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SINGULARITIES OF MAXWELL INTERFACE PROBLEMS

MARTIN COSTABEL1, MONIQUE DAUGE1 AND SERGE NICAISE2

Abstract. We investigate time harmonie Maxwell équations in heterogeneous media, where the per-
meability \i and the permittivity e are piecewise constant. The associated boundary value problem
can be int er pret ed as a transmission problem. In a very natural way the interfaces can have edges
and corners. We give a detailed description of the edge and corner singularities of the electromagnetic
fields.

AMS Subject Classification. 35Q60, 35R05, 78A25.

Received: June 5, 1998. Revised: September 1, 1998.

INTRODUCTION

Physical objects interacting with electromagnetic waves not only tend to have corners and edges, but are
frequently composed of several materials with different electric and magnetic properties. The electromagnetic
fields then have singularities not only at the exterior corners and edges, but also at the singular points of the
interfaces between the different materials.

We show how these singularities can be analyzed using the classical Kondrat'ev method [13]. In référence [8],
we studied the singularities at corners and edges of a homogeneous material. Here we continue this investigation
of the singularities of solutions of the time-harmonic Maxwell équations by studying the case of piecewise
constant coefficients e (electric permittivity) and fi (magnetic permeability). For the case of two materials
separated by a plane, see also [5].

We try to describe as explicitly as possible the principal parts of all singular fonctions of the electric and
magnetic fields. We show that all the singular functions can be obtained from those of associated transmission
problems for the scalar Laplace operator. Thus one can benefit from the many results that are available on this
subject; see [10,15,16,19].

In the case of a homogeneous body [8], the singular functions are generated by those of the Dirichlet and
Neumann boundary value problems for the Laplacian. In our heterogeneous case, we also have to consider
two problems for the Laplacian. They correspond to the équations for the electrostatic and the magnetostatic
potentials. The electrostatic problem is an interface problem for the Laplace operator with exterior Dirichlet
boundary conditions and jumps of the normal derivatives at the interfaces determined by the discontinuities
of the coefficient e (operator A^ir, see (1.7) and Notation (3.3)). For the magnetostatic problem, we have
to consider the operator A^eu (see (1.8) and Notation (3.3)) with Neumann boundary conditions and jumps
determined by the discontinuities of the coefficient p.
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As in the homogeneous case [8], we find three types of singularities (type 1, 2 and 3). There may be strong
singularities that are not even in H1. We show that these are of type 1, i.e. gradients of singular functions of
the corresponding static problems.

For the singular functions of type 2, there is a différence to the homogeneous case: in [8], we obtained an
explicit formula (a differential operator, see Lem. 7.5 of [8]) that gives the Maxwell singularity in terms of the
singularity of the opposite static potential problem. In our heterogeneous case, the exponent of the singularity is
still equal to an exponent of the opposite static potential problem. For the angular part of the singular function,
however, we find an additional term, see (5.3), that involves the solution of an inhomogeneous scalar interface
problem. Thus the type 2 singularities of the electric fields have the same exponents as the magnetostatic
potentials, but their angular parts contain a term corresponding to an electrostatic field generated by interface
charges depending on the jumps [e/j] of the index of refraction.

Another important différence to the homogeneous case is that the regularity for the interface problems can
be much lower, even with regular data. Thus, in the homogeneous case, one has at least H1^2 regularity for
Lipschitz domains [6] and H1 regularity for convex domains [20]. Her e, we find only 0 as a limit for the regularity.
Thus for any s > 0 there are examples where the solution is not in Hs. If there are only two materials the lower
limit of regularity is 1/4 for arbitrary polyhedra and 1/2 for convex domains.

For the two-dimensional case (which governs also the edge singularities in dimension 3), one has simple
formulas in the homogeneous case: they show that the strongest singularity is of type 1 and that the lower limit
of regularity is TT/LO if U; E (0,27r) is the largest opening angle. This holds for both the electric and the magnetic
field.

In the heterogeneous case, due to the different behaviors of the coefficients s and //, the electric and magnetic
fîelds will have, in gênerai, different regularities. As usual their regularity is limited by the leading singularity.
If this leading singularity is of type 1, the regularity is s — 1, with s the regularity of the corresponding static
problem. If not, the leading singularity is of type 2, and the regularity is the same as the regularity of the
opposite static problem. In the two-dimensional homogeneous case, the second possibility never happens, while
in the heterogeneous case, there are cases where the leading singularity is not of type 1, but of type 2.

Let us give an example. In a typical case of several dielectric materials (three are sufncient) with strongly
varying e, uut constant ju, in a convex poiygon with largest opening o;, one has üz~^7 regularity for the magne-
tostatic potential, with 7 > 0 any number < TT/LÜ — 1. For the electrostatic potential one may have only H1+6

regularity with any Ô > 0. Thus the type 1 singularity for the magnetic field has regularity Hl+iy
 y compared to

the H1+ö regularity for the type 2 singularity. It is easy to have S < 7 (take three adjacent sectors of opening
TT/4 and e equal to 1 in the exterior sectors and to 100 in the middle sector: then 7 = 0.3333 and S — 0.1793). In
such a situation, the electric field has only H5 regularity (type 1) while the magnetic field has i?1 + 5 regularity.
Such a différence of 1 between these two regularities is the maximum possible. (See also Rem. (8.2) for an
example where 7 — +00 and 8 is close to 0.)

In Section 1, we recall the regularized variational formulation of MaxwelPs équations for heterogeneous
materials. We define the two associated scalar potential operators A^ir and A^eu.

In Section 2, we characterize the closure of the subspace of smooth functions in the natural variational spaces
associated with the electric and magnetic fields.

In Section 3, we give two different décompositions of the variational spaces. In the first case, the regular part
is in H1 on the whole domain, thus has no jumps across the interfaces, whereas in the second case, the regular
part has jumps in the components normal to the interfaces. In both cases, the singular parts are gradients.

In Section 4, we state the necessary results on scalar interface problems for the Laplacian. In Section 5, the
three types of Maxwell corner singularities and in Section 6, the edge singularities are studied.

Section 7 gives some conclusions about Hs regularity in genera! and in several particular cases. We give in
Section 8 proofs for the results about minimal edge regularity for the Laplace interface problems on which the
Maxwell regularity results are based.

We shall use the following geometrie and analytic setting: we assume that Q is a Lipschitz polyhedron, which
means that Q is a bounded Lipschitz domain with piecewise plane boundary. We also assume that e and ji are
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piecewise constant > 0 on Q, determining a partition SP of Q in a finite set of Lipschitz polyhedra 17i,... , £lj:
on each f2j, e = Sj and fj, = jij wit h Ej and \ij positive constants. We dénote by F3k the (open) faces of fij. Let
#int be the set of the interior faces (contained in Q) and J^ext the set of the exterior faces (contained in d£l).

In gênerai, we will dénote by bold letters the functional spaces for the fields. Thus HS(Q) dénotes the usual
Sobolev space on O and HS(Q) dénotes HS(Q)3. We also need for s > 1/2 piecewise Hs functions relative to
the partition &

Here, of course, (pj dénotes the restriction of <p to flj. For the fields we set

We will also dénote by PH"1/2(^int) the product of the spaces H^2(F) for F G &int and similarly for #ext.
Finally, as usual for Maxwell équations, we need spaces of fields with square integrable curls:

iï(curl ; fl) - {u G L2(nf \ curl u e L2(tt)3}, (0.1)

and with square integrable divergences (here £ = e or /j)

iï(div;<e;^) = {u e L2(Q)3 | div(£u) e L2(O)} • (0.2)

As usual, if £ = 1, JET(div ; ̂  ; Q) is denoted Jï(div ; îî) for short.

