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ORIGINS, ANALYSIS, NUMERICAL ANALYSIS, AND NUMERICAL
APPROXIMATION OF A FORWARD-BACKWARD PARABOLIC PROBLEM

A. KADIR AZIZ1 , DONALD A. FRENCH1 '2 , SOREN JENSEN1 AND R. BRUCE KELLOGG3

Abstract. We consider the analysis and numerical solution of a forward-backward boundary value
problem. We provide some motivation, prove existence and uniqueness in a function class especially
geared to the problem at hand} provide various energy estimâtes, prove a priori error estimâtes for the
Galerkin method, and show the results of some numerical computations.
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1. INTRODUCTION

We study a class of forward-backward heat équations in this report. Problems such as these arise in a
remarkable variety of physical applications which we will describe in the next section. It seems that this
problem-type has been avoided to some degree due to the nontrivial task of finding a proper formulation.

Let Q, C M2 be a rectangle (0,L) x (0,-ff). Let a(x,y) be a smooth function (e C1^) with \a\y G Loo(SÏ))
in Q, such that a = 0 defines a curve C which divides Q into two parts, fi±. It will minimally suffice that a is
piece-wise smooth with \a\y € L^fl) on each of finitely many segments, these being regular domains. We are
concerned with the problem

auy - uxx + Xu = ƒ on fi, (1.1)

w = 0 o n f f i n {(x, H) : <r(z, H) < 0} =: r ? , (1.2)

u = 0 on dn H {(x, 0) : <r(x, 0) > 0} =: T^., and (1.3)

u = 0 on ö^n({(0,2/),0<y< H}U{(L,y)y0<y< H}=:T0. (1.4)

Some of these bouridary conditions become vacuous if the sets on which they are posed become empty (or of
zero measure). We assume F ^ and T^_ are either empty or consist of finitely many open intervals. Note that in
a région where a > 0, the above équation resembles a (forward) heat équation for which one expects to prescribe
initial and latéral boundary values. Conversely, in a région where a < 0, the équation becomes a (backward)
heat équation for which one expects to pose terminal as well as latéral boundary values. One easily imagines
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an interesting problem as to the mathematical structure of the solution globally as well as along the level set
<7~1({0}) and its intersection with the boundary F.

Because of the unusual nature of these forward-backward problems, it is important to describe their origins.
This is done briefly in two sections: Section 2 discusses the mathematical origin of the problem as a singular
perturbation limit, and gives an indication of the variety of problems that can arise in this way. Section 3
indicates briefly a number of physical situations where équations with a forward-backward character arise.

The first main results of this paper consist in establishing existence and uniqueness of a weak solution to the
problem in a certain class of functions. The essential result, in Theorem 4.2, is the précise identification of the
space of solutions. This identification requires a trace theorem, Theorem 4.1., that generalizes a corresponding
theorem in [3]. A conséquence of knowing the space of solutions is that the uniqueness of the solution follows
readily, as is shown in Theorem 4.2.

We then formulate in Section 5 a Galerkin method for the solution of the problem. Error bounds are
given for both parts of the norm (Th. 5.1 and 5.2). In Section 6 we do some numerical computations with a
method that uses second degree polynomials. We furnish some experiments on the accuracy confirming our
results in Section 5 and examine some cases where the true solution is not known. Other numerical work
on similar équations abound; we can mention [1,2,13,14,23,24,26-28,46,47]. Regarding this literature, we
mention that [28] is concerned with problems that do not necessarily satisfy a coercivity condition. Some
careful eigenvalue estimâtes are used in the analysis, and several bilinear forms are used; a form that is the
same one as used her e, and a weighted form with the weight chosen to enhance the coercivity. Some numerical
results are given. Among the other numerical methods proposed, we mention [13,14]. These deal with the special
case <T(X, y) = x. Both [13,14] have bilinear forms that involve intégrations one slab at a time. In [14] both the
solution and test functions are discontinuous in y, and while in [13] the solution functions are continuous in y.
In very simple cases [14] is like the backward Euler method while [13] is like Crank-Nicolson. Finally, various
members of the fluid dynamics community have produced numerical solutions of the reversed fiow boundary
layer problem closely associated herewith, for example [8,40].

Our results are carried out in two dimensions although it is reasonable to suppose they can be extended to
higher dimensions.

2. PROBLEMS

Problems of the form (1.1—1.4) occur in a variety of applications (to which we shall return in the next section)
and in addition have an independent mathematical interest. One source for the problem (1.1—1.4) is the singular
perturbation limit as e —> 0 of the elliptic boundary value problem

-u%x - eu€
yy + auy + Xue = ƒ in Q (2.1)

ue = 0 on dÜ.

If ay < 2À, a simple intégration by parts and use of the Lax-Milgram shows that (2.1) has a solution. It is
shown in [35] that ue converges weakly to the solution u of (1.1—1.4) as e —» 0. (A singular perturbation result
in a special case is also given in [12].) Different choices of the function a give rise to interesting examples
of (1.1-1.4). We cite some of these. If a(x,y) = x — 1/2, we have (with a change of variable) the forward-
backward parabolic équation described in earlier papers. In this example, depicted in Figure 1, we have a
forward parabolic équation in the right half rectangle, and a backward heat équation in the left half rectangle.
This problem arises in the theory of stochastic processes (see Sect. 3.1), in a simple model of neutron scattering
(see Sect. 3.5), in the modeling of counter-current separators (see [18]), and also in some astronomical problems
(see Sect. 3.3). It is, to our knowledge, the first example of (2.1) that has been studied. Some mathematical
properties of the solution of (2.1) in this case are given in [12,35], or [20]. A second choice of er is given by
the formula cr{x, y) = (x — l)2 + (y — 1/2)2 — 1/16, see Figure 2. Here we have a situation reminiscent of fluid
dynamics and the use of the "parabolized Navier-Stokes" (PNS) équations as a simplified version of the Navier
Stokes équations to model fluid flow near a boundary. To obtain the parabolized Navier-Stokes équations, one
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FIGURE 1. a{x,y) = x - 1/2.

FIGURE 2. a(x, y) = (x - l )2 + (y - 1/2)2 - 1/16.

FIGURE 3. a(x,y) = 1 - 2y.

simply omits the second derivatives in the direction of the boundary. The resulting System is parabolic in
nature, and so can be solved numerically by marching forward in the time-like direction. If there are régions
of séparation and reverse flow, this marching procedure becomes unstable which is not surprising since the
marching procedure is attempting to generate an approximate solution to a backward parabolic équation. This
difficulty has been the object of several papers [7,40]. Our second example may be regarded as a simplified form
of the PNS équations with a région of reverse flow. We cite some further choices of a. If er(cc, y) = 1 — 2y (see
Fig. 3), we have a forward parabolic équation in the lower rectangle and a backward parabolic équation in the
upper rectangle. The problems in the two rectangles are independent of each other, and it is not hard to see
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FIGURE 4. <T(X, y) = 3 — x — 5y.

FIGURE 5. a(x, y) = (x- 1/2)2 + (y - 1/2)2 - 1/16.

that the solution on the line y = 1/2 is given by the two point boundary value problem

-ux

It turns out that the solution u is continuous across the line y = 1/2. If <x(x,y) = 3 — x — 5?/, see Figure 4,
the zero line of a is tilted. In this case, it would be interesting to show that u is continuous across the zero
line of <7, and to identify the solution on the zero line. In the case a(x,y) = 2x — 1, our solution is obtained
without boundary conditions on the top or bottom of the square. As a final example, see Figure 5, we mention
the choice cr(x,y) — (x — 1/2)2 + (y — 1/2)2 — 1/16. Here one lias a backward région imbedded in the square.
Our theory gives a solution to this problem. As with all these examples, it would be interesting to détermine
the regularity of the solution across the zero line of <J.

