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MATHEMATICAL AND NUMERICAL STUDIES OF NON LINEAR
FERROMAGNETIC MATERIALS

PATRICK JOLY1 AND OLIVIER VACUS2

Abstract. In this paper we are interested in the numerical modeling of absorbing ferromagnetic
materials obeying the non-linear Landau-Lifchitz-Gilbert law wit h respect to the propagation and
scattering of electromagnetic waves. In this work we consider the 1D problem. We first show that the
corresponding Cauchy problem has a unique global solution. We then dérive a numerical scheme based
on an appropriât e modification of Yee's scheme, that we show to preserve some important properties of
the continuous model such as the conservation of the norm of the magnetization and the decay of the
electromagnetic energy. Stability is proved under a suitable CFL condition. Some numerical results
for the 1D model are presented.
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1. I N T R O D U C T I O N

1.1. Exposit ion of t h e physical problem

Without entering into the details of the theory of ferromagnetism (see for this [2,3] or [4]), we briefly describe
the physics of our problem.

1.1.1. The ferromagnetic zone

By a "ferromagnetic material" we mean a material that possesses a spontaneous magnetization M. (Through-
out bold letters will be used for vectors.) Ferromagnetic materials such as ferrites or garnets are widely used
in the microwave industry as shifters or circulât ors for instance. In this paper we study in particular the prop-
agation of electromagnetic waves inside such ferromagnetic materials; they are said to be absorbing materials,
we will see what sensé we can give to this assertion.

A ferromagnetic zone is a région in which M ̂  0, and we dénote by O such a région. This zone will be
examined in this paper on a scale large enough to permit the use of a continuous magnetization vector M (x)
at any time; so we do not consider a priori any domain or wall concept [1]. The magnetization M is assumed
to satisfy the Landau-Lifchitz-Gilbert équation (LLG):
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where x and (, ) dénote the usual vector and scalar products respectively in E, | • | is the usual Euclidean norm,
7 is the gyromagnetic factor (7 < 0) and a in the last term is called the damping constant, damping in a sensé
we shall explain later (a > 0).

It is straightforward to show - at least formally - from the (LLG) équation the conservation in time of the
norm of the magnetization at any point:

Consequently, the LLG équation can be simplified to

^ = | 7 |Hr (H,M) x M + ^ M x ^ where M0(x) = M(x,t = 0). (2)

1.1.2. The total magnetic field H r ( H , M )

The total magnetic field Hy (H, M) is defined as a sum:

HT (H,M) = H + Heff(M), (3)

where H is the magnetic field appearing in Maxwell's équations

*« „ „ (4)

ot

the relation between K, B and ivï being

H = — - M o r B = MO(H + M). (5)
Po

In (4) and (5), we dénote by:

• B the magnetic induction,
• E the electric field,
• EQ and /zo, the electric permittivity and the magnetic permeability in a vacuüm.

In this paper we present the non conductive case but no new difficulty would arise if the conductivity a were
different from 0.

It is important to note that the (LLG) équation is a non-linear differential équation in time, whereas people
often study linear materials in the frequency domain where it is possible to define the magnetic susceptibility x
and to write that M = %H. In our case, the relation which links M and H is implicitly defined by the coupled
System (LLG) equation-Maxwell's équations.

The effective field Heff(M) is the result of several contributions. In the mode we are interested in, we retain
two of them:

Heff(M) = H s + HO(M) (6)

where H s is a static field and Ha(M) is a field of anisotropy, a field derived from an energy of anisotropy. In
Section 2.1 we define these fields in a ferromagnetic zone Cl.
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1.1.3. The mathematical model

As a model of insulating non-linear ferrites, we get the following Cauchy problem from (2, 4, 5):

dE _
e°~dt =

H = — - M
Mo

__
with

f
or, if we simplify the system by eliminating the magnetic induction B,

B(x,t = 0) = Bo(x)

E(x,t = 0) - Eo(x)

M(x,i = 0) = Mo(x)

dH dM

with <

H(x,t = O

E(x,t = o;

M(x,t = C

) = Ho(x)

) = E0(x)

)) = Mo(x)

(8)

1.2. Présentation of the paper

Two main mathematical issues naturally arise: 1. Is it possible to show the existence and uniqueness of a
solution to this non-linear problem? 2. How can we discretize the équations of this problem to get a numerical
modeling of ferromagnetic materials which respects the main properties of the continuous problem?

These are the two questions we int end to address in this paper. Concerning the first point, as f ar as we know,
the only paper where a partial answer is given is Visintin [5] where the existence of weak solutions to a problem
very similar to (7) is established. However Visintin includes in Heff(M) a new field, derived from an exchange
energy, and this new field ensures more regularity for M. His existence resuit and some secondary properties
are proved for the corresponding variational formulation by using a Galerkin method. But, he can not allow a
to be 0, and it is also stated in [5] that "the possible uniqueness of the solution is an open question".

Concerning the second point, the situation is even clearer: we have not found in the literature any satisfying
answer to the question of the discretization of the complete non-linear problem (7). All the works on the subject
mention at least one of the two following assumptions:

1. the damping is neglected and a is taken to be 0 [13-15];
2. the material is supposed to be saturated and either the internai field is a priori known, or a small signal

approximation is made, which leads to a linearization of the équations [10-14].