1. MAXWELL FORMULATIONS

Classical time harmonie Maxwell équations are given by

curlE -icjfiH = 0 and curl H + iu eE = J in O. (1.1)

Here E is the electric part and H the magnetic part of the electromagnetic field. The right hand side J is the
current density. The exterior boundary conditions on dQ, are those of the perfect conductor (n dénotes the unit
outer normal on dfl):

E x n = 0 and H • n = 0 on dft. (1.2)

The natural variational spaces are XJV(H, e) for the electric field and XT(&, /-O for the magnetic field according to

XN(n,e) = {ue2ï(curl ; f i )nff(div;£;f i ) | u x n = 0 on

and
= {uG H(curl ; fi) H JT(div ; /x ; O) [ w • n = 0 on

Any field u belonging to one of these spaces is in iï(curl ; Ctj) n H(div ; dj) for each j and satisfies additional
jump conditions at the interior interfaces F G J înt-

| curlu,- G L2(%)3 , divt*,- G L2(Üj),

[uxn]F = 0J [eu"n]F = 0, V F e ^ t (1.3)
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and

)A0 = {u e L2(Ü)3 I c u r l ^ e L2(ü3f, divu3 e L2{Ü3),

[u x n]F = 0, [^« • n]F = 0, VF G J^mt (1.4)

t * - n | F = 0 , V F e ^ e

where the jump [v x n]F is equal to (v3 xn3 — v3t xn3)\p if F belongs to d£l3 and to <9fiy, with v3 the restriction
of v to ft3 and with n3 the exterior unit normal to dVL3.

We can formulate elliptic variational problems either for E ov H. We introducé the following two formula-
tions:

u G Xjsffö^e)) Vi? (E JÇ̂ y (fi, £),

(1.5)
ji 1 curlu • curl v + div eu divev — LO2 eu • v = (ƒ, v),

where (ƒ, v) = IÜJ{J, v) + —{div J, divev), and

(1.6)
e x curl u - curl v + div \JLU div /xv — J2 fiu • v = {h,v)}

where (h,v) = (e"1 J, curl v). If (E, H) solves the Maxwell équations (1.1-1.2), then E is solution of (1.5)
and H of (1.6). The converse also holds, see [8], if o;2 does not belong to the spectrum of the operators — A^ir

and —A^eu naturally associated with équations (1.1):
o

• — A]?ir is defined from H1^) into its dual H"1(Q.) by

o r

V$, * G ff1 (fi), -(Aç®^) = / £grad$ grad1^ ; (1.7)
Ja

• — A^eu is defined from i71(fi) into its dual by

V$, ^ G H1 (fi), — (ANeu^, ^) = / / igrad$ grad1^ . (1*8)
Ja

We end this section by a regularity result for the divergence, see also [8].
o

Theorem 1.1. If u solves (1.5) with f %n L2(fl)3, then divsu belongs to U^fi). If u solves (1.6) with h m
L2(fi)3, then div \xu belongs to Hx(fi).

Proof Let u be solution of (1.5). Taking as test functions v = grad^ with $ in the domain D(A^?ir) of A^ir

we obtain
V$ 6 ^(A^ i r) , (divett, A^ i r^ + UJ2$)Q = {ƒ , grad$)n.

Let g b e a solution of the Dirichlet problem (if J1 is an eigenvalue of —A^ir the above équation ensures the
solvability of this problem)

V# e H1^), - ( eg radg , grad*)n + (cj2g, * ) n = (ƒ ,

Whence
V$ e -D(A°ir), (q, A?ir$ + u>H)n = (f , grad * ) n .
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Thus dW eu — q is orthogonal to the range of A^ir+u;2, therefore is either 0 or an eigenvector of — A° i r associated
o

with u>2. Either way, div eu — q belongs to /^(fi), hence diveu too. The proof for the "magnetic" problem
(1.6) is similar. D

2. THE CLOSURE OF PIECEWISE-SMOOTH FUNCTIONS IN XN(ü,e) AND XT(fi,/x)

It is clear that the bilinear forms associated with problems (1.5) and (1.6) are coercive on Xjy(Çl,e) and
Xr(fi,/z) respectively. When e is smooth, it is proved in [7] that Xpf(Çl,e) H H1 (Q) is a closed subspace of

l,e). In our situation, the corresponding spaces are

tt^) and JBTT(ÎI,M) := *T( Î Î ,y ) n PH 1(tl, &>).

From (1.4) and (1.3), we immediately obtain

| u3 e H1^),

[u x n]F = 0, [eu • n ] F = 0, VF G J^mt (2.1)

and

= 0, VF 6 ^ m t (2.2)

In this section we are going to prove that not only .H)v(£î,e) is closed in X/v(fl,£), but still HN(ÇI,S) is the
closure in X7v(r2,£) of piecewise-smooth functions. To this aim, let us introducé for any 5, 1 < s < oo, the
spaces J3jy(îî,e) and iïf(O,/i):

î ] ^ ) and

Of course their éléments are the piecewise-üP fields satisfying the boundary and transmission conditions of
(2.1) and (2.2).

Our main resuit in this section is:

Theorem 2.1. The closure of H™(Qye) m JCjv(fiîe) is Hpj(ftye)} and the closure of Hj?(Çl,fj,) m Xr(fî,/x)
zs

The proof follows from a succession of lemmas.

Lemma 2.2. Let CN = max^e" 1 , ^ /^} and CT = max^ j / i " 1 , ^^} . Then for any v G H^(Çt^e) there holds

f e|gracH2 <CN [ (V^curH 2 + |dive«|2V (2.3)

and for any v G JH^(Î Î , / / ) there holds

I y | grad v\2 < CT / fe"1! curl v\2 + |div^v|2V (2.4)
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Note that the left hand sides of (2.3) and (2.4) are the bilinear forms of the operators A^ir and A^eu respectively
and that their right hand sides are the Maxwell bilinear forms, cf. (1.5) and (1.6).

Proof. For any j and any v G H2(VLj) two successive intégrations by parts yield:

£j|gradt; |2 = - / €jAv - v + / £jdnv • v

= f eA\cuY\v\2+ \àivv\2)

+ I £j\dnv * v — (curlv x n) • v — divu (v * n) ).
•/an,- v '

On each face of dQj, let us dénote by vn the normal component v • n of v and by VT its tangential component
v — fnn. The tangential parts of the gradient and of the divergence are denoted by gradT and divx- Using
that the faces of ftj are plane and relying in particular on the identity — curl v x n = gradT vn — dnvr which
holds on each face, we arrive at

/ £ j | g r adv | 2 = / ej

If v belongs to PH2(Q, &*) and is such that for any interface F G J?mtî [v x n] = 0, we deduce from the above
equality that

/ e\grsidv\2 = / e( \ curl v\2 + | div v\2 ) + Y^ / gpadT(evn) - vr - àivr in (evn)

/ gradT[eun]F • vT - divT in [evn)F.
JF

Thus, if v G fljv(fî,e), J n £ |g radv | 2 is equal to JQ e(\ curl v\2 + |divv|2) and similarly, if v G JBT^fi,//),
Jfi // | grad v|2 is equal to jQ /x(| curl v\2 4- | div v|2). Estimâtes (2.3) and (2.4) are now straightforward. D

Now we are going to prove density results. For this, we go through several steps.