At times one considers the problem on a half-space or a semi-infinite strip. Recently, the problem arose
in [10], as part of the solution of (u + up)t = ux

Xy 2/, their function is nontrivial:
+ uyy — ux in case (c) where 1 < p < 3/2. With £, r? replacing

p-i/

where v0 > 0 and ƒ JR2 VQ drjdC = M > 0. By the properties (i) through (vii) of VQ derived in [10], one sees that
the zero set of a must behave as depicted in Figure 6 below. There is an even symmetry about £ = 0. The
fashion in which the forward-backward character arises here is similar to that in Section 3.2 in that one seeks
similarity or traveling wave solutions. The interesting character under study arises in the moving frame.
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FIGURE 6. <7(£r?) = K~1(C,'7) - ^

Historically the problem goes back to [21,32] - viewed as parabolic problems with degenerate coefficients,
to [16] where the forward-backward problem was treated for the first time and to [15] where the results of the
former were announced. Note also the paper [22], which treats a gênerai class of degenerate parabolic équations.

3. MOTIVATION FOR A FORWARD-BACKWARD HEAT ÉQUATION

In this section we present five different physical problems that are modeled by the forward-backward heat
équation.

3.1. Randomly accelerated particle

Certain stochastic processes involving the motion of a particle undergoing random accélération lead to de-
generate type équations such as the one we are describing in this paper. A complete dérivation and analysis as
well as original références are given in Franklin and Rodemich [11].

Consider the problem of determining the time T(x, y) that it takes a particle which is restrieted to move on
the line segment [—1,1] with initial position x and initial velocity y undergoing random accélération to reach
either of the boundaries x = — 1 or a; = 1. In the dérivation in [11] it is assumed that the particle expériences an
accélération due to white noise so its velocity follows a Brownian motion. They work with the time probability
density function p(x, y, t) and an équation is derived for it by postulating that if a particle starting at position
x with velocity y reaches a boundary in time t then a particle starting at x — y At with velocity y + Ay should
reach the boundary at time t — At. They conclude after a formai probability argument with the following
initial/boundary value problem for T:

QT 1 d2T
y~dx~ + 2Y1 = ~1 for ~ 1 < x < 1 > ~ ° ° < y < ° ° > (3-1)

T(x,y) = O(i-r) for \y\ large and - 1 < x < 1,
\y\

T(l,y) = 0 for y > 0 and T(~l,y) = 0 for y < 0.

Equation (3.1) is an example of (1.1) if one switches x and y.

3.2. LaRosa's électron beam model

Solar type III radio bursts have since the 1950's been explained by non-thermal beams of électrons being
accelerated in solar flares. The physics of électron beam propagation through the solar corona is not yet
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completely settled, but in [23,24], a nonlinear theory is proposed that seems to at least explain several of the
phenomena observed.

Let the beam électron velocity distribution function be denoted by ƒ, it spécifies the measure of how large
a population of électrons at location x and time t travel at velocity v. At the leading edge of the beam it is
considered appropriate to model the diffusion of électrons by the quasi-linear plasma diffusion équations, which
in [30] (pp. 131-133) have been derived for one dimension:

ft = ^^(vWfv)v. (3.2)
mene

It describes how électrons that are traveling sufnciently fast create Langmuir waves, hence plasma energy, and
acts as a diffusion. W is the wave energy distribution in velocity space and ƒ is integrated over all components
of v normal to the beam direction. Here u;pe dénotes the wave frequency of the beam which is on the order
of 100 Hz, n& dénote the beam density which we later will relate to the background électron density (ne) and
nh/ne e (10~7,10~4) (from what is termed a weak to a strong beam), and let v^ dénote the average beam
velocity which is on the order of 1010 cm s"1, as well as the front velocity UfrOnt- Adding the possibility of
inhomogeneity of the beam, i.e., the effect of drift within the distribution ƒ due to varying velocity, the classical
diffusion équation is modified by adding a convective derivative term to the homogeneous beam équation as
in [30] (p. 135) to:

ftfx
mene

for x > auront and with a constraint due to nonlinear1 effects: ƒ W(£ = 0>v) dv < Wthr, expressing that there
is an upper limit to the energy in the beam, ie., energy is absorbed into the plasma beyond a certain energy
level. Some names of physicists involved in the theory behind these nonlinear effects are: Zakharov, Tsytovich,
Rudakov, and Papadopoulos. In such a beam with a distribution of velocities, fast électrons will out-pace slower
ones. At the front of the bcarn, the density of fast électrons increases in comparison to the slower électrons. This
créâtes a finite positive slope (fv > 0) at the beam front. This allows for energy génération there in the form
of plasma waves. At the back of the beam, however, fv<0 and these slower électrons may re-absorb energy
from the waves generated by the fast électrons at the head. Supposing this re-absorption is so efficient so as to
allow almost all of the energy generated by the fast particles to be re-absorbed later by the slow ones, then the
beam may maintain its energy and propagate large distances without losing energy to the background medium.
The beam length, denoted by Aa:, turns out to be on the order of 109 cm. The beam may then travel 10 to 100
times its length, i.e. as far as into interplanetary space. One may thus consider a steady-state approximation
in which f̂rOnt and Wthr are considered to be constant throughout most of the life-span of the électron beam.
Here we introducé a new variable moving with the front: £ = x — Vfrontt. Rewriting the drift-diffusion équation
in the new variable, seeking traveling wave solutions (or as LaRosa terms it, a steady-state solution), yields:

(v - *w)/£ = ^^(vWfv)v, (3.3)
mene

which is a forward-backward heat équation identifiable with our own, when we set x = v and y = £ and
a = 1 — XQ/X and there is a first-order term (W/x)fx if we choose to differentiate through rather than keep the
divergence form (xo = Vfront)- (3.3) is coupled with an energy équation, with t^ont > ̂ > one has

(vg - t w ) W 4 = ^^v2Wfv> (3.4)
Ti

indicating exponential decrease of W with increasing £. See also [4,6].

1The term here refers to strong turbulence modulational interactions, see [23,24].
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3.3. Prandtl boundary layer équations

A nonlinear forward-backward heat équation arises in two-dimensional fluid flow near a boundary when
séparation occurs. To dérive this problem we start with the nondimensionalized Navier-Stokes équations for a
viscous incompressible fluid,

ut + (u- V)u — -Vp + -Re=1AïI and V • ü = 0

where u = (u, v) is the velocity and p is the pressure. We examine the flow near a boundary, assume it is
primarily unidirectional, require no-slip boundary conditions so ü = 0 on the boundary, take the Reynolds
number, Re, as large, and assume steady flow, ut — 0. Away from the boundary the flow is primarily inviscid.
To focus our analysis on the boundary layer we make the variable change y = y/Rey and v = y/Rev which
balances the important viscous and convection processes. We obtain for the x-velocity équation,

du du _ dp _xd
2u d2u

dx dy dx dx2 ' dy2

the y-velocity équation,

dp , du dv
-£• = 0 and — -f — = 0.
dy dx dy

Dropping the small terms, noting that p is independent of y so its behavior is completely determined in the
inviscid région we have

du du d2u
u— h v~- 0 = U, w*^J

dx dy ayz

and

Typical boundary conditions associated with (1, 2) are

u(x,0) — v(x,Q) = 0, u(0,y),u(a;, 1) are given functions. (3-7)

In the mathematical analysis of (3.5, 3.6, 3.7), it is assumed that u > 0. (See [34] or [33].) In some important
problems there are régions where the flow "séparâtes" from the solid boundary, with a backflow région next to
the boundary. A typical situation is shown in Figure 7. Hère, there is depicted a "séparation région" near the
x-axis in which the flow moves to the left. The values xs and XR are respectively called the séparation point
and the re-attachment point. (Fig. 7 is essentially the same as Fig. 2, with the x and y axes interchanged and
the fluid mechanics would be more reasonable if we had a wall rise along y — x1 x > 0, say, rather than lie flat
along the se-axis.)