In the present paper, we establish more complete results concerning both aspects of the problem in the one
dimensional case - which is of course a limitation. However all that we do concerning the numerical analysis
can be generalized to more space dimensions [16].

We shall show by applying the theory of semi-groups the existence of a unique maximal local strong solution
to (7) and then we establish suitable a priori estimâtes to guarantee that this solution is indeed a maximal
global strong solution (the two cases a ~ 0 and a ^ 0 are treated separately). This theoretical result requiring
quite technical proofs, they must be seen as a complementary result to the theorem presented in [17], about
existence and uniqueness of weak solutions to (7). (In [17], solutions are sought in L2(R) n L°°(R) instead of in
Hl(R) as in the present paper.) In particular, in the case a / 0, uniqueness will be ensured by results of [17].
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In the discrete case. we propose an approach based on Yee's scheme [9] and an original way to solve numerically
the discrete (LLG) équation. We show that this method ensures the conservation of the norm of the magnetiza-
tion. We also establish the discrete equivalent of the a priori estimâtes of the continuous case which guarantees
in particular the stability of the scheme under a classical Courant-Priedrichs-Levy condition.

Our paper is organized as follows. In Section 25 we develop the machinery of semi-groups to study the
existence and the uniqueness of solutions to the problem (7), In Section 3, we give both time and space
discretizations of the équations and their main properties. In Section 4, a représentative collection of mimerical
experiments is presented.

2. MATHEMATICAL RESULTS

In this section we mainly work from the formulation (8) involving the three vector unknowns E? H and M.

2.1. About the effective field

In this paragraph we give the précise mathematical définition of the two local fields we consider in our work.

1. The static field H s is a vector field that is constant in time. For technical reason5 H s is chosen so that :

(9)

which does not constitute an actual restriction.
2. The field of anisotropy is derived as follows from the energy of anisotropy £a - we assume 8a G Cfl(

). For ail ôM G L2{Q), we have

î (10)

which ensures that Ha(M) € C° (L2(n)3;L2(Û)3). For simplicity in this paper we consider a special
case [1] where

Sa = Muf |-P(M)|2, (11)

where K is a positive constant depending on the material and P(M) the projection of M on the plane
perpendicular to the "easy axis" which is simply a privileged direction of the material» not depending on
time. Consequently

Ha(M) = -ÜTP(M). (12)

Remark 1. If we introducé p, a unit vector along the easy axis, we see that

Ha(M) = - K (M - (p • M) p) . (13)

This new form will be particularly useful in the numerical part because it leads to

H t t(M) x M = ü : ( p ' M ) p x M . (14)

It can be seen in (14) that H a(M) can be also taken equal to K (p • M) p.

As a conséquence of these définitions an important property of Heff(M) is that it is an affine continuous function
of M - that is to say: [Heff (M) — Hs] is linear in M,
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2.2. Preliminary results independent of the space dimension

The results that we give in this paragraph are obtained regardless of both the dimension of the problem
and the geometry of the ferromagnetic zone fi. We dénote by x = (z, y, z) the current point of M3.

2.2.1. A new form of the (LLG) équation

For later use in the mathematical analysis, it would be useful to express —^— as a function of M and H. We
at

shall use:
L e m m a 1 . Given any vector a , the function A : x 4 x + a x x i s a homeomorphism front IR3 to M3 and

A~\y) = y + ( a
i ^ a - a X y • (15)
x -f- |a |

Moreover, A~x is a contraction.

Proof. Continuity of A is clear. Let (x, y) G (M3)2 be such that A{x) = y. Taking the scalar product with a,
we get (a • x) = (a • y), and taking the vector product with a,

a x x + a x ( a x x ) = a x x — |a|2x 4- (a • x)a = a x y .

Then we can consider

r
x + a x x = y

- |a | 2x + a x x = a x y — (a • y)a

This System is linear in (x, a x x ) and can be solved for x which leads to (15). Finally, taking the scalar product
of A(x) = y with x gives |x|2 = x • y. Thus Vy, lA'^y)! < |y|. G

With a = -Tr-rrM, the (LLG) équation can be written A ( —— ) = | 7 | H T ( H , M ) X M. Applying Lemma 1
|M| \ dt J

leads to

~ët = ï T ^ r T ( H ' M ) x M + W\M x (HT(H'M) X M)J •
rvjL ir

This new form of the (LLG) équation shows that —— is a continuous function of H and M that we shall dénote
ut

byLg:

L§ (M, Hr(H, M)) = HT(H, M) x M + - | - M x (HT(H, M) x M) . (17)

Remark 2. Using this new form of the (LLG) équation and the Pythagorean theorem (given that H^ x M
and M x (H71 x M) are orthogonal vectors), it is easy to see that

ÖM
~dt

2 2
7 |HT x M | 2 . (18)

1-ha2

We shall also use, in the part devoted to the numerical method

( B \
M, — 1.

Mo/
Proof. The proof is straightforward. •
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2.2.2. A priori estimâtes

We assume in this paragraph that there exists a local solution (E, H, M) to problem (8) in C1 (0, T; L2(IR3)) fi
C° (0, T; i?1(lR3)) . We assume that the System (8) is satisfied in the classical sensé which means that the three
équations of (8) are equalities in C° (0,T; L2(R3)).