L e m m a 2.3. Let UJ be a bounded sector of radius 1 in R2 and let r be the distance to its vertex. Let h belong
to H1 (LU). Then rah tends to h in H1 (LU) as a -> 0.

Proof By the dominated convergence theorem, we obtain immediately that rah, radxh and radyh tend to /i,
dxh and dyh respectively in L2(ui) as a —> 0. It remains to prove that hdrr

a tends to 0 in L2(u>) as a —> 0.
The dimculty lying in r = 0, we can assume that h = 0 on r ~ 1. With the help of an intégration by parts,

we obtain

/ \hdrr
a\2rdr = - ah2 drr

2a dr = - ƒ ahdrh r2a dr

pi
= - ƒ

from which we deduce

Thus, setting
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we have obtained that X(a) is bounded as a —» 0. Similarly as above, we have

X(a) - 2X ( | ) = - f ar0"-1 h (rŒdrh - drh) dxdy,

from which we deduce
X(a) - 2X ( | ) | < y/xjö) \\radrh - drh\\

Thus, \X(a) — 2X(a/2)\ tends to 0 as a -» 0. As X(a) is bounded, we can deduce from this what we wanted,
ie. that X{a) -> 0. D

Lemma 2.4. Let UJ be as in Lemma (2.3) and let x = x(r) a smooth function in <é>§°{~ 1,1) eguaZ to 1 in a
neighborhood ofQ. Let h belong to i?1(cj). Then h belongs to the closure in H1^) of the set

S(h) := {ra(l - X(nr))/i | a G (0,1), n e M} - (2.5)

Proqf. With Lemma (2.3) we have only to prove that we can choose a and n so that the norm of rax(nr)h m

H1^) is as small as we want. Obviously, rax{nr)h, rax^)dxh and rax(nr)9yh tend to 0 in L2(LJ) as n —>• ex)
uniformly in a G (0,1). From the proof of Lemma 2.3, we have that hd^ tends to 0, thus x(nr)h9rr

a tends
to 0 in L2(LÜ) as a —> 0, uniformly in n. It remains to evaluate the norm of r^hdrxinr) in L2(LÜ). We start
from the estimate

3C > 0, Vr e (0,1), Vn G N, |örx(nr)| < —
r

Then, as the support of ôrx(^^) is contained in (0, ^), we have

{nr)\\LHui) < Cn-^\\r

Since, for any a > 0, by Hardy's inequality, r"1 + a /2 / i belongs to L2(o;), for any fixed a, we can choose n so
that \\rahdrx(nr)\\L2(u\ *s a s s m a ^ a s w e want. D

As a straightforward corollary of the previous lemma, we obtain the corresponding result in M3:

Lemma 2.5. Let W = o; x I where vo is a plane sector and I an open interval Let h belong to Hl(W). Then h
belongs to the closure in iJ1(VF) of the set S(h) defined by (2.5) where r is still the distance to the vertex in UJ.

Lemma 2.6. Let Qj be a polyhedral partition ofQ, and let E be the skeleton formed by the union of the closed
edges of all the £lj. Then the subspace of H^fà^e) of the fields which are zero on S, is dense in HN(ÇI,E), and
similarly for the spaces HT(Q-> ft)-

Proof. Let h e iï/v(O, e) and e > 0. The proof of the existence of a h e H^(fl, e) such that h = 0 on E and
||h — h\\ pH1(Q ^ < £ is organized in three steps.

Step 1. Let x De a function like in Lemmas 2.4 and 2.5. For each vertex S G E let ps be the distance to 5.
Then x(nPs)h tends to 0 in PjH*1(i7, &) for each vertex S as n —» oo. Thus we can choose n large enough so
that

fti :== h ~^2x(nps)h is such that \\h - ^ î l l p ^ i ^ ^ j < e/4.
s

Then we can apply Lemma 2.5 to hi in the neighborhood of each edge in E, and we obtain a new field h% in
H}f(fl,e) such that

^2 = 0 in a neighborhood f of S and ||fe - ^i\pm{Si ^ < t/2.
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Step 2. Let f o b e a neighborhood of £ such that f o c f . We can then introducé independent lifting of traces
RF on each face F G J înt U ̂ ext acting from the subspace of H1/2 (F) of fonctions g which are zero on %,
into PH1(Q^ 02), so that RF{g) is zero in a neighborhood of all the other faces. With these liftings, we can
construct a lifting RM of the trace and jump operator j N

= vx n\F, gT,F = [v x n}F, gn,F = [ev • n]

such that 'jNRNg = y for ail set of traces and jumps which are zero on %. Let CR be the norm of RN-

Step 3. We regularize ha in each fij by convolution by a regularizing séquence Xn- For n large enough, the
regularized field /i3 is zero on % and

) < e/4 and

Setting h = hs — RNJN^ yields the desired approximation of h. The proof for the other boundary conditions
is similar. D

Now, Theorem 2.1 is clearly a conséquence of Lemmas 2.2 and 2.6.

3. SlNGULARITIES OF THE VARIATIONAL SPACES

In this section we establish continuous décompositions of the spaces Xw(Q,e) and Xr(fî)A*) into a H1 or
PHl field and a gradient. Such a décomposition is well known for the homogeneous Maxwell's équations,
i.e. when e and /x are constant or sufficiently regular (e.g. Lipschitz) [2-4,12,17], and was extended to the
heterogeneous case by [5] under the assumption of two materials with a plane interface. We prove here two
sorts of décompositions in our genera! frarnework.

We begin with two lemmas giving the existence of regular vector potentials:

Lemma 3.1. Let us assume that Q is simply connected. Let u be a divergence-free L2 field, Then there exists
ip € HT{^") 1) such that cu r l^ = u.

This Lemma is simply obtained by the combination of Theorem 3.12 in [1] which yields a potential ^o in
"> 1) and a décomposition of this ipo in a regular ip G HT(Q, 1) and a gradient according to [3]. Of course

this gradient part does not contribute to the curl!
Similarly, relying on Theorem 3.17 in [1], and [3], we obtain

Lemma 3.2. Let us assume that Q is simply connected. Let u be a divergence-free L2 field such that u • n is
zero on d£l. Then there exists ij) G HN(Q, 1) such that curlï/j = u.

We also introducé the following notation:

Notation 3.3. For g = ( # F ) F E PH1/2(^int) and ƒ G L2(ü) we write

Fe^nt

if we have the variational formulation (1-7):

* e Hl(Sl), V^ e fl^n), f egrad$ gradtf = [
Ju Ja
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We use the analogous notation for A^eu based on the variational formulation (1.8) with the same nght hand
side as above:

H1^), f ^grad$ grad^ = f /*dx + V f
Jn Jn j?aö? JF

Our first décomposition resuit yields a "regular" part in H1^) and a "singular" part in the form of a gradient,
which contains in particular all the jumps through the interfaces.

Theorem 3.4. Any field v G Xr(fi,/x) admits a décomposition

v = ip + g rad$ , (3*1)

where ip G HT(n, 1) and * G HX{Ü) sahsfies -Aj^eu$ = ƒ + £jr i n t #F <g> 5F w*A ƒ G £2(tt), s G
o

Stmilarly any v G XN(Q,6) admits a décomposition (3.1) where ip G .Hjv(fi, 1) and 3> G i ï^ î î ) satisfies
—Afir<I> = ƒ + S^ i n t 5 F 0 <JF- ^ both cases there holds

Proof. We first note that with the help of a partition of unity, we can reduce to the case when ft is simply
connected.