Following (1.2—1.4), since 0 < xs < XR < 1, the boundary conditions (3.7) are still appropriate for the
problem with séparation. However, the présence of a séparation région complicates the solution process. In the
case of no reverse flow, (3.5) is a forward parabolic équation, so there is a possibility that (3.5) can be solved
by a marching procedure, moving in the positive x direction. With the présence of the reverse flow région, the
marching becomes unstable because one is solving a parabolic équation in the unstable direction. A way around
this difriculty has been proposed by Flügge-Lotz and Reyhner: in régions where u < 0, one simply drops the
uux term and continues solving the System in a forward direction. The Flügge-Lotz and Reyhner technique is
inconsistent with the équation (3.5), and results in an inaccurate solution. Modifications of the Flügge-Lotz
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FIGURE 7. a{x,y) = u, the first component of the velocity

and Reyhner method have been proposed in [7] that involve itérations in the separated région. These modi-
fications are in the spirit of [47] and, if convergent, retain consistency with (3.5). It would be interesting to
establish the convergence of the [7] itérations. See also [31,41-45].

3.4. Transport during flow reversai

The forward-backward heat équation émerges in the modeling of the transport by convection dominated flow
of température or a pollutant or sait in the the boundary layer of a fluid undergoing a flow séparation or reversai
(see [38,39], for a spécifie examples).

Assume u represents température or the concentration of some other substance. Let (p, q) be the x and y
components of the fluid velocity. Then if convection, diffusion, and some type of reaction are involved in the
transport the équation is

du du

where ƒ represents some heat or pollutant sources. Assume 0 < e <C 1. We again examine the boundary layer
behavior. In the usual singular perturbation analysis one introduces the solution v of the reduced équation

dv dv ,
dx dy

and seeks an approximation to the différence w — u — v. One has

dw dw ( d2v d2v\
dx dy \dx2 dy2 )

+ Xw = 0.

Suppose q(x, 0) = 0 as is reasonable if there is no flow through the boundary. Write ç(x, y) = qo{x)y + O(y2).
Introducé the stretched variable 77 = yj-s/l, and set w(xyrj) = w(x,y). Then

dw d2w d2w
_ - _ = 0

so

dw dw d2w d2
w
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Replacing the right side by 0, one obtains a parabolic équation for w, with x the time-like variable. If the
function p changes sign in a région, the équation is forward-backward équation.

3.5. Neutron scattering

An example of the forward-backward heat équation occurs in the scattering of neutrons. In a simple case,
the scattering medium is contained between two parallel planes perpendicular to the z-axis and placed at z = 0
and z = 1. The dependent variable of interest is the density u(z,v) of neutrons at position z and velocity v.
Suppose the the neutrons have constant kinetic energy, so v may be taken to be a unit vector. Suppose also
that u dépends only on \i = v • ez, where ez is the unit vector along the z-axis. The density function which we
now write w(z,/x), is given by a linear integro-differential équation known as the linear Boltzmann équation:

+ au = a,

Here, p(/i, v) gives the probability that a neutron at position z and traveling in direction v is scattered to the
direction \i. The quantity as, known as the scattering cross-section, gives the fraction of neutrons at z that
encounter scattering, and the quantity a, known as the total cross-section, gives the fraction of neutrons at z
that are removed from the neutron population at (^,/x), either through scattering or absorption. This équation
is considered in the infinité slab 0 < z < 1 and for — 1 < \x < 1. For \x > 0, U{Z,JA) represents neutrons moving
in a positive z-direction, whereas for \i < 0, u(z,fi) represents neutrons moving in a négative ^-direction. The
équation is generally considered with boundary conditions that represent a specified source of neutrons entering
the slab at the boundaries z — 0 and z = 1. So we have for boundary conditions

U(0,/JL) = #O(AO for 0 < /i < 1, u(l,/z) — £I(M) f°r ~1 < M < 0. (3.8)

This integro-differential boundary value problem is discussed, for example, in [19,48].
In a certain energy range, p(/i, v) has a significant maximum when v = ji. (This is discussed in [5], where the

following équation is derived.) In this case, we may approximate the intégral by expanding u(z, v) in a power
series around v = \i and retaining only the first 3 terms. We get

f1 f1 1 f1

which leads to the forward-backward équation

fj>uz + <JU — a^jj^UfAfj, — b[fi)uri = 0 (3-9)

for appropriate fonctions a(/x) > 0 and 6(/i). In addition to the boundary conditions (1), one imposes
u(z, ±/x) = 0, which corresponds to the requirement that there are no neutrons moving in a direction parallel
to the slab.

4. EXISTENCE FOR THE FORWARD-BACKWARD HEAT ÉQUATION

In the spirit of a classical paper by Baouendi and Grisvard [3], we aim at proving existence and uniqueness
of a weak solution to forward-backward heat équations lying within a certain class. We start by assuming that
a e C 1 ^ ) . Define the following spaces:

F = H^'°\Ü) = L2{Hl),
1Ö):^(x,0)=0 if cr(x,0) < 0 A <f>(x, H) = 0 if cr(x,H)>0}
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equipped with the norms:

!NIF =

and

-\ f
2 JV

Then define the following bilinear form:

over the product space F x $ . Suppose <j) E $ , then

)y+ (f ux4>x + \u<l>\ (4.1)

£(<£, 0) = - ƒ ƒ <K )̂y + ƒ ƒ
Simple algebra yields that <j>{cr<j>)y — ^(o'(p2)y + ^y^2 a n d the following formula:

l-{*<l>2){

a 2 % ?

Applying Poincaré's inequality:

/ / € > ca ff <t>2
JJn JJn

where we explicitly may exhibit CQ = (?r/L)2, we finally get, for some ö G (0,1),

E(4>, 4>) > (1 - 6) ff <Pl + ff (öcQ + A - \<jy)<? + \ f otf-\ f af,

which coerces ||</>||| provided there exists /x > 0 such that CQ, + X — \ay > fj. on fi. This holds if

\ 2 on ^ (4-2)

which is the same result obtained by [29] in their Corollary 3.2. using — and allowing - some more terms in the
pde. In conclusion,

with a = min{l — Ô, fiô}. Next we show that I£(-, </>) at fixed <fi G $ belongs to F*:

E(u, 4>) = - u(a(j>y) + / / ux(j>x

JJn JJn
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which allows us to use Lions' projection theorem ([25]: Chap. 3, Sect. 1) to conclude that

Proposition 4.1. Suppose a G Crl(^) and (4-2) holds. Then if g £ L2(H~l), there exists u G L2(HQ) such
that

E(ui<f>) = (fJ<P), V0G$. (4.3)

Taking the strong form of the équation in distributional sensé, as the solution u G F,uxx G L2(H~1) in which
space also ƒ lies. One would therefore naturally wish to seek u so that also auy G L2(H~1). If we are sufficiently
lucky, this will also provide uniqueness.