• Conservation of the norm of M
It is straightforward to show - at least formally in our case - from the (LLG) équation the conservation in

time of the norm of the magnetization at any point:

This computation is valid if we assume that for each x, the function t *-* M(x, t) is of class C1, which is not
necessary the case under our assumptions. Rigorously we can multiply the (LLG) équation in L2(M)3 by </?M,
with ip e V(R3), to get:

^ ( ^ ) = 0 (19)

that is to say

f ( |M(x, t ) | 2- |Mo(x) | 2)^(x)dx = 0. (20)

Thus

|M(x,£)|2 = |M0(x)|2 , a.e.xGM3. (21)

In particular |jM(£)j(£,2 = | |M 0 | !L 2 but more generally, if Mo belongs to LP(RS), with 1 < p < +oo, then M(t)
belongs to LP(E3) for any t and ||M(t)||Lp = | |M 0 | |LP.

• Decay in time of the electromagnetic energy
The second estimate that we can get in any case expresses the decay in time of the total electromagnetic

energy. Multiplying Maxwell's équations by H and E, we get

E - ( V x H ) - H - ( V x E ) = e o E ~ + W j H - ^ + / i o H ~ - (22)

We then intégrât e in space and, using Green's formula, we get

/ V.(ExH)dx = 0= ƒ feoE^+/ioH.^)dx + Mo / H • ̂ dx . (23)
jE3 JR3 \ at at J JR3 at

By adding Heff(M) to H, we obtain

[
[ y HEIli, + f I|H||2L2] - MO/R3 Heff(M) • ̂ d x = -M o /R 3 HT(H,M) • ̂ d x . (24)

Let us transform the left hand side of (24). First, concerning the field of anisotropy, we have

(-KP(M)) -^-I-A^ff \P(M)\2} • (25)
at &t L 2 jz j
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(In the gênerai case, we would have

599

" ° L Ho(M) • ̂ d x = Mo ( H " ̂ ) * = -<5"(M)' ^ > = ~Tt (^
Finally, we obtain, using (6) and (25):

(Heff(M) • ̂ j dx,

or, by adding some terms constant in time,

= - M o

f ||H,-M||2L2] = -

(26)

(27)

Besides, we have, taking the vector product of the (LLG) équation with

ÔM ÔM /
-or x -ÔT = ° = M HT(H,M)

that yields, everywhere MQ is different frora 0,

dM
~df'

ÔM
M

On the other hand, everywhere MQ — 0, this equality reduces to 0 = 0, since (18) implies that

lim
dM
HT = 0.

(28)

(29)

(30)

Finally, from (24, 27, 29), we deduce that

||P(M)||
L2

TT A/r i i2 1 ,, a f 1

HS - M||L2j = -M0^yR 3 jj^i ~dt
dx. (31)

It can be understood with this equality why the sign of a is crucial and why it is called a damping constant. It also
explains why the ferromagnetic materials are expected to be absorbing since it shows that the electromagnetic
energy

(32)ME, H, M) = -

is decreasing in time. From (31), we get

Mo

< (

< (

0\\
2
L2

+ + (1 + K)»o ||Mo||ia + Mo ||HS||2
2)

(33)

These estimâtes show that E e L2(M3)3 and H G L2(R3)3 as soon as Eo € L2(R3)3 and Ho S L2(M3)3 (and of
course Mo £ L2(M3)3).
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2.3. The 1D model

In order to shorten the forthcoming formulae in our mathematical developments, henceforth all the positive
physical constants except a - e0, Mo? M, K and 1 + a2 - will be replaced by one.

Moreover we consider from now on a mono-dimensional problem: we assume that all the unknowns in the
following problem depend only on x, the first space variable, and t, the time variable. In other words we are
interested in plane waves propagating along the ^-direction. We shall dénote by (ex,ey,e2) the orthonormal
basis of M3 where ex is parallel to the ce-direction.

The first conséquence of this 1D hypothesis is to simplify the définition of the curl operator. Given any field
A = (Ax,Ay,Az) depending only on the x variable, we simply have

ox ox

The interest of this remark appears if you notice that taking the projection of (4) on the propagation axis
leads to

^ = 0 ,„d ^ = 0 (34)

and so, the longitudinal components Ex and Bx are both constant in the 1D problem. (Concerning the magnetic
field, we simply have Hx = — Mx up to a constant.) However we would like to underline the fact that, contrary
to what happens in the vacuüm, it is not possible - even in the 1D case - to consider the propagation of a
transverse electric mode on the one hand and the propagation of a transverse magnetic mode on the other hand
because all the components of H are coupled by the (LLG) équation.

We shall also use in the sequel the two following properties of Lg in the 1D case:

Lemma 3. Assuming that H s belongs to L2(M)3, Lg maps L2(R)3 n L°°(E)3 x L2(R)S into £2(R)3.

Proof. We can deduce from (3) that

| |H r (H,M) x M||L2 < ||M||Loo||H||ia + ||M|Uco||Ha||La + C||M|Uoo||M|U2 (35)

and then

| |Lg(M,Hr(H,M))||L2 < (l + a)||M||x,oo (||H||L2 4- ||HS||L2 + C||M||L3). (36)

D

Lemma 4. Assuming that H5 belongs to iï1(M)3
? Lg is locally Lipchitz from ff1(R)3 x i3"x(M)3 into jff^R)3

if and only if a — 0.

Proof. If a = 0, the result is straightforward since the map (u, v) -^ uv is locally Lipschitz from H 1(M) x fT1(R)
t o i ï ^ R ) .