Let v G XT(Q,fi). Since its curl is a L2 divergence-free field we can apply Lemma (3.1) to u = curlv and
find ip G HT{£1, 1) such that curl^ = curl v. Then v — ip is a curl-free field. As Q is simply connected, this is
a gradient: there exists $ G i?1(Q) such that v — ip = grad<3>. Obviously $ satisfies

\i grad $ grad * = / fj,(v - -0) grad * dx,

which enters the framework of Notation (3.3) with ƒ = — div^v + div/r0, where the operator div is the
divergence in Ö3ft3 (and not in £ï), and for all F G ̂ i n t ) g F = — M F ^ * n*

Now, if v G -X"iv(fi) e), w e n o t e t n a t c u r ^ v satisfies also curl v • n = 0 on 9O. Thus we can apply Lemma (3.2)
to obtain ip G fljv(fî, 1) such that curl't/? = curlv. Then, as above, there exists<3> G H1 (ft) such that v — ip =

o

grad$. Since (v ~ tp) x n = 0 on 9£7, $ belongs to üT1(fi) and the proof ends as above. D

Our second décomposition resuit is more in the spirit of the splittings given in [3,4,12] and [5]. It consists
in obtaining a "regular" part in HT{$1,II) or JET^(n,e) instead of Hx(Çl, 1) or jEfiv(fî, 1). For the assumptions
and the proof of this statement we use some facts and terminology about the behavior of the operators A^eu

and Afir with respect to the corners and edges of Q, and of its subdomains Çl3 which we describe in the next
section.

Theorem 3.5.
(i) Let us assume that the operator A^eu has no edge exponent equal to 1 and no corner exponent equal to

1/2. Then any field v G Xr(fî,/z) admits a décomposition

v = tü + grad$ 0 , (3.3)

where w G HT(^fi) and $0 e H1^) satisfies - A ^ e u $ 0 e L2{Q).

(ii) Let us assume that the operator Afir has no edge exponent equal to 1 and no corner exponent equal to
o

1/2. Then any field v G -Xj\r(fi,e) admits a décomposition (3.3) where w G HN(Q,Je) and 3>o G Hl(Çt)
sahsfies -A? i r$o e L2(ü).
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Proof. (i) We start from the first décomposition (3.1) and split <3> into two parts, each belonging to H1 (Cl) (see
Th. 4.1):

$ = $<, + $!, with A^eu$0eL2(ti) and $i e PH2(Ü, &).

We then set w = ip + grad$i which belongs to Pf l^f i ,^) . Since A^eu$0 e L2(^), grad$0 belongs to
*). Thus w also belongs to Xr(îî, M), therefore to HT(CI^). The proof for (ii) is similar. •

4. LAPLACE INTERFACE SINGULARITIES

As a synthesis of the thorough treatment of bidimensional interface problems in [18] and of tridimensional
monodomain boundary value problems in [9], we briefly present in this section the regularity and splitting
results for the Laplace interface operators A^ir and A^eu.

The notion of corner and edge is clear for a polyhedron in R3. Concerning Cl with its polyhedral partition ^ ,
we call corner of (îî, g?) any point c which is a corner of (at least) one of the Clj and edge any segment e which
is an edge of one of the Clj and either disjoint from the other Clj~ or contained in one of their edges.

Let us give an illustrative example: Cli and fi 2 are the unit cubes (0, l)3 and (—1,0) x (0, l)2, and fis is the
parallelepiped (—1, l)2 x (—1, 0). Finally Cl is the interior of fii U Cl2 U fis- The corners are the corners of Cl
and the points cx = (0,0,0), c2 = (0,1,0), c3 = (0,1,1), c4 = (0,0,1), c5 = (1,1,0) and c6 = (-1,1,0). With
the two other corners c7 = (1,0,0) and c§ = (—1,0,0), the interface edges are [ci, c2] (triple), [c2: C3], [c3, C4],
[c4, ci], [ci,c7], [c7îc5], [c5,c2], [ci,c8], [C8,c6)y [c6, c2] (double).

Note that it is possible to have corners and edges contained in the interior of £1 This would happen if we
add to the example above the fourth domain ÇI4 = (—1,1) x (—1,0) x (0,1). Then Q is the cube (—1, l)3, ci is
an interior corner and is the end of interior edges.

The gênerai principle governing the properties of the operators A^ir and A]Jeu relies on the knowledge of
the exponents À attached to each corner and edge of (Cl, 0P\ which are the (here real) numbers such that there
exist non-polynomial pseudo-homogeneous solutions of degree À to model problems on the cônes or sectors F
associated with the corresponding corner or edge.

4.1. Corner exponents

If c is one fixed corner of (Cl, £P)7 we shall use polar coordinates (p, i9) centered at c and dénote by Fc

the polyhedral cône which coïncides with Cl near c. To each Clj containing c there corresponds a unique cône
r c , j C F c and we dénote by #"int,c the set of interior (to Fc) faces of <9FCJ.

We then dénote by Gc the intersection of Fc with the unit sphère. For any À G C, let us set

Q

which is the space of pseudo-homogeneous functions whose angular regularity is compatible with the H1 reg-
ularity of variational solutions. Fitting to the operator A^?ir, we consider the subspace 5Q (Fc) of 5A(FC) of
the functions which are zero on <9FC. When À G M, we need two further families of polynomial spaces (which
are reduced to {0} if À 0 N) corresponding to solutions and right hand sides respectively. Let P^(rc , &) be
the subspace of S$ (Fc) of the functions which are polynomial in each TCjj and let QA(FC, <P) be the space of
the couples (ƒ, g) with ƒ homogeneous polynomial of degree À — 2 in each FCJ and g = {9F)FE^ with gp
homogeneous polynomial of degree À — 1 in the interface F.

The set A^ir(Fc) of the corner exponents of the Dirichlet operator A^ir is then the set of the À 6 C such
that there exist solutions * G S£(FC) \ P£(TC, 8>) to

9F^ôF, with ( / î 5 ) G Q A ( r c , n (4.2)
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[cf. Notation (3.3)]. We dénote the space of these solutions by Z£ i r(rCïe). T n e s e t s AJ!eu(rc) and Z^eu(Fc,^)
are defined similarly. Note that if c is an interior corner, the spaces SQ(TC) and SX(TC) coincide and there is
no influence of the external boundary conditions.

Since there holds

- 0 <=> divT£gradT^ + A(A + 1)ej> = 0 (4.3)

with grad and divT the tangential gradient and divergence on Gc, the set of corner exponents in c is related
to the spectrum of the positive Dirichlet Laplace-Beltrami operator L^c

r associated with the quadratic form

{ip, (p) i—> (grad T ^,grad T ^) e

on the space L2(Gc,e) with scalar product

W>,</>)|—>{ip,tp)e= / eifxpda.
JGC

The operator L^x
c
r is self-adjoint on L2{Gc^e) with a compact inverse. Let v\ < v2 < • • * be its eigenvalues and

ïj)j be the corresponding eigenfunctions. Then one can show that

{ ^ } (4.4)

and, if A £ N

Zèir(rC)5) =span{PV,W I A = - I ± y ^ T i } • (4.5)

The situation is similar for A^eu(Fc) and Z^e u(rc ,^).
Relying on (4.3), we can prove that for any corner c, 0 0 A^ i r(rc) and 0 £ A^eu(rc).

