely,

“fl 1 = sup g’—) = sup ((T/\f)m,vz)+)\(T)\f,Q;)
ey ol ™ veli Tl

< L+ CNIT Sl

which, together with the above identities, yields the inequality sought. O
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We now consider the other error bound. Setting @ = T n(0éy) in (5.15) and using the identity (&,
(Ta,n(06y)]z) + A€, Th,n(0éy)) = (0éy, €), we obtain

H H
/O (084, Tan(08y)) + (08y,8))dy = /0 (0 (ty — iy}, Tap(084)) + (i — iy [Ty 0 (08)]2)
+ /\(u —1u, T,\,h(oéy))]dy

Using (5.8),
1/2p 1/2p 1/2 H
/ IT2 Py (08, 2dy < / T2 Py (o (g — ay))]| [T Pu(oéy)] dy + / (s — i, [Ton(02)]z)
A / 1T /2Po(y — ) T2 Pa(cey)lldy + Cllélq.

The first and third integrals on the right can be estimated using Schwarz’s inequality and the arithmetic-
geometric mean inequality, to obtain

H
/0 ITY2 Py (08,)|Pdy < C / IT2 a0 (uy — ) [ 2dy + C / (e — iy [T (08)la)dy + Cllu — @3 g
(5.16)

The difficulty now comes in estimating the second term. Using an inverse inequality we have

Hu — 1 gé " — G2 . " gé 2 .
/0 (g — e, [Tan(0y)a)dy < { / e — i dy} /0 I[Ta (8] | 2dy
B " o 1/2 - e 1/2
< oh {/0 e — | dy} /O ITo () |2y
1/2
<

H V2 g
Ch! { / g — aznzdy} { / nTi,/:Ph(oédey}
0 0
In the last step we have used Lemma 5.3 with bound independent of h. Inserting this into (5.16), we obtain
B 1 1 "
| Im R ee)Pay < © [ 1T P o~ 0Py + O [ e - Py (517)
0 o /
From (5.14),
" 1/2 " 1/2 2 H 1/2
/0 17" (0&y) Py < 2/0 1T (oéy)|I*dy + 2/0 IT3* (o (uy — ay)) 1 ?dy. (5.18)
To bound the first term on the right, we need to relate T; o Ti’/,f :

1Ty ?g|? = |T372 Pagl® + (Tx — Tan)g, 9), (5.19)
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as []Ti/Qg]]Q = (Thg,g) and HT;’/,?Phgi[z = (T»\rg,9) hold. Since Ty rg is the Galerkin approximation to the
function z = Thg which satisfies —zy; + Az = g, 2(0) = 2(1) = 0,

I(T> = Ton)gll < ChlTagllmro = Ch{((Trg)z, (Trg)s) + A(T2g, Trg)}/* = Ch(Trg, 9)*? = Ch| Ty ?g|.

(5.20)
Hence we obtain, with the use of the Cauchy-Schwarz inequality,
IT3%gll” < T35 Prgll® + CR2IT g1
so that for sufficiently small A,
1/2 l/2 5
“TA/ gl* < CliTA,/h Pug|®.
Setting g = 0€,(-,y) and integrating over y, we obtain
H 1/2 a1
| mlespay < [ imipos, Pay.
Using (5.17) to bound the integral on the right, we get
o i A "
| 1m0z 1y < [ 1T (ot — a)Pdy+ O [ s = .
0 Jo 0
From Lemma 5.3,
H 1/2 2 2 2
| 1m0, Py < (o, = @)+ Ch 2z — talia
Finally, using Lemma 5.4 we obtain
Theorem 5.3. One has
H
J/O ||aéy(~, y)llz_ldy < “U(uy - ﬂy)”%,n + Ch_2”u1 - ﬁx"g,n (5-21)
Following this, as a consequence of interpolation estimates, is
Corollary 5.1. Under the assumptions made above, the following error estimate holds
lu-dlhon < O +k)ullmaxipari (5.22)
H
/0 logy(9)liZidy < C(RP™ + (k/h)ES™)lullmaxtp,a+1,9- (5.23)

Proof. The interpolation estimates used are the usual ones, see e.g. [9]. Od
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TABLE 1. Errors and rates of convergence for Aziz-Liu example.

N | |[(w = @)zllr2(oy | Rate | {lu —df[p2(q) | Rate
1 0.576(-1) — 1 o192(2) | —

8 0.144(-1) 200 | 0.245(-3) | 297
16 0.361(-2) | 2.00 | 0.356(-4) | 2.78
32 0.902(-3) | 2.00 | 0.830(-5) | 2.10

6. NUMERICAL EXPERIMENTS

In this section we describe some numerical experiments using the numerical method described in Section 5.2.
Our accuracy measurements will be compared with the theoretical convergence estimate (5.7). The existence-
uniqueness theory of Section 4 applies to all the examples in this section. We also note that assumption (5.1)
holds for all the examples in this section except for Example 4.