To understand what happens if a ^ 0, the reader can check that the "absolute value" map is not locally
Lipchitz from -ff1(/) to H1^), for any open interval I, by considering the two fonctions un = 2 + sin(n:r) and
vn = — 2 + sin(nx). Anyway this case is not important for our paper.
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2.4. Local results

The aim of this paragraph is to show the existence of a unique maximal local strong solution by applying
the following theorem (see [6] or [7]) which applies to semi-linear abstract évolution équations:

Theorem 1. Let H be a Banach space and A a maximal monotone operator [6] with domain D(A). Let F :
H. —> 7i be a locally Lip s chitz function on D(A). Then, for all UQ G D(A)} there exists a unique solution to

u(t = 0) = uo

with ueC1 (0,Tmax; D(A)) n C° (0, Tmax; U ) where either

(rmax = 4-co) or f Tmax < +oo and lim ||w||^ = +oo

In order to apply this theorem, it is natural to try to divide our problem into the linear part - the operator
A - and the non-linear part - the function F, and then to check the required assumptions. It is exactly what
is done in the next paragraph in the case a = 0. But in the gênerai case (a ̂  0), the function F (indeed the
function Lg) is no longer locally Lipchitz as mentioned in Lemma 4 and we have to adapt our proof.

Remark 3. It would have been possible to treat the gênerai case in the same manner as the case a = 0 if we
had considered (37), the same équation as in [5], where the term 1/|M| is omitted:

^ = |7 |H x M + aM x (H x M) . (37)
ÖZ

But this change in the LLG équation is valid only if the norm of the magnetization can be assumed to be
constant in space, which is impossible when you consider the interface between the vacuüm and a ferromagnetic
mater ial.

We establish below local results by applying Theorem 1. We consider separately the two cases a = 0 and
a / 0 , that is to say with and without damping. In each case, we shall décompose our proof into three steps.
First we define the appropriate functional framework 7i as well as the operator A and the non-linear part F.
Then we establish that A, and F, have the required properties.

2.4.1. The case a = 0

The (LLG) équation is

^ = HT(H,M)xM. (38)

• Mathematical framework
We introducé 7i = L2(R)3 x L2(M)3 x Ü'1(M)3, which is clearly a Hubert space, and take as our unknown the

vector u = ( E , H , M ) G ? { . We also introducé the Hilbert space H(cnr\R) = {v £ L2(R)3;cml(v) e L2(R)3},
which is in the 1D case nothing else than L2(M) x H1 (M) x H1 (M). It is now possible to rewrite the three équations
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of (8) as:

P. JOLY AND O. VACUS

— = curlH

dû dM

1H+!H= - c u r l E

^ = H T x M (with H T = H + H s + H„(M))
at

that leads to the following system of évolution équations:

dE
~dt
dn
dt

= curlH

= -curlE - HT(H,M) x M •

= HT(H, M) x M

It is now natural to introducé the unbounded operator

A(u) = A(E,H,M) = (curlH, -curlE, 0)

with domain D(A) = /f(curl,R) x H(cwrl, K) x H1(R)3, and the function:

F(u) = F (E, H, M) = (0, - HT(H, M) x M, HT(H, M) x M).

With these notations, the problem (8) is equivalent to:

(39)

(40)

(41)

(42)

(43)

where of course uo — (Eo,Ho, Mo). It remains to show that A is maximal monotone and that F is locally
Lipschitz from D(A) to D(A).

• A is a maximal monotone operator
This result is not surprising since A is nothing other than the operator associated to Maxwell's équations.

First using the Green's formula:

/ (curlE • H - curlH • E) dz = 0
JR

for all (E,H) in iJ(curl,M) x ff(curl,M) yields to:

(Au,u)n =0, Vue D{A).

(44)

(45)
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Then, to get the surjectivity of A-\-1 from D(A) in % , we have to show that, for all (e, h,ra) in H , there exists
(E, H, M) in D(A) such that:

-curlH + E = e

curlE + H = h

M = m

(46)

Reminding that the longitudinal components are constant, this leads to solve for the transverse components

curl (curlE) + E = e + curlh. (47)

The Lax-Milgram theorem ensures that there exists a unique solution H1 (M)2 - hère are considered only the
transverse components - for a right hand side in L2(M)2. This implies in our case that E is in iZ"(curl,M) for
(e, h) in L2(M)3. We can then conclude with H = h - curlE.

• F is a locally Lipschitz continuous function from D(A) to D(A)
It is clear by Lemma 4.
This was the last point of our proof. Eventually we can state the

Theorem 2. Given (Eo,Ho,Mo) G iJ(curl,R) x iî(curl,R) x H1^)3, there exists a unique local maximal
strong solution of (8) so that:

(48)

E G C1 (0, Tmax; L
2(M)3) n C° (0, Tmax; H (mil, R))

H e Cl (0, Tmax; L
2(Rf) H C° (0, Tmax; Jî(curl,

with moreover the following alternative: either Tmax = +oo,

or J^ {l|E(t)|&(curl) + ||H(t)||^(curl) + } =+oo. (49)

2.4.2. The case a / 0

The (LLG) équation is

a
= HT(H, M) x M + ^ M x (HT(H, M) x M) = Lg (M, HT(H, M)).