4.2. Edge exponents

Fix one edge e of Q and dénote by Te the two-dimensional plane sector such that Fe x R coincides with
Cl in a neighbourhood of an interior point of e. The polar coordinates in F€ are denoted (r, 0), the Cartesian
coordinates in the plane of Fe are denoted t/, and z is the perpendicular coordinate. To each £l3 containing e
there corresponds a unique sector F e j C Fe and we dénote by J^int,e the set of interior faces of dTe}J.

Like above, we can introducé the spaces 5A(Fe), SQ (Fe) and P^(rc , &) of homogeneous functions of degree
A in the sector Fe and the corresponding space for the right-hand sides Q^(Fe, &). Then the set A^ir(Fe) of
the edge exponents of the Dirichlet transmission operator is defined exactly like above as the set of the A G C
such that there exist solutions ^ G S$(Te) \ P0

A(F€ï 2?) to

with (ƒ,<?) G QA (FÊ Î«n (4.6)

where A^ir acting in the sector Fe is simply the operator obtained from the corresponding three-dimensional
operator by dropping the variable z. Thus the edge exponents are the same as the singularity exponents for
two-dimensional interface problems; see [10,15,16,19].

The intersection between Fe and the unit circle being denoted G€, with (z^)j>i the spectrum of the positive
Laplace-Beltrami operator L®£ associated with the quadratic form (I/J, <p) i-> (d$ip: de<p)e

 o n the space L2(Ge,e),
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we have:

A£
Dir(re) = { ± y/u;, 3 > 1} • (4.7)

Indeed, when À ̂  N, this can be proved like (4.4) from the équivalence

A? 1T(rxijj(O)) = 0 <=> ddsdeil; + \2e<iP = 0 (4.8)

and when À G N, this also relies on the equality for the dimensions of the polynomial spaces

dimF0
A(re) &) = dimQA(re , &) = XJe - Je, (4.9)

where Je is the number of the sectors Fe 3 and Ie = 0 îf e is an internai edge and Je = 1 if not; see Corollary 4.9
in [9].

4.3. Regularity and singularities

We first give a global statement, then provide a description of the singular solutions, which requires the
introduction of further notations.

Theorem 4.1. Let s > 0, s ^ 1/2, ƒ G PH*"1^, S?) and g G PHs-l/2(&mt). Let * 6e «fte solution of the
problem

(i) If f or any corner c and any edge e

A?ir(rc) n (-1/2, s - 1/2] = 0 and A?ir(re) n (0, s] - 0,

then $ belongs to PHS+1(Q,, fP).

(ii) If f or any corner c and any edge e

k^{Tc)$s-\ and A? i r ( r e )^S ,

then $ admits a sphtting $o + 3>i mto a regular part $1 G Piï s+1(fi, £P) and a singular part $o E ifx(ü)
generaled by the spaces Z^1X(TC, e) and Z^ÏT(Te,e) for A m A f i r ( r c ) n ( - l / 2 , s - 1/2) and A^ i r(re)n(O,s)
respectzvely. In particular, %f s < 1, A]?ir$o = /o ^ ^ /o G F i P " 1 ^ , ̂ ) .

For c in the set ̂  of corners of (O, ̂ ) and A G A^ i r(rc), let ̂ v be a basis of Z^ir(Tc,e) and dénote by
the function defined as

with a smooth cut-off function Xc equal to 1 in a neighborhood of 0 and (pc, #c) the polar coordmates associated
with c.

Similarly, for e in the set S of edges of (fi, ̂ ) and A G A^ i r(re), let ̂ p be a basis of Z^ir(Te,e) and dénote
by 3>gîp the function defined as

$ïP(x)=Xe(Pe)yX'P(Pe,#e), With pe = ^ (4.11)
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where \e is a smooth cut-off fonction equal to 1 in a neighborhood of 0, de a smooth function on the closed
edge ë, which is equivalent to the distance to the endpoints of e and (re,6e,ze) the cylindrical coordinates
associated with e.

In order to give a précise statement, we still need weighted Sobolev spaces for the edge singularity coefficients
and a smoothing operator, exactly as in [8]: let for m G N and ï j G l , V™(e) be defined as

= {7 € L2(e) ! (d.)"+fc0*.7 G L2(e), k = 0,1, . . . ,m}

and by interpolation for non-integer ra. The smoothing operator JT[ • ] acts like a lifting of functions on e into
fi: in order to define it, we introducé the stretched variable

Jo de((z)

where z = 0 corresponds to an interior point of e. The change of variable ze \-^ ze is one to one e —> M and
for any function 7 defined on e, we set j(ze) = 7(ze). Then J^[j](pey 6e, ze) is the convolution operator with
respect to ze:

Jfr[y\(pe,Oe,ze)= f — <p( — ) j(t-ze)dt with pe = J - ,
JE Pe ^PeJ "e

where <p is a smooth function in ̂ (R) such that JRip = 1.

Proposition 4.2. Let the assumpttons of (ii) zn Theorem 4-1 be satisfied. We assume rnoreover that for any
edge e, the set A^ i r(re) n [0, s] is contained m an interval of length < 1 (this is a technical assumption to avoid
the "shadows" of the mam singularities ^^v). Then the smgular part $0 has the expansion

> > 7 'p * )P + > > > Jtfh*jP] $*iP (4.12)
ce^f Ae[-i/2,s-i/2] p ee<? \e[o,s] p

with the coefficients -y*>p m E and j ^ p m Vi~A(e). The sums extend over A m [-1/2, 5 - 1/2] O A^ir(Fc) and
[0, s] H A^ l r(Fe)? respectively.

5. MAXWELL INTERFACE CORNER SINGULARITIES

For shortness, we hère describe the corner singularities of problem (1.5) (the singularities of problem (1.6)
are obtained similarly by exchanging Dir, e and Neu, ji respectively). We further assume that £1 is simply
connected.

We fix a corner c of (Q, 0?) and drop the index c in the notations. At this stage, we look for solutions of the
homogeneous Maxwell interface Systems in the spaces of pseudo-homogeneous functions

Q

G X^c(F*,e) | div(eu) G Hioc(T*)7 u(x) — px S^logqp uq(x

where u G Xjyc(F*, e) means that u G Xj$c(T nV,e), for all bounded open sets V such that c 0 V: this space
requires exactly the angular regularity corresponding to the effective regularity of the variational solution (in
particular, for the condition div(eu) G fJ^^F*), we rely on Th. 1.1). In other words, we have to fmd the
non-polynomial solutions of the System

" 1 curl u) — e grad div(eu) = ƒ in F,
div(eu) = 0 on ôr , (5.1)
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when ƒ is a homogeneous polynomial of degree À — 2 (thus it is zero i f À ^ { 2 , 3 , . . . } ) . The corresponding À
are the Maxwell (Dirichlet) corner exponents.

Like in [8], this problem is split into three subproblems by introducing the auxiliary unknowns

ip — fj,-1 curl u and q = div(eti).