4.1. A generalized trace theorem

The plan is to develop a tighter variational formulation (evidently, the use of 3> is a bit crude) employing a
formula of Green's type which in turn nécessitâtes a theory of traces with a as a weight. For this we require a
further assumption on a. We suppose that a G C2(Vt) and that

a(x*i0) = 0=>ax(x*,0) ^ 0 and a{x\ H) = 0 => ax{x\H) ^ 0. (4.4)

The assumption (4.4) implies that a has at most a finite number of zéros on the lines y = 0 and y = iJ. Each
of the 5 examples in Section 2 satisfles this assumption. The assumption can be relaxed considerably; in fact,
if (j(x, 0) = sgn(x — x*) in a neighborhood of a zero of er, the proofs given below go through.

Let

B = {u G L2{Hl) : auy G ̂ (R-1)} (4.5)

equipped with the norm:

\W\\B= I M O + / Ik^/lltf-idy.
Jo

Let also

A={ue L2{Hl) : uy G L2}>

Theorem 4.1. Suppose a G C2{Q) and satisfies (4-4)- Let A and B be defined as above. Then A is a dense
subset of B. Furthermore, the trace maps

u H-)- u(xy 0) and u \-> u(x, üf),

defined for ail u e A) are extendable to B as bounded operators and the trace boundedness,

f (|<7|M2)(z,0)d£+ f {\a\\u\2){x,H)àx<[3\\u\\l,

holds.

The proof of this theorem will corne after some lemmas. We start by dealing with a half-line. Suppose for the
moment that a is defined and continuously differentiable in the closed upper half plane, and that a(x,0) > 0
for x > XQ where XQ G (0, L) and that a < 0 to the left of XQ. Define M^ = {a; G 3R : x > xo} and

= {ue L2(H
l(Rl)) : auy G j ^ t f " 1 ^ ) ) } (4.6)
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equipped with the norm:

IMII = / /

We shall demonstrate that u E B has trace on y = 0 in a weighted L2~space.

Proposition 4.2. £e£ 5 6e defined as above. Then for every v G B, v(x,0) is measurable in M+ and there is
a constant k such that, for all v E B:

2)(x0)dx<k\\v\\2a\v\2)(x,0)dx<k\\v\\2
B. (4.7)

This proposition will be proved via two lemmas, but first some more spaces are needed: Let us introducé

W = {u G L2(H
1(R)) : auy G L2(H~1(R))}

equipped with the obvious norm (inherited from the B space) and

where 5'(R^_) dénotes the set of distributions over IR+ = l x M°_ of bounded support.

Lemma 4.1. (i) V is dense in W, and (ii) the trace map u i->- j a ^ ^ ^ O ) defined f or all u GV is extendable
to W as a bounded, linear operator from W to L2 (R).

Proof (i) It suffices to show that W O 5'(R^) is dense in W\ There exists a <j> e Cg°(M) which satisfies

0 < (f)(x) < ly (j){x) = 1 for - 1 < x < 1, and 0(x) = 0 for \x\ > 2.

For a given u G W, let

u„(x,ï/) = <^(-)^(^ : i^)w(x )y) for x£R,yG R+.

Then wn € £;(R^.) H VF. Using Lebesgue's dominated convergence theorem, we may show that un tends to u in
L2(H

1(R)). Let us now show that \<?\(dun/dy) tends to \a\(du/dy) in L2(i/~1(M))- w© have that

( œ > l / ) = ^ ( ) ^ ( , ) | f f | ( x , y ) + <>> ( ) ^ ( _ ) U

The first term on the right-hand-side tends to |cr|(ÔIA/O^/)(a;,2/) in L2(H~1(R)). Now for the second term: as
4>(x/n) = 0 for \x\ > 2n we have \x — xo\<f>([x — xo]/n)/n < 2 and - with a Lipschitz - <j>([x — xo]/n)\a\/n is
also uniformly bounded. Lebesgue's theorem now shows that this term tends to zero in L2(H°(M)) and hence
in L2(H~1(R)). The remaining part to show in (i) is done by smoothing, using well-known techniques with
molliflers.



/•QO /•QO

= -2 / /

(Pu)(x) = u(x), for x > arOî (^w)(^) — J ^ ^^(xo + k(x0 — a;)), for x

fe=i

In order for Pu G H1 (M) and hence also C°, we must have

2

In order to create the commutativity, we see that

2

(Qv){x) = v{x), for x > aroî (Q^)(^) = ̂ A v ( a ; o + fc(xo - x) ) ,a for x < x0.

Matching \a\P with Q o a is achieved by Pk&(£o + ^(^o — a?)) 0) = &k(—o"(^, 0)), so we set

ff(g,0)

z ) O ) fc"
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(ii) Let u G V. Since a G CX{O), the weak derivative \a\y is a bounded function given by the formula:
\a\y = ay if a > 0, \a\y = — ay if a < 0, and |<r|y = 0 if a = 0. We have

= - n±( [°° \a(x,y)u(x,y)2\dx)dy
JO aV \J-oo /

O /•QO /»QO /»OO

/ |<j(x,y)|u(x,2/)uy(x,y)dxd?/- / / |cr(a;,y)|y|tx(o:,y)|2dxd2/
J-oo J O </— oo
(M)) + MUHHM)) + \\W\vhJ\u\\l2 (4.8)

< C\\u\\2
B.

This proves (ii) employing (i). •

Lemma 4.2. There exists an extension operator P such that

PG^1^),]?1^)), (4.9)

and |<J(-,0)|PW = Q(a(-,0)u) where Q is another extension operator satisfying

Q G £( i f - 1 (M+),#~ 1W). (4.10)

Proof. Explicitly, for any u G #a(]R^), let (in the style of Calderon)

To have Q be continuous in the topology mentioned, we may show that the adjoint of Q satisfies Q* G
£(Hl(R),HQ(M^_)). By a simple integration-by-parts argument we see that

and the new compatibility condition at xo,

, 0) _ / y^Qifc
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arises. By the hypothesis (4.4), a(x0 + (x0 — x)/ky 0)/<J(X, 0) G VF1'oo(0, XQ) for k = 1,2. The two-by-two linear
System for (afc)l=iï (4.11-4.12), is well-posed as its determinant is nonzero. D

Proof of Proposition 4.2, Suppose v 6 B. Using the extension P from Lemma 4.2, we have

Pv e L2(H
m(R)), and ^W\Pv = ̂ Q M = Q ( ̂ ~ 1 =QK) + Q M ^ ^ ( ^ W ) .

The mapping B 3 v ^ Pv E W is thus bounded. Now, to use Lemma 0.4, we get

/*OO /»OO

/ <7(z,0)|t,(z,0)|2dz < / |a(o;,0)||(PU)(x)0)|2dx < | |P«| |^ < fc||t;||2B,
JXQ J— oo

which ends the proof. D

Proof of Theorem 4-1- The density follows by well-known techniques. For the trace-boundedness, let us con-
centrate on verifying this property for the mapping:

u i—>• u(x, 0)

for XQ < x < L:
Piek <f> and ip to belong to C1([^o) oo) x [0, oo)) in such a way that

<f>(x,y) = 0 , for y> -H or x > -(xo + L),

3 1
ip(x,y) = 0, for x < -XQ + -L, and

0(x, 0) + ^(x, 0) = 1, for x0 < x < L.