As said in the introduction, in the case a ^ 0, we shall only present an existence resuit but, since

H1 C L2

(50)

(51)

uniqueness will be ensured by the theorem about weak solutions présentée! in [17]. (For this reason, this
paragraph can be seen as complementary to [17].)
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First of all it must be said that this existence resuit is obtained under a new and purely technical assumption
on the initial distribution of magnetization Mo, namely

or, to be more rigorous,

3m 0 G

Mp
|Mo|

such that: Va: e l , |M0(:r)| ^ 0
Mo(a)
\M0(x)\

= mo(x).

(52)

(53)

However it is important to understand that assumption (53) represents no serious restriction, other than Mo

must be of bounded support (see Rem. 4).

• A new formulation
We know that it is possible to write the three équations of (8) as the following system of évolution équations:

Ö E ITT

— = curlH

= -curlE-Lg(M,HT(H,M))

^ = Lg(M,Hr(H,M))

(54)

associated with the initial data (EQ, HQ, MO). The idea of this section is to consider a normalized magnetization
vector m; more exactly, we define the following problem

f
— = -curlE - |Mo|L*(m,H) (55)

dm
UT

= La(m,H)

where

La (m,HT) = [HT(H, |M0|m) x m + am x (HT(H, |M0|m) x m)] (56)

associated with the initial data (Eo,Ho,mo) with m0 =
Mg
|Mo|

as indicated in assumption (53). Now

, and also,let (E, H, m) be a solution to problem (55) and let M(rc,£) = \Mo(x)\m(x,t). We have M G
because of the conservation of the norm of M (and m):

Lg(M,H) = |Mo|La(m,H)

and

(57)

(58)

In other words every solution to problem (55) is clearly a solution to problem (54), and it only remains now to
conclude to apply Theorem 1 to problem (55).
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• Mathematical framework
The notation is the same as in the case a = 0. We take as unknown the vector u = (E, H, m) € H . Again

we introducé the operator

A(u) = A(E,H,m) = (curlH, -curlE,0) (59)

with domain D(A) — H(curly£l) x i?(curl, Q) x i / 1 ^ ) 3 , and the function:

^M0(u) = (0, - |Mo|I/* (m,H T ) , L* (m,H T ) ) . (60)

With this notation, the problem (55) is equivalent to:

u(t = 0) = u0

with UQ = (Eo,Ho,mo). It remains to see that

• A is a maximal monotone operator
It is clear since this operator is exactly the same as in the previous section.

is a locally Lipschitz continuous function from D(A) to D(A)
First it is obvious that FM 0 rnaps D(A) to D(A) since i71(Q)3 is an algebra. Moreover JFM0 i

s locally Lipchitz
by Lemma 4.

Applying Theorem 1, we obtain a local solution (E, H, m) to problem (55) ; it is then possible to define
M = |Mo|m a solution to problem (54) and finally we can state

Theorem 3. Given (Eo,HOîMo) £ H(curl,f2) x iî(curl,f2) x ^^-(n)3, there exists a unique local maximal
strong solution of (8) so that:

E e Cl (0, Tmax; L
2(ü)3) n C° (0, Tmax; fr(curl, Ü))

H G C1 (0, Tmax; L
2(Q)3) n C° (0, rmax; iî(curl, Q)) (62)

M G c1(o,rmax;£r
1(n)3)

with the following alternative: either Tm a x = +co ;

or lim {||E(t)||^(curl) + i|H(t)|[^(curl) + I|M(i)[|^} = +oo. (63)

Remark 4. Without studying the most gênerai case, let us see briefly that there exists a large class of admissible
initial distributions. For instance it suffices that Mo — f{x)u with u a fixed vector and ƒ G iï"1(IR) a positive
function with bounded support: it is easy in this case to construct mo € H1 (M) equal to u on the support of ƒ.
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Mo = O Mo i- O Mo = O

Fr om this first example, the reader can easily check that more generally, one may consider any ferromagnetic
zone [a, b] such that

(
3ea > 0, 3ua e M3, \fx e]a,a + ea[, Mo = /a(^)ua ( fa(x) > 0)

(64)
3eb > 0, 3u6 e R3, Vx G]6 - e&, 6[, Mo = h{x)nb ( /6(x) > 0 ).

In this case, we have

r G ^ ( ^ a + eaD3 and f ^ \ r G H1 (}b - eb,b[f

and it is easy to check, because 3C£ > 0 such that |M0 | > C£ on )o + ea , 6 — £fc[, that

Mn

Hence the result since MQ is continuous for x = a + ea and x = 6 — Sb- And of course, the ferromagnetic zone
can be deflned as the union of such disjoint intervals:

M, (65)

which leads to a large class of admissible initial distributions.
2

On the contrary Mo = e™̂  sin(a:)u is not an admissible initial data.
As a conclusion let us simply say that assumption (53) only implies a kind of control on the way Mo vanishes

to zero.
It remains now to show that the local solutions of Theorem 2 and Theorem 3 are indeed global. Rather than

expliciting two very similar démonstrations, we now end this mathematical part of our work in the most gênerai
case: no assumption is made either on a or on Mo. This way we can eventually conclude in each case.

2.5. A new estimate for H

We have now to verify that no local solution can blow up in a finite time. With (21) and (33) which are valid
in our case for any T < Tmax, only the L2 norm of the local solutions provided by Theorem 2 is controlled. So,
to prove global existence we have to find H1 estimâtes for these solutions depending on t in a locally bounded
manner. More precisely we first establish in this paragraph that H G H(cur\,R).