Using also the space &£(r,/z) deflned like S^ÇT^e) and the space SQ(F) introduced in Section 4.1, we then see
that for A ̂  {2, 3 , . . . } , problem (5.1) is equivalent to finding non-polynomial solutions to the System

~A^irq = 0 in F with q € S^ÇT). (5.2a)

curl^ — e gradç and div(/j,ip) = 0 in F with ip e S?'1 (T7 fi). (5.2b)

curlw = fiip and div(ew) = q in F with u e S ^ ( r , e ) . (5.2c)

Thus, the solutions of the System (5.2) belong to one of the three types:

Type 1. q = 0, ip = 0 and u gênerai non-zero solution of (5.2c).
Type 2. q = 0, if) gênerai non-zero solution of (5.2b) and u particular solution of (5.2c).
Type 3. q gênerai non-zero solution of (5.2a), ip particular solution of (5.2b) and u particular solution of (5.2c).

These three types of Maxwell singularities are now described with the help of the corner singularities of A^ir

and A^eu. The singularities of type 1 are treated exactly as in Lemma 7.4 of [8].

Lemma 5.1- We assume that X / — 1. Then (i) is equivalent to (ii):

(i) u € Sjy(r,£) is a solution of (5.2) of type 1,

(ii) A + 1 belongs to A?ir(F) and u = grad$ where § belongs to Z^f^T^e).

For singularities of types 2 and 3, the jumps of the product e/x through the interfaces require a special
attention.

Lemma 5.2. We assume that X is not an integer. Then (i) is equivalent to (ii):

(i) u e Sjv(F, e) is a solution of (5.2) of type 2,

(ii) A belongs to A^eu(F) and curltt = /^gracia where ̂  belongs to Z^e u(r,^). In that case} a représentative
of type 2 is given by

u = — — [jjb (grad * x x) + grad rNJ, (5.3)

where rjy e 5A+1(F) is a solution of

Proof. We simply need to investigate the non-zero solutions (xp1 u) of (5.2) of type 2. First a non-zero \I/ in
Z^eu(F,/i) yields a non-zero requested tp — grad1^ (because A =̂  0). It then remains to flnd u € S^(T,E) such
that

curl u — flip and d\v{eu) — 0 in F.
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We are then looking for u of the form (5.3). In that case, we have

(À + 1) curl u = curl(/xgrad \I> x x)

= x • grad(jLtt/>) - fiij) - grad x + /x^ divxc —

due to the identity (7.5b) of [8]. This yields
c u r l u = fjbipj

because ip is homogeneous, div(/x?/0 = 0 and one can show that

x

in the distributional sense.
On the other hand, the conditions div(eu) = 0 and u x n = 0 on dT will hold if (5.4) holds since

divf£/i(grad\I> x x) J

where

5ir = [e/x(grad* x x) • n ] F = -[£/i(grad* x n) • x]F = - [ ^ 1 ^ ( (g rad* x n) • ac
F

since grad1^ x n has no jump across the interfaces. By Theorem 4.14 of [18], problem (5.4) has a solution
rjv 6 S'A+1(r) (in view of that theorem, one sees that r^ is homogeneous if À + 1 ^ A^ir(F) and has the form
rN = r0 + rx logp, with homogeneous r0 and v\ if not).

This guarantees the existence of u. D

Similarly, we can show:

Lemma 5.3. We assume that À is not integer. Then (i) is equivalent to (ii):

(i) u £ Spf(r,e) is a solution of (5.2) of type 3,

(ii) A — 1 belongs to A^ir(F) and div(£tz) = q where q belongs to Z^1^^)'

To each q £ Z^iT
1(Tie); a représentative of type 3 is given by

ip = — ( e (grad q x x) + grad rr 1,

where TT G SX(T) is a solution of

where TN £ SA+1(F) is a solution of

x œ) + grad rNj
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TABLE 1

Type

1

2

3

A

À + l G A? i r ( r )

A e Aj?eu(r)

A - i EA£
Dir(r)

>

- i

0

i

Generator

$€Zè+x(r,£)

*6^eu(r,/x)

U

grad$

cf. Lem. 5.2

cf. Lem, 5.3

0

grad\£

c/. Lem. 5.3

q

0

0

q

It remains to investigate the singularities of type 1 for A — — 1 and of type 2 for A = 0.

L e m m a 5.4.
(i) There is no smgularity o f type 1 for A = — 1.

(ii) There is no smgularity of type 2 for A = 0.

Proof. Since F is simply connected, the flrst assertion is proved exactly as in Lemma 7.8 of [8]: we obtain that
1 1[resp. and satisfies cur l i t = 0 and div(£tt) = 0 [resp. = 0], thenif u belongs to S^1(

u = 0.
For the second one, we simply remark that if u is a singularity of type 2 in S^(Fye), then

if) = - = 1 cur l u e 5 ^ 1 (F, ji)

is a solution of type 1 for magnetic boundary conditions. Therefore the first assertion yields ip — 0 and the
conclusion follows. D

R e m a r k 5.5. The case F not simply connected can be treated as in [8] and would yield topological singular
exponent s. This case was avoided for brevity and is left to the reader. For other problems wit h multiply-
connected domains, see also [1,11].

Among the singular exponents obtained before, we select the subset A^v(F) of A satisfying A > —3/2 such
that there exists a non-zero u G SJ^(T,e) solution of (5.1) and satisfying (cf. Th. 1.1)

Xu € XN(T,e), div(x£«) e H\T),

wit h a eut-off function x which is equal to 1 in a neighborhood of the corner c. We examine the effect of this
condition on the three types of singularities.

Type 1. A + l belongs to A^ i r(F). Since A ^ i r ( F ) n [ - l , 0] is empty, with Lemma 5.4 we get the condition A > - 1 .
Type 2. A 6 A^eu(F). Since cur l (x^) = x c u r l ^ + g r a d x x u ^-as t o ^ e m ^ 2 ( r ) 3 ) we have the condition

A > - 1 / 2 . With Lemma 5.4, this yields A > 0, because the set A^6U(F) n [-1, 0] is empty.
Type 3. Hère A - 1 belongs to A^ l r(F). Thus condition div(xe^) in H1 (F) implies that xq belongs to H1 (F),

thus A — 1 > —1/2, whence A — 1 > 0, or equivalently A > 1.

We summarize the above results in Table 1.
Going back to the primitive Maxwell équation (1.1), we see that for a regular current density J , div(eE)

and div(juiï) are regular too, thus only the singularities of types 1 and 2 can occur and they exchange each
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TABLE 2

643

Type

Elec.

Magn.

Generator

A? i r

^ N e u

E

—

K (}i grad\£ x ce -[-gradin)

ff

—/^(egrad^xa? 4

grad1^

gradrT)

other between the electric and magnetic fields (hère A dénotes the degree of homogeneity of the generator and
is either the degree of E or H and K = J^Ï)'-

Table 2 gives the principal parts of the singularities, indeed from (1.5) and (1.6) we see that the operators
are not homogeneous and therefore the singularities have an asymptotic expansion [9,13].

6. MAXWELL INTERFACE EDGE SINGULARITIES

In this section, our aim is to describe shortly the edge singularities of problem (1.5). Fix one edge e of
(fl, iF), see Section 4.2 for the associated définitions (we drop here the index e). Let A e C. According to the
gênerai rule [9], we search for (non-polynomial) solutions u 6 S^(T x R, e) independent of z of the system

curl^"1 curl u) — e grad div(eii) = ƒ in FxM,

with ƒ independent of z and polynomial in the y variable. The corresponding A are the Maxwell (Dirichlet)
edge exponents. Let now (v,w) be the décomposition of the field u in the system of Cartesian coordinates
(y,z). Then this system is split into 2 two-dimensional independent problems in the sector F:

curl(/z x curlv) — £graddiv(£v) = ƒ in F, ƒ polynomial,
v x n = 0 and div(ev) = 0 on ÖF, (6.1)

and

— div(/x 1gradit;) = / in F, ƒ polynomial,
tu = 0 on ÔF,
w e 5A(F).