We now split u locally as follows:

v(x,y) — (j)(x,y)u(x,y), for 0 < y < H and XQ < x < L,

v(x,y) = 0, for y > H or x > L.

We let w(x, y) — ip(x, y)u{x, y) for 0 < y < H and xo < x < L. Then v G B and

N I B < *I||W||B, where / a(x,0)\(f>(x,Q)u(x,0)\2 dx < kkl\\u\\%,
J — oo

due to the Proposition. On the other hand, we have

w e L2(Hiï0,L)), dw/dy e L2(if-
1(0,i)),

f ê2 W Of f ê'
Using an interpolation resuit by Lions and Peetre, the trace of w on y = 0 is in L2, and one obtains

f \iP(x,0)u(x,0)\2 dx < k3\\u\\2
B.
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A similar bound holds with a present in the integrand. By stringing together the recent bounds, we see that

ƒ a{x,0)\u(x,0)\2dx < k±\\u\\%.
JXQ

Applying this inequality the finite number of times it takes to account for changes of sign of a on y = 0 or
y — H ends the proof of the theorem. D

4.2. Uniqueness for the forward-backward heat équation

Now we tighten up the variational formulation. We first form a Green type formula.

Corollary 4.1. For u,v G B the following formula holds

{a^,v) + (u,-^-)= [ a(x,H)u{x,H)v(x,H)dx- [ a(x,0)u(xy0)v(x,0) dx. (4.13)
oy oy JQ Jo

Proof. Both sides of the équation are well-defined due to the définition of Ö, that ay E L°°, and the trace
Theorem. Both are continuous, linear functionals on B x B. It thus suffices to verify this identity on the dense
subset A. Hère

f f d u J J f f 9(<TV) , , f f d , ^ j j
/ / a—vdxdy + / / u \ dxdy = ƒ ƒ 7— (auv) dxdy

JJ n dy JJQ dy JJ Q dy

= / a(x, H)u(x, H)v(x, H)dx- / a(x, 0)u(x, 0)v(x, 0) dx,
Jo Jo

which ends the proof of the corollary. D

From the identity in the Existence Proposition, u being a distributional solution to the original forward-
backward heat équation, we get for ail <j) G $,

, d ( a è ) , . d u d é . , A M . d u d 2 u , ,.

Since $ Ç 8 w e may apply the Corollary and get

a(x, 0)u(x, 0)</>(z, 0) dx - / a(x, H)u{x, H)(p(x, H)dx
o ^o

for all (f) G 3>. Integrating by parts yields

,du dó,

and taking into account the b.c. for </>, we see that

[ a(x,0)u(x,0)<t>(x,0)dx- [ a{x,H)u{x,H)<j>{x,H)dx = 0
Jr°+ Jv^

for ail <f> G $ . This gives a weak imposition of the initial and terminal conditions on u since those traces are
now well-defined by the trace theorem.
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T h e o r e m 4.2 . Suppose a e C2(Q) and satisfies (4-4)- For every g e L2(H~1) there exists a unique solution
u £ B satisfying (1.1-1.4)-

Proof. Existence is already proved. Suppose g = 0. By the argument in the proof of the Corollary, specifically
letting u = v in (4.13),

au2 - / au2-
Jr°_

so that

. du . 1, o , . If o If o
(a—,u) = - - ( a v u 2 A + - / au2-- au2.du . ï . 2 iX i r 2 ï r

oy 2 2 JTH 2 Jro_

However, as we are dealing with a distributional solution to the homogeneous partial differential équation, we
get

du d2u du du
{ady>u) = {d^~ XU'U) = ' { ^ ^ ~ {XU>U)'

When we combine these two identities, we see that

-\ay)u,u) = -\ f f au2- f au2 ) < 0,
2 2 yjFH jro_ j

whence - using once more the argument in the proof of Proposition 4.1 — , almost everywhere in Q, u = 0 as
required to complete the proof. D

It is easily seen that each of the 5 examples of Section 2 satisfies (4.2) and satisfies (4.4) for sumcientiy
large À.

5. GALERKIN METHOD

In this section we introducé and analyze a higher order finite element method based on a cross-product space
of continuous piecewise polynomials of possibly high degree. Higher order methods have not appeared in the
earlier papers cited here.

5.1. Energy properties of the continuous problem

We shall gather a few identities and inequalities of energy type that will be useful for our discrete method
to be introduced and analyzed in the next subsection.

Let us, in addition to our earlier hypotheses on the coefficients, assume, instead of (4.2), that

A - \ay > 0 in Çl. (5.1)

This assumption applies to all the examples of Section 2 for which À is sufficiently large.
We now give some discussion of the boundary value problem (1.1—1.4). We start with a formai manipulation.

Suppose u is a suitably smooth solution of (1.1-1.4). Let <f> be a suitable function on O which vanishes on
x = 0, L. Multiplying both sides of (1-1) by <p and integrating by parts, one obtains

/ [a(x,y)uy4> + ux4>x + \u4>\àxày = j ftfidxdy. (5.2)
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Now set 4> = u - which warrants the formai identity as true since we established earlier that u G L/2(HQ) and
au G Li2(H~1) so that (5.2) could be considered as a conséquence of Theorem 4.2 — and use the boundary
condition to write

/ [a(x,y)uuy + Aw2] dzd?/ = - / (au2)ydxdy + ƒ [A - -cry]w
2 dxdy > - ƒ a(z,?/)u(x,;î/)2l;'~ dz > 0.

JQ * Jn Jn * * Jo y

Using these inequalities we obtain

/ u^dxdy < / ufdxdy,
JQ Jn

From this and the Poincaré inequality, it follows that a solution u of (1.1—1.4) satisfies

[ u2
xdxdy < C [ fdxdy (5.3)

which is our first energy inequality.
We now write another, related, energy inequality for (1.1-1.4). First, consider the two point boundary value

problem

-uXx + Aw = ƒ, u(0) = u[L) = 0,

with A > 0. Write the solution operator for this équation as u = T\f. The energy formula gives

(ux,ux) + X(u,u) - (ƒ,«) = (f,Txf) = ||rA
1/2/||2.

Hence, since ƒ = T^u,

\\ux\\
2 + X\\uf - \\Tl/2(T^u)f = \\T-1/2uf. (5.4)

Now we consider the problem (1.1-1.4). We write (5.1) as — uxx + \u = ƒ — cmy, so u — T\f — T\{auy).
Multiplying both sides by auy and integrating over (0, L), we obtain

+ {auy,T\((TUy)) =

Integrating over (0, H): we get the identity

\f [<j{x,H)u2(x,H)-cr{x^)u2{x^)\dx+ f [\-\<jy\u2dxdy + f \\TlI2(auy)\\
2dy = [ {Txf,auy)dy.

* Jo Jn l Jo Jo

One now gets the following stability inequality for the forward-backward équation,

TT TT

f \\T1
x

/2(auy)fdy< f ||TA
1/2/||2dy. (5.5)

Jo Jo

Now we return to the équation u = T\f — T\{ouy). Multiplying by T^1'2 and using the triangle inequality,
||TA"1/2u|| < ||rA

1/2/|| + ||TA
1/2{auy)\\. We therefore obtain

[\\Tx1/2nf + \\Tl/2(auy)f}dy < 2 f ||TA
1/2/||2d».