Before beginning, let us introducé the following technical lemma.
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Lemma 5. Concerning the infinity norm of the magnetic field, we have

\\H\\l- < ||M||2LOO + 2 ||H||L2 ||curlH||L2 .

Proof. First let us recall that for all u € 5"1(M), we have

IMI2
r~ < 2 \\u\

du
dx

607

(66)

(67)

<9M a
— = HT X M + p ^ M x (Hr X M)

as V(M) is dense in fT^R). Then it sunices to apply (67) to the transverse components of H and to recall, for
the longitudinal component, that Hx = —Mx. •

Now we can give the three steps of our proof.

• Step 1: Estimâtes on M.
As far as we know at this point, M G Cl (0,Tmax; Hl(R)3) but it is not dimcult to prove that M G

C2 (O^a^iJ^IR) 3 ) , and moreover that ||M(*)||L~ = | | M 0 | | L ~ . Indeed

(68)

and as we know that H G C1 (0, Tmax; L2(E)3), it is clear that

H T = [H + H5 + Ha(M)] G C1 (0, Tmax; L2(M)3)

since Ha(M) linearly dépends on M. Moreover we know that

We can conclude that H T x M and M x (HT x M) are in C1 (0, Tmax; L2(R)3).
Thus M G C2 (0,Tmax;L2(R)3).

• Step 2: A new energy-type identity.
The idea is to do the same kind of computations we made to get the decay in time of the electromagnetic

energy but for the time derivatives of the fields E and H. Let us give a formai proof assuming that E and H
are smooth enough. We start from

32H d2M „ ÔE
dt2 dt2 dt

d2E „ &H
V

(69)

9H ôE
Then we multiply by -r~- and —- and integrate in space to obtain

dt ot

H
2dï J®.

\&E
dt

0H
dt

dx ~ JR et2 " e t d x (70)
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or, smce -̂r— = curlH,
ot

1 d
2d£

d2m m
dt2 ' dt

dx. (71)

This reduces to, Vt < Tmax,

f {t) dx = l a2M dn
d* - / / ^ • ̂ d * d * . (72)

Jo JR
dt2 dt

As we know that \/t G [0,

= -curlE - ~ = -curlE - Lg(M,H), (73)

we introducé Ao = —curlE0 — Lg (M0,H0) G L2. (Ao is well defined since Eo and Ho are taken in iî(curl,]
and Mo is taken in ff^R)3.) Then (72) is equivalent to

||curlH(t)|£3 + dt[t) J + «AoUÎ.) -j'JJ^- ff -W.. (74)

Now, to give a rigorous proof of (74), since E and H are not regular enough, we have to use a discrete
differentiation. More precisely, for any Banach space X and any u G C°([0,T*[;X), we introducé

VT *; V/i €]0;T* -TL Dhu{t) =

Moreover, if n G ̂ ( [ 0 , T*[; X), then, as h ->• 0,

£>fcit(*) —• ^ ( i ) inC°(0,T;X).

Applying D^ to Maxwell's équations - wit h T* = Tmax -, we get by linearity

^(DhE)-cml(DhU) = 0
ö t (75)

— (L>hH) + curl (DhE) = --â-{DhM)

We multiply the first équation by .D^E and the second one by D^H and then integrate the sum to get

~ (\\DhE\\2
L2 + \\DhHfL2) = - J *>h^ • DhHdx. (76)

We now integrate in time, for any t e [0, Tmax[,

U\\DhE(t)\\2
Lz+ ||öhH(t)||^a) - J(||DhE(0)||i2+ \\DhH{0)\\li) - / f Dh^ * DhHdxds. (77)
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As E e C^O.Tmaxïi^»))3 and H e ^ ( 0 , 7 ^ ; L2 (E))3, we have

2

609

]\mjDhE(t)\\l2 = dt{

—(t)dt[)

= ||curlH(t)||î
L2

2

L2

(78)

and M G C2(O,T;L2(M))3, we have, Vt G [0,Tmax[,Moreover, as H G

It is thus possible to take the limit as h —> 0 in (77) and then to get (74).

(79)

Step 3: The estimate for and (curlH).

To shorten the proof given below we shall consider here the case (a = 0, Heff(M) = 0) which présents all the
difficultés of the case (a / 0, Heff (M) ^ 0) that we shall detail in Appendix A. In other words we assume here
that

dM
HxM (80)

while the case of the complete (LLG) is considered in the appendix.
In the case (a — 0, Heff(M) = 0), it is easy to compute at each point:

-ët = b r x M + H x ^ - â r = -
OU

which reduces to

'd2m du\
v dt2 ' dt )

|H|2 m
dt

(81)

Thus, plugging (81) into (74), we obtain

2 \<9H
dt + cur LOO f

dt
dxds.

We then note that

f
v/R

m dt dx du
~dt

(82)

(83)

that is to say, applying Lemma 5,

N/2 | |H| |3 / 2%
ÔH

a*

i?.

l
(84)

iz,2
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In the case (a = 0,Heff(M) = 0), (31) gives:

l|E||i2 + ||H||22 = ||Eo||2
L2+||Ho||2

2.