To form the mesh for this implementation we subdivide €2 into an N x N grid of rectangles so that h ~ 1/N.
We take the approximation space S to be as described in Section 5.2 with p = ¢ = 2. Thus, S is a subspace of
{fue HH{Q)NC(Q) :u=00onTH UTY UT}. On each mesh rectangle a function in S has the form

apo + a10x + a1y + a1y + agor? + aoay® + a1 2%y + a12$y2-

Using the interpolation results from Section 3.1 of [9], we conclude that
l(w = @)zllz2(9) < Ch?|lullas@)- (6.1)

We use 8 nodes on the boundary of each rectangle positioned at the vertices and the midpoints to define the
approximation functions uniquely. The matrix and right hand side entries are evaluated with a 3 point Gaussian
quadrature.

Aziz-Liu Example. We apply our approximation scheme to Example 1 from [1]. Here Q = (—1,1) x (0, 1),
o(z,y) =x,A =0, and f is defined so the true solution is

(22 -2y —1)2—42? f0<z<1
u(z,y) :{ (§2_1)yy —yl)z[yz—éle] if —1<z<O0.

Note that u = 0 on 'Y, = [0,1] x {0} and 'Y = [—1,0] x {1}. Also, u is smooth on the line z = 0 where the
equation changes type from forward to backward. Table 1 has the results for several runs at different values
of N.

The header in the last column, Rate is the exponent p for the rate of convergence for observed data,
error = ChP.
It is calculated by the formula

_ log(e(V1)) — log(e(NV2))
log(Nz) — log(V;)

with the number of subintervals Ny and Ny and errors are e(N1) and e(N2). We also observed in this example
that the convergence rate in L2(f2) was tending to O(h?) which was also observed in [1].

Example 2. Here we take o(z,y) = 1 — 2y as was discussed in Section 2 (see Fig. 3). The domain in this
example is € = (0,1) x (0,1). The boundary conditions (1.2-1.4) imply that v = 0 on the entire boundary.
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TABLE 2. Errors and rates of convergence for Example 2.

N | (v = @)zllr2(ny | Rate | |lu — @)l2¢0, | Rate
4 0.814(-1) — | 0.148(-1) —

8 0.164(-1) 2.31 | 0.331(-2) | 2.16
16 0.382(-2) 2.10 | 0.811(-3) | 2.03
32 0.943(-3) 202 | 0202(-3) | 201

0.5

FIGURE 8. Contour lines of the approximation to the solution of the problem with o(z,y) =
10(3 — z — 5y) and f(z,y) = 10 in Example 2. The solution is negative in this case and the
value of the function decreases from the outer to inner contours.

We take f(z,y) = —m2sin mz. The true solution can be found by making a change of variables on y and then

using separation of variables for the resuiting heat equation. With this approach we find

-2 —1)sinmz  0<z<1/2
u(z,y) = { n2/2 .
((2y — 1) — 1) sin 7z 1/2<z<1.
Note that since 72/2 &~ 4.97, u € C*(Q). Table 2 has the convergence results for this problem.
Again we observe the expected rate of convergence, O(h?). For this example, the L#(Q) norm was O(h?).
We also computed an approximation in the related case when the zero line of ¢ is tilted (see Sect. 2 and
Fig. 4). In this computation we multiplied the o-term by 10 to exaggerate its effects and set f(z,y) = 10.
Figure 8 has the contour plot of the approximation on a 16 x 16 grid.
In the next two examples we examine the solution behavior in cases where the true solution is not known.

Example 3. Here we take o(z,y) = z as in the Aziz-Liu example, set f(z,y) = 1 and have = [—1,1] x [0,1].
We required u = 0 on I'}, = [0,1] x {0}, TL = [-1,0] x {1}, and, as usual on I'y. A 16 x 16 grid is used. To
the right of the y-axis is the forward region with initial data zero and to the left is the backward region with
data also zero on the line y = 1. It is seen that the differential equation and the boundary conditions are not
consistent at the points (0,0) and (0,1). One therefore expects that the solution will have singularities at these
points. Some solution contours are shown in Figure 9.

Example 4. Finally we compute the approximation in case when o(z,y) = 16[(z — 1/2)? + (y — 1/2)? — 1/16]
and f(z,y) = 1 which was described in Section 2, see Figure 5. In this case £2 = [0, 1] x [0, 1] and we took u = 0
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FIGURE 9. Contour lines of the approximation to the solution of the problem with o(z,y) = 2
and f(z,y) = 1 in Example 3. The solution is non-negative and the value of the function
increases from the outer to inner contours.
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FIGURE 10. Contour lines of the approximation to the solution of the problem with o(z,y) =
16[(x —1/2)2+ (y—1/2)?2—1/16] and f(z,y) = 1 in Example 4. The solution is negative again
with the inner contour being the minimum.

on 'Y = [0,1] x {0}, and on I'g. Here there is a backward region in the shape of a disc that is imbedded in the
square. The contours of this are displayed in Figure 10 which was computed on a 16 x 16 grid.

7. SOME REGULARITY CONJECTURES

The regularity behavior of solutions to (1.1) seems to be rather intricate. In a series of papers (see [36,37]),
Pagani investigated these issues and established as an example the following theorem for the case: o(z,y) = z.