Jo
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Using (5.4), we get

fH[\\ux\\
2 + A R 2 + !|TA

1/2(a%)||2]dy < 2 f" ||TA
1/2/||2dy (5.6)

Jo Jo

which is our second energy identity. We shall next develop a similar structure on the discrete level.

5.2. Discrete Galerkin method

Now we give a précise description of our numerical method. For this, we use the subspace S of S^ ® S^ and
of {u e H1^) : u = 0 on F ^ UF^U Fo} where 5£ *s the s e t °f continuous piecewise polynomials on (0, L) of
degree p and S^ is the set on (0, H). The numerical method takes the form: find ü G S such that

/ [((TÜyyw) + (üx,wx) + \(ü,w)]dy — / (f,w)dy, for all w G S. (5.7)
Jo Jo

In order to study stability along the lines of earlier energy inequalities, we introducé a discrete variant of the
operator T\: let

1 ^ : 5 ^ 5 : 5 ^ ^ TXIK9 = zeS

be defined by

(zXywx)-±-\(z,w) = (g,w) Vw e S.

We also introducé a discrete L2-projection operator Ph- let

Ph : S* -> S : 5* 3 g ^ Phg - g e S

be defined by

(g,w) = (g,w) Vtï) e<S.

We then claim the following commutative property.

Lemma 5.1. Tx,hPh = PhTx,h-

Proof. It suffices to verify that TXihf = TXfhPhf for all ƒ G *S*: if TXyhf = i 6 <S; then (ia., w^) = (/,Ï25) which
in turn equals (Phf,w) for all ü) G *S. Hence z = T

Lemma 5.2. T\^ Z5 a symmetrie, positive definite operator with a square root defined on S.

Proof. If TXihf = z e S and TA)/l# = d) e 5, then

(TX,hf,g) = (z,g) - (5x,tZ)x) + A(z,«;) = (/,tf) = (f,TXth9)

and iï f — g e S, then (TXyhf, f) = ( 4 , 4 ) + A(2,5) > 0, unless i and hence ƒ vanish. D
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We will also frequently use the inequality

\ [(azyjz) + \(z,z)]dy>0. (5.8)
Jo

We first show the existence and uniqueness of the Galerkin solution as well as a stability inequality, analogous
to the two energy inequalities given above for the exact solution.

Theorem 5.1. The System (5.7) has a unique solution, and the following stability inequalities holà:

[ [\\ùx\\
2 + \\ü\\2 + \\T^Phxüy\\

2]dy < C A l / l l 2 + \\Tll2Phf\\
2]ày. (5.9)

Jo JO

Proof. In (5.7), first set w = û to obtain the identity

/ [(aüy,ü) + (üx,üx) + \(ü,ü)]dy = / (f,ü)dy.
Jo JO

Using (5.8) and the Poincaré inequality, we immediately get

[ [u2
x -h u2]dxdy < C [ fdxdy. (5.10)

Jçt Jn

In (5.7), next set w = Tx^aüy, and note that (üXi {T\th<rüy)x) + À(ît, T\,h<JÜy) = (ü, crüx). We then have

I [(crüy, Txihaüy) + (ü, crüy)}dy = / ( ƒ, T\yhaüy)dy.
Jo Jo

Using the fact that

(<jüy,T\,hGÜy) = (PhaüyiPhTxyh^uy) = (P/jÉjüj,, TA^PACTÜJ, ) = | |T^ 2 Phaüy\\
2,

which follows from Lemmas 5.1 and 5.2, and also using (5.8), we get

[\\T^Phxùy\\
2}dy < C [H{\\T^Phf\\

2 + \\ü\\2]dy. (5.11)
J

Combining (5.10, 5.11), we get (5.9). From either of these inequalities we obtain the uniqueness, and hence the
existence, of a solution of (5.7). •

We now consider error estimâtes for the finite element approximation. We first make a naive attempt to get
an error estimate. Notice that the true solution satisfies a relation analogous to (5.7)

pH pH
/ [(auy, w) + (ux, wx) + A(«, w)]dy = / (ƒ, w)dy, VtD e S. (5.12)

Jo Jo

Let ë = u — ü be the error in the finite element solution. Subtracting (5.12) from (5.7), we get

f [(<rëy,w) + (ëx,wx) + \(ë,w)]dy = 0, ViD e S. (5.13)
Jo
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Let û be an approximation to u in <S, such as an interpolant of tt or a projection of u onto S using some inner
product. Let ê = ü — û, so

ë = (u ~ Ü) — ê. (5.14)

Inserting this into this (5.12) we then get

/ [(aêyiw) + (êXiwx) + X(ê,w)]dy = / [(<r(uy ~uy),w) + ((% - û x ) , ^ ) + A(u-û,û))]ds/. (5.15)
Jo «'o

Theorem 5.2. One has

Proof. Setting tt; = ê in (5.15) and using (5.8) we obtain

/ êldxdy < / [crê(uy - uy) + êx(ux - ux) + Aê(u - ü)]dxdy.
Jn Jn

Hence, using also the Poincaré inequality, ||ê||f)On < CHêUi^nlIu—û||i,n, so ||ê||ii0,Q < CHu-uJli^. Using (5.14)
and the triangle inequality, we get the resuit. D

Theorem 5.2 gives a bound for one portion of the error. It is also of interest to bound the other portion,
{ƒ llcrêy(*,y)||i1dy}1/2. For this we require several lemmas.

Lemma 5.3. Tx
f
hPh is a bounded operator on S wüh bound independent of h. More precisely:

rII AT 2 rH
/ \\Tl$UWày<^ \\n2dy V ƒ G S \fh > 0.

Furthermore, Tx,h = {T^Ph)
2.

Proof. Suppose f € S, then \\T^(f)\\3 = (Tx,hf,f) < \\Tx,h(f)\\ \\f\\. We next use that \\Tx,h(f)\\0 <
2L/Tï\Tx,h{f)\x by Poincaré's inequality and then that |TA,h(/)|ï < ((Tx,hf)x,(TXthf)x) + A||TAih(/)||§ =
(Tx,hf,f) < \\TXih{f)\\o \\f\\o. This implies the asserted bound. Since Phf = f for ƒ e S, T^Ph sat-
isfies the same bound. To connect to Ph, observe that, for f £ S*, Tx<h{f) = Ph,Tx>h{f) — TXt'hPh(f) =

Lemma 5.4. TA
/ is an isomorphism from H'1^^) onto L2(Q,L) wüh the following équivalence:

Proof. Suppose ƒ e H~\ then ||TA
1/2(/)||2 = (Txf,f) < ||TAƒ||i||ƒ||-i and, at the same time, ||TA

1/2(/)||2 =
(Txf, ƒ) = {{Txf)x, (Txf)x) + X(TX ƒ, Txf) > ((rA/)x, ( T A / ) , ) - ||rA ƒ ||? so that ||TA

1/2/II < II f | |-i- Conversely,

U = sup ^ 1 = s u p ( ( ^ / ) ^ ï ) + A(TA/,,) 1 +

vEHi Ml vGHi FUI

which, together with the above identities, yields the inequality sought. D
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We now consider the other error bound. Setting w — T\ih(aêy) in (5.15) and using the identity (êx,
\^{^èy)\x) + \{ë,T\ih{aëy)) — (aêy,ê), we obtain