(6.2)

The problem (6.1) is simply the problem attached to two-dimensional Maxwell équations in a polygonal domain,
and (6.2) is the transmission Dirichlet problem whose set ADiri (F) of singularities is well known.

For the two-dimensional "Maxwell-type" problem (6.1), as in 3D, we introducé two auxiliary (scalar) variables

ip — ji"1 curl v and q = div(£v). (6.3)

Then for A ̂  M, we get the equivalent system

-A^lTq = divf in F with q G S^p). (6.4a)
curl?/? = e gradç in F with ip € 5A~1(F). (6.4b)

= /i'0ï div(ev)=q in F with u e 5^(F,e). (6.4c)
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If À is not a positive integer, as in the previous section, this System (6.4) is reduced to a homogeneous one and
the solutions split into singularities of types 1, 2 and 3. As in [8], the singularities of type 2 do not exist [they
appear in fact as singularities of the problem (6.2)], while the singularities of types 1 and 3 are obtained like in
Section 5 in relation with the edge exponents of Afir.

If À is a positive integer, as in Section 4.2, we can check that the spaces of homogeneous polynomials associated
with the right hand sides and with the solutions have the same dimension. Thus the Maxwell edge exponents
are the A G C such that the System (6.4) has non-trivial solutions.

In view of (4.7), we can state:

Lemma 6.1. The set of the edge exponents associated with the edge e is

JA 6 R | A - 1 or A + 1 belongs to A^ i r(r)j U A^i ( r ) .

/ƒ A ̂ N* ; the correspondmg smgular functtons u ~ (v,w) are as follows:
(i) If A + 1 E A^ i r(r), then w — 0 and v is a Maxwell smgularity of type 1, given by

v = grad(VA+V(<9))>

when (p is an eigenvector of L^ associated with the eigenvalue (A + l)2 .
(ii) If A e A^Ir

x(r); then v = 0 and w is a smgularity associated with Aĵ LV-

w = rX(f(0),

when <p is an eigenvector of LPlIx e associated with the eigenvalue A2.
(iii) /ƒ A — 1 G Ap i r(r) ; then w = 0 and v is a Maxwell smgularity of type 3.

The singularities in point (ii) of the lemma are, in fact, closely related to the type 2 corner singularities. This
is seen frorn the follov/ing result.

Lemma 6.2. We have the identity between the sets of Laplace edge exponents

and more precisely we have the équivalence between the smgular funcüons

Proof. The proof uses the fact that in dimension 2 the passage to the conjugate harmonie functions interchanges
tangential and normal derivatives. This implies that a singular function \£ belongs to Z^eu(T, /i) if and only
if fj,ty E ^èirO^M"1)) where on each sector T3, ^ is the harmonie conjugate of \1>. Since for our homogeneous
functions, \& can be expressed by the angular dérivâtive, we can make this idea more précise as follows: let

= 0 in I\ This means that

defideip + A 2 ^ = 0, thus yT1 de^ide^) + A2^ = 0.

Setting (p = fjLd$i/), the interface conditions [ijj] — 0 and [jidoip] ~ 0 imply therefore that [</?] = 0 and [fi~1d$(p] — 0.
Whence the lemma. •

As before, we have to consider the subset of the edge exponents A satisfying A > — 1 such that there exists
a non-zero u G S^(T x M,e) independent of the variable z, solution of the homogeneous System (6.1-6.2) and
satisfying

curl(xu) e L2(r)3, divy(xeu) e H\V),
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with x a cut-off function which is equal to 1 in a neTghborhood of the corner of F. The effect of this condition
on each of the singularities (i), (ii) and (iii) in Lemma 6.1 is easily checked and can be summarized as follows:

(i) In this case Ai = À — 1, with A G A^ir(r) and the condition is Ai > —1.
(ii) In this case A2 E ADiri(r), thus A2 has to be positive,

(iii) In this case A3 = X + 1, with Â G A° i r(r), then the condition is A3 > 1.

7. CONCLUSIONS

7.1. Regularity

Taking advantage of the information about corner and edge exponents and singularities collected in Sections 4
to 6 and using Theorem 4.1 of [8] (which also hold in our setting with the natural adaptations due to the
interfaces), we are now able to give regularity results.

As always, the regularity dépends on the smallest corner and edge exponents. So, for any edge e in the set
ê of the edges of (fl, ̂ ) , we introducé the smallest exponent attached to A]?ir

Â g1 = \fü, with v the first eigenvalue of L®1*

and the smallest exponent attached to A^eu

A^e
e
u — y/v, with v the first non-zero eigenvalue of Ü^*

We have the following lower estimâtes for A ê
r (and similar ones for A^e

e
u). Proofs are given in Section 8.

(i) With pe the quotient of the minimum of e by its maximum in the neighborhood of e, a lower estimate of
the Rayleigh quotient of l£™ yields

\ Dn > n \ Dir (j 1 \

(ii) If e is an external edge:
• For two subdomains in a convex angle Â L

e
r > 1/2.

• For two subdomains in a non-convex angle A ê
r > 1/4, [19].

• For three subdomains (even in a convex angle) A^e
r > 0, [14].

(iii) If e is an internai edge:
• For two subdomains A Ĵ" > 1/2.
• For three subdomains Aj?̂1" > 1/4.
• For four subdomains Ap1^ > 0.

The estimâtes in (ii) and (iii) are generically optimal in the sense that there exist choices of F and e so that
A ĝr is arbitrarily close to the lower bound.

Similarly, for any corner c in the set ̂  of the corners of (fi, ̂ ) , we introducé the smallest exponent attached
to A° i r (see Sect. 4.1)

A^r

and the smallest exponent attached to Aj^eu

In gênerai Â 1^ is the minimum of 2 and of —1/2 + yjv + 1/4, with v the first eigenvalue of L^c
r, and similarly

for A^e
c
u. In any case, Aj?x

c
r and A^e

c
u are > 0 and satisfy a lower estimate like (7.1) by the exponents associated

with one material in the same corner.
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Let now set

a£
Dir = min f min A?1/ , min À?jf + l) and a^BU = min f min A^e

e
u , min A^e

c
u + i Y

In fact, the regularity resuit (i) of Theorem 4.1 holds with any 5 < a;?ir for the operator A^ir and with any
s < cr^eu for the operator A*eu.

Theorem 7.1. Let s > 1 and ƒ G PHs~l(Q} &). Let u G XN(Q,e) be the solution of problem (1.5). For any
TE (0,s + 1] such that

T < min{a?ir , afu + 1},
n belongs to PHT(Ü, &>).

Examples.
(i) If O contains only two subdomains, then u G PHT(Q1 S?) for all r < 1/4.

(ii) If Q is convex and has two subdomains, then u € PHr(Qi &) for ail r < 1/2.
(iii) If O is a parallelepiped divided into two subdomains separated by a plane parallel to two faces, then

u G PHT(n, &>) for all r < 2.
But note that, as soon as three subdomains have an exterior common edge, or four subdomains have an interior
common edge, the regularity of u can be arbitrarily low (near L2). Such a situation occurs when the ratio p
is very small. e

7.2. Singularities

In this whole subsection s > 1, the data ƒ belongs to Piî s^1(O, &) and u is the solution of problem (1.5).