Introducing

we get

|H|2 dx (25o)3 / 4 ;||Mo||L(,
ÖHI
et

Therefore, with C = Max U/2{2£of/i ||M0||Loo , {2£0)
1/2 ||M0||£oo), we get from (82) and (87)

du

m
+ cur

and so

-(II —2\\\dt

<i(||curlHo||2
L2 + ||A0||

2
L2)

||curlH||22 j < i(||curlH0||2
2 + ||A0||

2
2)

IL2

YSi (l
c u r l H | l i 2

ÖH
dt + 2

dt
ds.

Noticing that

we have

||curlH||L2 < 1 + ||curlH||22

||curlH|U + m
dt dt L2

+ ||curlH||La .

Introducing the function F(t) = - I ||curlH||L2 +
2* \ dt

, we see that (89) is equivalent to

F{t) < F(0) + 2C f ( | + F(s)) ds.

We can then apply Gronwall's Lemma to the function ( —h F(t) ) to get

(85)

(86)

(87)

ds (88)

(89)

(90)

(91)

(92)
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which yields

( HcurlH||2i2
<9H

dt
HA0IL2) exp(2Ci) + | (exp(2Ci) - (93)

which is exactly the kind of estimate that we were looking for.

2.6. The global existence and uniqueness results

We can conclude from estimâtes (33) and (93) that for all T > 0, there exists CH{T) > 0 such that

We[0,T], ||H(t)||H1 < C7H(T). (94)

Besides, we know that curlE = - ( —- 4- —— ). We recall that —— e L2(R) since M G £°°(R) and H G L2(R).
\ dt dt J dt

Thus (33) and (93) yield: for all T > 0, there exists CE(T) > 0 such that

Vte[0,T], CB(T). (95)

It remains to see that we can get the same conclusion for M by taking the derivative in space of the (LLG)
équation:

dt \ dx J dx dx dx

« f ! x [(H + H.„) x M] + ^ -M x
|M| dx M

M x

Then, multiplying by —— and integrating in space, we get:
dx

1 d <9M

dx
f (dU <9M\ ,

JR |M| \ dx '

~ JRW

dx ' * - ' dx
dx

dx

where (a, b, c) dénotes the product (a x b) • c. It is then easy to see that (97) becomes

(96)

M | •

2dt dx
< \\M\\LOO \\H\\H1

ÔH

dM

dx

+2a||H||

dx

dM
dx

L2

dM

||M||Loo||Heff||lï
dM

dx

- 2a ||Heff||L2

allMH,

dx

aHefï

dx

dx

dx
(98)
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Let us recall that we know that all the terms in the right hand side of (98), but maybe ||Heff [ĵ i and
dM
dx

are bounded. In what concerns Heff5 we use the fact that Heff(M) is affine with respect to M. Then, using
the Cauchy-Schwartz inequalities, it is straightforward to see that (98) leads to: there exists Ci(T) > 0 and
Ci (T) > 0 such that, for all t < T,

d_
àt

<9M

dx L2 j

< Ci(T) + C2(T)
dM

(99)

We can then conclude with the GronwalFs Lemma that for all T > 0, there exists CM(T) > Q such that

1 < CM(T). (100)

Finally, we can state

Theorem 4. Given (EO,HO,MQ) € i/(curl, M) x iJ(curl, R) x iJ1(M)3
> there exists a unique global strong

solution of (8) s o that:

E £ C1 (E+;L2(M)3) nC° (R+ÏÜT^R) 2 )

H G Cl (R+;L2(M.f) f)C° (WL+;Hl(Rf) - (101)

M G C2 (R+;Jïx(R)3)

2.7. About finite velocity of propagation

Using an energy rnethod, it is possible to show that the velocity of propagation of electromagnetic waves in
ferromagnetic media is finite. The idea of our proof consists in evaluating the electromagnetic energy outside a
domain which is bounded but whose width increases with time. Note that only small changes are required to
obtain the same resuit for arbitrary dimension of the problem.

More précise^ let us assume that there exists two reals a and b such that, at time t = 0?

1. Eo and HQ are equal to 0 outside the interval [a, b];
2, the initial distribution Mo, outside [a, 6], corresponds to a stable steady state; that means that Mo is

parallel to (Hs 4-Ha(Mo)) outside [a, 6] and that the fonction

U(M) = ^ (K\P(M)\2 + |HS - M|2)
2

(102)

reaches a global minimum, almost everywhere outside [a, b], for M =
In this case, it is possible to multiply MaxwelPs équations by H and E and to integrate the resuit in space as
follows:

/*+oo
/

Jb+vt
— j à c + w, / H - ^ - d ^ - f / V • (E x H)dx = 0.

dt J Jb+Vt ôt Jb+Vt
(103)

Our aim is to estimate the electromagnetic energy for ail x greater than 6 + vt, the positive constant v being
defined later. Equation (103) can also be formulated as

[
b+vt b+vt

[
b+vt

(104)
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where we dénote by (E x H)(x) the scalar fonction (Ey(x)Hz(x) — Ez(x)Hy(x)). In this expression, the
function K{x) must be taken constant in time. Our choice consists in K(x) = -f/(Mo). Then, from (104), the
computations unfold as in the genera! case: by adding Heff(M) to H, we obtain

+°° d_

b+vt di
/»-|-QO

Jb+vt

r
b+vt

(105)
HT(H,M) • — d x - (E x H)(6 +vt) - 0.