/ [(<rêy>Txih{aêy)) + (aêy,ê))dy = / [(a(uy - ûy)yTXih(crêy)) + (ux - ûx, [TXjh(aêy)]x)
Jo Jo

Using (5.8),

[H\\T^Ph(aêy)\\
2dy < [H\\T^Ph(a(uy-ûy))\\ \\T$Ph(aêy)\\dy + A u * - ÛX1 [Tx,h{aêy)]x)

Jo Jo Jo

+A

The first and third intégrais on the right can be estimated using Schwarz's inequality and the arithmetic-
geometric mean inequality, to obtain

PH pH pH

/ \\Tl[hPh(°èy)\\2ày<C / \\Tl/2Ph(<j{uy-ûy))\\
2dy + C / (ux - ûx, [TX}h(aey)}x)dy + C\\u - u\\2^

Jo Jo Jo
(5.16)

The difficulty now comes in estimating the second term. Using an inverse inequality we have

H ( fH -\ V2 f fH 1 V2

(ux-ûx,[TXth(aêy)]x)dy < IJ \\ux-ûx\\
2dy\ IJ

IK-Ûx | |2d2,[ <̂  / \\Tl'l

) l °
In the last step we have used Lemma 5.3 with bound independent of h. Inserting this into (5.16), we obtain

pH fH fH
/ \\T\hPh(°êy)\\

2dy <C \\Tl/2Ph(a(uy - ûy))\\
2dy + ChT2 \ \\ux - üx\\

2dy. (5.17)
Jo ' Jo Jo

Prom (5.14),

f \\Tll2{aëy)\\
2dy < 2 [* ||TA

1/2(aey)||
2d» + 2 T ||TA

1/2(aK - uy))\\
2dy. (5.18)

Jo Jo Jo

To bound the first term on the right, we need to relate Tx to TXh :

(5.19)

fH ï V 2 f H >| 1/2

ux-ûx\\
2dy) \ / \\TKh{aëy)\\

2dy\
l J

1/2 , x 1/2
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as i|TA
1/2#||2 = (Txg,g) and \\T^Phg\\2 = (T\ihg,g) hold. Since TXjhg is the Galerkin approximation to the

function z = Txg which satisfies — zxx + Xz = gy z(0) = z(l) = 0,

\\(TX - Tx,h)g\\ < Ch\\Tx9\\m,o = Ch{((Txg)x, (Txg)x) + X(Txg,Txg)}1/2 = Ch{Txgi9)^
2 = C*||rA

1/2
5||.

(5.20)

Hence we obtain, with the use of the Cauchy-Schwarz inequality,

\\Tl/29\\2 < \\T^Phgf + Ch'WT^gf

so that for sufficiently small ft,

||TA
1/2

5||2 < C\\T^Phg\\2.

Setting g = aëy(^y) and integrating over y, we obtain

f" \\Tl'2aèy\\
2dy <C fH \\T^Phaëy\\

2dy.
JQ JO

Using (5.17) to bound the intégral on the right, we get

f \\Tl/2aëy\\
2dy < f" \\Tl/2Ph(a(uy - ûy))\\

2dy + Ch~2 f" \\ux - ûx||
2dy.

Jo Jo Jo

Prom Lemma 5.3,

f WT^aëyfdy < \\(a(uy -
o

Finally, using Lemma 5.4 we obtain

Theorem 5.3. One has

f \Wêy^y)\\Uày < \W(uy-Ûy)\\lQ+Ch-2\\ux-ûx\\lu. (5.21)

Following this, as a conséquence of interpolation estimâtes, is

Corollary 5.1. Under the assumptions made above, the following error estimate holds

Il«-ü||i,o,n < C(hP + k«)\\u\\max{Ptq}+ltn (5.22)

i - (5-23)/
o

Proof. The interpolation estimâtes used are the usual ones, see e.g. [9]. D
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TABLE 1. Errors and rates of convergence for Aziz-Liu example.
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N

4
8
16
32

\\(U-Û)X\\L2(Q)

0.576(-l)
0.144(-l)
0.361(-2)
0.902(-3)

Rate

2.00
2.00
2.00

l|u-ü|lz,2(n)
0.192(-2)
0.245(-3)
0.356(-4)
0.830(-5)

Rate

2.97
2.78
2.10

6. NUMERICAL EXPERIMENTS

In this section we describe some numerical experiments using the numerical method described in Section 5.2.
Our accuracy measurements will be compared with the theoretical convergence estimate (5.7). The existence-
uniqueness theory of Section 4 applies to all the examples in this section. We also note that assumption (5.1)
holds for all the examples in this section except for Example 4.

To form the mesh for this implementation we subdivide Q, into an N x TV grid of rectangles so that h « 1/JV.
We take the approximation space S to be as described in Section 5.2 with p = q — 2. Thus, S is a subspace of
{u e H1 (SI) n C(fi) : u = 0 on r ? U T% U To}. On each mesh rectangle a function in S has the form

+ a20x
2 a02y

2 4- a2ix
2y

Using the interpolation results from Section 3.1 of [9], we conclude that

\\(u~~ü)x\\L2{n) < Ch2\\u\\H3{n). (6.1)

We use 8 nodes on the boundary of each rectangle positioned at the vertices and the midpoints to define the
approximation functions uniquely. The matrix and right hand side entries are evaluated with a 3 point Gaussian
quadrature.

Aziz-Liu Example. We apply our approximation scheme to Example 1 from [1]. Hère Ct = (—1,1) x (0,1),
a(X) y) = x, À = 0, and ƒ is defined so the true solution is

_ ƒ (x2 -
( x 2 -

i f o < x < i
- \f[y2 - 4x2]

Note that u = 0 on Y\ = [0,1] x {0} and r i = [—1,0] x {1}. Also, u is smooth on the line x = 0 where the
équation changes type from forward to backward. Table 1 has the results for several runs at different values
oiN.

The header in the last column, Rate is the exponent p for the rate of convergence for observed data,

error = ChP.

It is calculated by the formula

P =
log(e(Ni)) - log(e(JV2))

log{N2)-log(Ny)

with the number of subintervals Ni and N2 and errors are e(JVi) and e(N2)- We also observed in this example
that the convergence rate in L2(Q) was tending to O(h2) which was also observed in [1].

Example 2. Here we take o*(x,y) = 1 — 2y as was discussed in Section 2 (see Fig. 3). The domain in this
example is ü ~ (0,1) x (0,1). The boundary conditions (1.2-1.4) imply that u = 0 on the entire boundary.
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TABLE 2. Errors and rates of convergence for Example 2.

TV
4
8
16
32

\\(U-Û)X\\L2(Q)

0.814(-l)
0.164(-l)
0.382(-2)
0.943(-3)

Rate

2.31
2.10
2.02

\\u~Ü\\L2(n)

0.148(-l)
0.331(-2)
0.811(-3)
0.202(-3)

Rate

2.16
2.03
2.01

0.5

0 0.5 1

FIGURE 8. Contour lines of the approximation to the solution of the problem with a{x,y) —
10(3 — x — 5y) and f(x,y) = 10 in Example 2. The solution is négative in this case and the
value of the fonction decreases from the out er to inner contours.

We take ƒ (x, y) = —7r2sin TTX. The true solution can be found by making a change of variables on y and then
using séparation of variables for the resulting heat équation. With this approach we nnd

u(x,y) =
((i-2j,r2

— 1) s in TTx

— 1) s i n 7TX

0<x< 1/2
1/2 <x < 1.