A. We assume that s is such that there is no Maxwell Dirichlet corner exponent equal to 5 —1/2 and no Maxwell
Dirichlet edge exponent equal to 5. Then u can be split in v$ 4- ?/i where u± belongs to PJJS+1(O, !P) and UQ
is the sum of contributions of the corners and the edges. If we assume moreover like in Proposition (4,2), that
for any edge e, the set of the edge exponents G [—1, s] is contained in an interval of length < 1, the function UQ
has a structure like #0 m (4.12)

*> - E E E ^ ' p ^ p + E H E ^ A ' p ] ^ p (7-2)

with Uç'p and u^p defined like (4.10) and (4.11) from bases U^p and U^p of non-polynomial solutions of
problems (5.1) and (6.1-6.2), If U^p has no logarithmic term, then the coefficient belongs to VL^A(e). For
non-integer À, the functions U^p and U^iP are described in Lemmas 5.1-6.1.

B. Let us fix a G [0, 5] such that for any edge e, the set of the edge exponents belonging to [—1, a] is contained
in an interval of length < 1. Then for suitable coefficients j ^ p G R and j ^ p G ¥î~A(e) the différence

E E E^'PUC'P + E E E ^beA'P] uîA (7.3)
J

belongs to
If we take a — 0, or more generally

u < min(afr , a^eu) (7.4)
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then the corner and edge singularities of types 2 and 3 disappear, therefore it only gradients remain in the
singular part, which can be written as (cf. Sect. 4.3)

E E 5>c'PXc(Pc

with grade the gradient in the variable ye = ye/de.

Remark 7.2. In the splitting (7.5), the singular generators can also be expressed as curls since for a homoge-
neous fonction \& of degree À satisfying A^11^ = 0, we have:

e(X + 1) grad \£ = curl(e grad \£ x x)

and

gradef Pe<p(9e) 1 = curle

when ip = —\<pf (recalling that (p satisfies (eipf)f — ~X2£(p), with curle the two-dimensional vectorial curl in
the ye plane, completed by a zero tangential component along the edge.

As in [8], we can write the singular part (7.5) as a gradient in a global way, because Lemmas 8.2 and 8.4
of [8] are (mainly) independent of the operator in considération. Consequently, in connection with the splitting
(4.12), we have

Theorem 7.3. Assume that s > 1, the data f belongs to PHs~1(£l, 2?) and u is the solution of problem (1.5),

Let a <s + l so that (74) holds. Then there exists $ G H1 (ft) satisfying - A f i r $ G PHa(fl, 3?) such that

u - g r a d $ G PHa+x(Q,@>).

When a — 0, the above statement reduces to Theorem 3.5 (ii).

8. APPENDIX

In this section, we prove some lower estimâtes for the exponent s of singularity for transmission problems for
the Laplacian in dimension two. We have to consider the following situation:

T is described in polar coordinates (r, 9) by 0 < 9 < cv (0 < ÜJ < 2TT) or by 0 < 9 < 2?r (cv = 2?r). The interval
[0,o;] is divided in J subintervals by 0 = CVQ < u\ < . . . < LÜJ = tv, The fonction e is positive and constant on
each subinterval: e = e3 for 9 G (ÜÜ3-\,LÜ3).

The fonction u is homogeneous in F and satisfies

Thus u(ry 9) = rxv(9) with À > 0 and v is a linear combination of sin X9 and cos X9 in each (c^-i, LÜJ) satisfying
the boundary conditions

v(0) = v(tv) = 0 [ or vf(0) = v'(iv) = 0 ],

and the transmission conditions
[v] = 0 and [ev'] = 0 a t 9 = UJ3.
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Under these conditions, we have the following resuit:

Theorem 8.1.
(i) (Externat edge)

If uj < 2TT and J = 2, then A > TT/2UJ.

(ii) (Internai edge)
Ifùu = 27T and J = 2, then A > 1/2;
IfùJ = 2w and J = 3, £/ien A > 1/4.

(iii) /ƒ u < 2TT and J > 3 or if u = 2TT and J > 4, t/ien /or any AQ > 0 i/iere e£tó £i , . . . ,ej and! a function
Uy^O with 0 < A < Ao.

Proof. (i) Consider first the case of Dirichlet conditions; the function v is continuous on [0, CJ], piecewise analytic,
vanishes at 0 and a;, and its derivative satisfies E\Vf{u>ï) = €2Vf{u)^~). One can assume that v has a positive
maximum in UJ* G (0,O;)- It follows that vf(oj*) = 0, even if u;* = u>i, because v' does not change its sign there.
In one of the two sectors (Q.u;*) (if CJ* < OJI) or (o;*,a;) (if a;* > wi), the function u therefore satisfies a mixed
Dirichlet-Neumann problem without interface, for which one knows the lowest singularity exponent 7r/2o;* or
TT/2(Ü;-Ü;*). Thus

T T T T T T 7 T 7 T 7T

~ 2a;* ~ 2^1 2w ° r ~ 2(a; - CJ*) ~ 2(UJ - u{) 2u

For exterior Neumann conditions, we have vf(0) = vf(uj) ~ 0. Since v is an eigenfunction of the Laplace-Beltrami
Neumann problem, it is orthogonal to constants:

Jo
v(9)e(6)d6 = 0.

o

As e is positive, v has at least one zero: ?J(O;*) = 0= Once again, on either (0,o;*) or (a?*, a;), we obtain a mixed
Dirichlet-Neumann problem and the estimât e

, v . f f 7V 1 7T
A > mm{ -— , -7 r > > —-

I2o;i 2w-wi J 2a;

(ii) If a; = 27T, we can again use that v is orthogonal to constant functions:
jQ

 w ve dd = 0. This time, we conclude that v has at least two distinct zéros
0 < UJ* < UJ** < 2TT; V(UJ*) = v(u>**) - 0. In the two sectors

T* = {(r,é>) | u;* < 6 < a;**} and r** = {{r,0) \ a;** < 9 < 2

our function u solves therefore the transmission problem with exterior Dirichlet conditions, and we are back to
case (i).

If J = 2, we can either argue that one of F* or F** is convex, or that one of the two sectors contains only
one material. Both arguments give the resuit A > 1/2.

If J = 3, then one of the two sectors contains at most two materials, thus from (i) follows A > 1/4.
(iii) For the case J = 4, we give the following explicit example: let

7T TT TT 3?r 3TT 5?T 3?T 7T
Gl = ("4' 4}' 2 = ( ï ' T } ' 3 = ( T ' T } ' °4 = (~T'""4}*

and
ei = es = h and e% = £4 = 1.
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Let v be defined as sinXO in Gi, rj cos A(^ — #) in G2, sinA(7r — #) in G3, —?7cosA(|- + 0) in G4. Then
ti(r, 0) = rxv(9) is a singular function for our transmission problem if and only if

77 = tan — and h — rj1.

We see that A -> 0 as h —> 0.
Since u satisfies Dirichlet conditions at 9 = 0 and ö = TT, the same example solves a 3-material problem with

exterior Dirichlet conditions.
This example can be easily adapted to more gênerai geometries. •

Remark 8.2. In the example of the proof of (iii), we have a three-material Dirichlet problem with a smooth
exterior boundary. If we assume homogeneous magnetic properties, we have no type 1 edge singularity for the
magnetic field there. The type 2 edge singularity has only regularity H1+ö for S < A0-
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