Theorem 7.1 (Pagani). Let o(z,y) = . The solution to the system (1.1-1.4) satisfies the following a priori

estimate:
H oL . H (L
/ / [Eaiui—t—uiz‘. dmdyﬁ/ / f? dzdy. (7.1)
0o Jo o Jo
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Gor’kov made various observations about the regularity near the intersection of the zero set of o and y = H
in [17]. Again, for o(z,y) = z, he states for the case of (1.1) being posed on the half-plane y < H, that if
u(z, H) = ¢(z) = |z!° for z < 0 — with 0 < § < 1/2, then the form of the solution is:

u(z,y) = Bz, y)(|z° + [H — y|°/3),

with ZZ bounded below and above by positive constants (cf. p. 906 of [17]). Here, f = 0. Hence, even if we give
proper terminal data for u € H*~1/2 — or |z|/?u in H® — for s < § + 1, the regularity pick-up is merely that
uw e H" forr <d/3+ 1.

The structure of the solution for general o has not been investigated to our knowledge. To understand
some of the possibilities we consider two simple examples. Let y* € (0,7) and o > 0. The first example is
o(z,y) = a(y — y*). The boundary conditions (1.2-1.4) in this case are u(0,y) = u(L,y) = 0. In this case, the
variables separate. Expanding v and f in a Fourier sine series, we write

u(z,y) = Zun(y) sinnwL 'z, f(z,y) = an(y) sinnwL ™'z
1 1

One obtains for u, the ordinary differential equation
(y — y*)u'ln(y) + Brun(y) = a_lfn(y)n@n = a~—1(k2 + n27r2Lh2)' (7.2)

This equation may be written ((y — y*)ﬁ"un)/ =a (y — y*)Pr—1f,. Integrating, we have
1 *\ ~ Y Brn—1
un(®) = 07 =) [ (s =y ), (73)
y*

If f,, is smooth, we may expand f,, in a Taylor series around y* and conclude that u,, is smooth. Since (y—y*) #»
is the solution of the homogeneous equation associated with (7.2), it follows that (7.3) gives the unique bounded
solution of (7.2). Note that we have not imposed any boundary conditions on u,; the requirement that u, is
bounded plays the role of a boundary condition in fixing the solution. The solution of (7.2) can then be obtained
by assembling the sine series with these formulas for u,. We conclude that, in this case, the regularity of the
solution is dictated by the regularity of the function f.

For our second example we take o(z,y) = —a(y — y*). The boundary conditions (1.2-1.4) in this case are
u(0,y) = u(L,y) = 0, u(z,0) = u(z, H) = 0. We again expanding u and f in a Fourier sine series. We obtain
for u, the differential equation

=y = y")un(¥) + Baun(y) = @7 fuly), B = a7 (k* + n*n*L77). (7.4)

This equation may be written —((y* — y)_ﬂ"un)' = a (y* —y) P»~1f,. We now integrate the equation and
use the boundary conditions to obtain

Yy
un(y) = o (y —y*)P" / (s —y*) P 1 fa(s)ds for y* <s <1,

y*

y
un(y) = a M (y* - y)ﬁ“/ (y* — ) P1f,(s)ds for 0 < s < y*.
y*

Thus, a different formula is obtained for u, in each of the two regions (0,y*) and (y*, H). The function u,
satisfies 4, (0) = un(H) = 0. To understand the behavior of u, near y = y* we expand f, in a Taylor series
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around y* to obtain
Y
un(y) = a 'y - y*)ﬂ"/ (s=y") P ) + (s =y fnly") +---]ds  for y* <s <1,
v

un) = 0"~ ) | Y = 8) P ) 4 (s — v AW + - Jds for 0< s <"
3

We find from these expressions that limy. ,y«+0 un(u) = a ! f.(y*). We also find that u, contains expressions
like (y —%*)P~, which are singular if 3, # integer. (If 3, = integer, u, contains logarithmic terms.) The solution
of (7.2) can again be obtained by assembling the sine series with these formulas for u,. We conclude, in this
case, that u is continuous across the line y = y* but that the regularity of u on y = y* is limited, regardless of
the regularity of f.

Inspired by these examples, we formulate some conjectures for the solution u of (1.1). (1) In the open set
where o # 0, the regularity of the solution at a point (z*, y*) is dictated by the regularity of f in a neighborhood
of this point. (2) At points (z*,y*) where o(z*,y*) = 0, oy (z*,y*) > 0, the regularity of u is dictated by the
regularity of f in a neighborhood of (z*,y*). (3) At a point (z*,y*) where o(z*,y*) = 0 and o,(z*,y*) <0, u
has a singular behavior even if f is smooth in a neighborhood of (z*,y*). (4) At points on the boundary where
o =0, or at points in the interior where o = g, = 0, the solution « may have a particular singular behavior.

The third author, Sgren Jensen, passed away during the course of this work. He was primarily responsible for putting this
collaboration together and is greatly missed by all of us. We acknowledge his significant contributions and participation
in all aspects of this project except the final editing. Don French'’s research was supported in part by the Taft foundation
at the University of Cincinnati through their Grants-in-aid.
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