Note that since ?r2/2 œ 4.97, u G C4(£7). Table 2 has the convergence results for this problem.
Again we observe the expected rate of convergence, O (h2). For this example, the L2(Q) norm was O (h2).
We also computed an approximation in the related case when the zero line of a is tilted (see Sect. 2 and

Fig. 4). In this computation we multiplied the a-term by 10 to exaggerate its effects and set f(x,y) = 10.
Figure 8 has the contour plot of the approximation on a 16 x 16 grid.

In the next two examples we examine the solution behavior in cases where the true solution is not known.

Example 3. Here we take a(x, y) = x as in the Aziz-Liu example, set ƒ(x, y) = 1 and have fl = [—1,1] x [0,1].
We required u = 0 on T°+ = [0,1] x {0}, TL = [-1,0] x {!}, and, as usual on To. A 16 x 16 grid is used. To
the right of the y-axis is the forward région with initial data zero and to the left is the backward région with
data also zero on the line y = 1. It is seen that the differential équation and the boundary conditions are not
consistent at the points (0,0) and (0,1). One therefore expects that the solution will have singularities at these
points. Some solution contours are shown in Figure 9.

Example 4. Finally we compute the approximation in case when a(x, y) = 16[(x — 1/2)2 + (y — 1/2)2 — 1/16]
and ƒ (x, y) = 1 which was described in Section 2, see Figure 5. In this case il = [0,1] x [0,1] and we took u = 0
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0.5

-1 -0.5 0.5 1

FIGURE 9. Contour Unes of the approximation to the solution of the problem with a(x, y) — x
and f(x,y) = 1 in Example 3. The solution is non-negative and the value of the function
increases from the outer to inner contours.

1

0.5

0.5 1

FIGURE 10. Contour lines of the approximation to the solution of the problem with a(xy y) =
16[(x — 1/2)2 + (y — 1/2)2 — 1/16] and ƒ (x, y) = 1 in Example 4. The solution is négative again
with the inner contour being the minimum.

on F^ = [0,1] x {0}, and on FQ. Here there is a backward région in the shape of a dise that is imbedded in the
square. The contours of this are displayed in Figure 10 which was computed on a 16 x 16 grid.

7. SOME REGULARITY CONJECTURES

The regularity behavior of solutions to (1.1) seems to be rather intricate. In a series of papers (see [36,37]),
Pagani investigated these issues and established as an example the following theorem for the case: a(x1y) — x.

Theorem 7.1 (Pagani). Let a(x,y) = x. The solution to the System (î.1-1.4) satisfies the following a priori
estimate:

/
àxdy

Jo JO
f2 dxdy. (7.1)
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Gor'kov made varions observations about the regularity near the intersection of the zero set of a and y = H
in [17]. Again, for a(x, y) — x, he states for the case of (1.1) being posed on the half-plane y < H, that if
u(x, H) — 4>{x) = \x\6 for x < 0 - with 0 < ö < 1/2, then the form of the solution is:

u(x,y)=Ji(x,y)(\x\s + \H-y\"3),

with JI bounded below and above by positive constants (cf. p. 906 of [17]). Hère, ƒ = 0. Hence, even if we give
proper terminal data for u G H3"1/2 — or Ixl1/2^ in Hs — for s < ö 4-1, the regularity pick-up is merely that
ueHr for r < <J/3+L

The structure of the solution for gênerai a has not been investigated to our knowledge. To understand
some of the possibilities we consider two simple examples. Let y* & (0, T) and a > 0. The first example is
a(x,y) — a(y — y*). The boundary conditions (1.2—1.4) in this case are ufi^y) = u(L^y) = 0. In this case, the
variables separate. Expanding u and ƒ in a Fourier sine series, we write

oo

u(x,y) = ^2un(y)sinn7rL~1x, f(x,y) =
î î

One obtains for un the ordinary differential équation

(y - y*)<(y) + 0nun(y) = orxUy),pn = a^(k2 +n2ir2L-2). (7.2)

This équation may be written ((y — y*)^nun) = a"1 (y — y*)^n~lfn- Integrating, we have

un(y) = a"1 (y - y*)'?» A s - y*)^1 fn{s)às. (7.3)
Jy*

If fn is smooth, we may expand fn in a Taylor series around y* and conclude that un is smooth. Since (y — y*)~^n

is the solution of the homogeneous équation associated with (7.2), it follows that (7.3) gives the unique bounded
solution of (7=2). Note that we have not imposed any boundary conditions on un; the requirement that un is
bounded plays the rôle of a boundary condition in fixing the solution. The solution of (7.2) can then be obtained
by assembling the sine series with these formulas for un. We conclude that, in this case, the regularity of the
solution is dictated by the regularity of the function ƒ.

For our second example we take a(x,y) = — a(y — y*). The boundary conditions (1.2-1.4) in this case are
u(0,y) — u(L,y) = 0, u(x,0) = u(x^H) = 0. We again expanding u and ƒ in a Fourier sine series. We obtain
for un the differential équation

-(y-y*X(y)+PnUn(y)=a-1fn(y),(3n = a-1(k2 + n\2L-2). (7.4)

This équation may be written —((y* — y)~^nun) — a~1(y* — y ) " ^ " 1 ƒ„. We now integrate the équation and
use the boundary conditions to obtain

un(y) = a'1 (y - y*)0n A * - y*)~0n~1U(s)d3 for y* < s < 1,

un(y) - a~l(y* - yf- f%'(y* - s)'^"1 fn(s)ds for 0 < 5 < y\

Thus, a different formula is obtained for un in each of the two régions (0,y*) and (y*,H). The function un

satisfies un(Q) = un(H) — 0. To understand the behavior of un near y ~ y* we expand fn in a Taylor series
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around y* to obtain

un{y) = a-l{y-y*f- f {s - yT^lUy*) + (s - vlfLivl + • • -]ds for y* < s < 1,
Jy*

o<s<y*.

We find from these expressions that \\my-¥y+±QUn(u) — a~lfn(y*). We also find that un contains expressions
like (y — y*)^n) which are singular if j3n ^ integer. (If )3n = integer, un contains logarithmic terms.) The solution
of (7.2) can again be obtained by assembling the sine series with these formulas for un. We conclude, in this
case, that u is continuons across the line y = y* but that the regularity of u on y = y* is limited, regardless of
the regularity of ƒ.

Inspired by these examples, we formulate some conjectures for the solution u of (1.1). (1) In the open set
where cr^O, the regularity of the solution at a point (x* ,y*) is dictated by the regularity of ƒ in a neighborhood
of this point. (2) At points (x*,y*) where cr(x*,y*) = 0, 0 (̂3?*, y*) > 0, the regularity of u is dictated by the
regularity of ƒ in a neighborhood of (x*,y*). (3) At a point (x*,y*) where <r(x*,y*) = 0 and ay(x*,y*) < 0, u
has a singular behavior even if ƒ is smooth in a neighborhood of (x*,y*). (4) At points on the boundary where
a — 0, or at points in the interior where a = ay — 0, the solution u may have a particular singular behavior.

The third author, S0ren Jensen, passed away during the course of this work. He was primarily responsible for putting this
collaboration together and is greatly missed by ail of us. We acknowledge his significant contributions and participation
in ail aspects of this project except the final editing. Don French's research was supported in part by the Taft foundation
at the University of Cincinnati through their Grants-in-aid.
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