Using (27) and (29) we obtain

Lb+vt u

We deduce that

As we know that

we can conclude that

r+oo

+o° d
i at ^ /dt lJb+vt

(106)

(107)

(108)

s \JZ (? | E | 2 + ? | H | 2 H s -«râ £ M
dM
~dt

dx

|E|2 |H|2 + U(M) - U(M0)) - |E||H|] (b + vt)
(109)

Because of the choice K(x) = -f/(Mo), the function of the left hand side, which is the total electromagnetic
energy for x greater than 6, is always positive or equal to 0 at time t — 0. To show that that the speed of
propagation is smaller than -u, it sufnces to show that this energy can not increase in time, that is to say that
the derivative in time can not be positive. Since (t/(M) — U(M.o)(b -f vt)) > 0, it remains to choose v such that

0. (110)

The reader can easily check that a possible choice is v — cö = f j
\ C-QfJlQ J

Of course it would remain to do the same for x smaller than a.
r

3. THE NUMERICAL METHOD

We present in this third part the discretization of our problem, first in space and then in time. The physical
constants are not taken equal to 1 any longer.

For these numerical results we shall work in a bounded interval [0, L] of IR with Dirichlet conditions for the
electric field E. The reader will easily check that the extension to this case of the existence and uniqueness
theorems of Section 2 is straightforward. We introducé the space H° (curl, IR) :

fl"0(curl,R) = {ij) e iJ(curl, x e , - 0, ip{L) x ex = 0}- (111)
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For the "Maxwell part" of our problem, our choice consists in working from the following variational formula-
tion [8]:

dB
~dt''

= 0,

(112)

It is important to see that the curl term in the second équation has been integrated by parts. For this reason
functions <f> can be taken in L2 rather than in H (curl). The third équation looks like a triviality yet it indicates
that it would be better to look for H3 B and M in the same functional space.

3.1. Semi-discretization in space

3.1.1. Construction of the approximate

We assume that L = Nh, where h > 0 is our space step:

h

0

We take the discrete electric field in the space Vh of piecewise linear functions and the discrete fields H^, B/j, and
Mh in the space X& of piecewise constant functions. We introducé {ipt € P\}%S1 the canonical basis functions
of Vh to define E^:

N-l

Ex{i)il>t(x)ex) (113)

and {<j>% G -PoKLi the canonical basis functions of X^ to define H^, B^ and

N

Bh = J2 {Bytt ~ D&O^v + Bz(i ~ è)&(*)e*)

N

Uh = ^(-Mx(z-|)^(a;)ex+^3/(i-i)^(x)e2/ +

N

Mh = ] T (Mx(% - |)^(x)eŒ + My{% - %)4>i{x)ev + M

(114)

(115)

(116)

It is now possible to write a discrete variational formulation of (112):

(dBh

V dt
Ah ) + (curlEft, 4>h) = O, V0h € (Po)2

- (nh,cmiiph) = o, y-iph e (Pi)2
(117)
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This leads to the following scalar system for Maxwell's équations:

d B y ( i - | ) _ Ez(i) - Ez{i - 1)

615

1 < i < N, dt Ax

{%-\) = Ey(Ï) - Ey(i - ï)
dt ~ Ax

(118)

(where Ey(0) = 0 = Ez(0) and Ey(N) = O = EZ(N)), and

dEy(i)

<i < N - 1,

Hz{i+\)-Hz{i-\)
dt Ax

dEz(i) = Hy{i+\)-Hy{i-\)
dt Ax

(119)

With this approach and équations (119), a discrete curl operator is defined for the space Xh (which is a space
of discontinuous functions); in the 1D case it is exactly the usual operator corresponding to Yee's scheme [9],
but this would be no longer true in the 2D case (see [16]). This discrete curl operator is defined with centered
finite différence which guarantees order 2 in space for our scheme.

The situation is of course different for the (LLG) équation and the magnetic coupling since no derivative
occurs in these équations. We simply have [see (14)]:

(120)

with - KP(Mh) and H^ - — - Mh.
Mo

3.1.2. Existence of solutions and stabüüy analysis

It can be seen that the problem defined from (117) and (120) consists in solving the following system:

dBh

dt = 0

Bh = /ia (Hfc + Mfc)

- curlh Hh = O

- Lg(Mh>H fc)

(121)

£0 dt
dMh

at

where curiU is the discrete curl operator defined on (Po)2 by:

G (P0)2, Viph e (Pi)2, (curlfc 0 - (<t>h,curliph) • (122)

We see that (121) is a system of (2 + 2 + 3)iV ordinary differential équations. Thus the Cauchy-Lipschitz theorem
applies and ensures that there exists a unique local solution (E^H/^M^).

Concerning this local solution, we see first that there is nothing new to say about the conservation at each
point of the norm of M/j,, since the (LLG) équation is exactly the same as in the continuons case:

|Mh(a:,t)|2 = , Vx€[0,L]. (123)
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To get the complete control of the local solution (E^, H&, M^), it suffices then to prove again the decay in time
of the electromagnetic energy. If we take 4>h = H ,̂ and iph = E/3, in (117) and then integrate, we obtain by
adding

We do the same computations but wit h the 1D assumptions:

Since the (LLG) équation has not been modified, the other results are unchanged and lead to

dMh\ dx
€° l l ï? II2 j M 0 IIW II2 • ^ ° K I» D/TV*- \ | | 2 , MO „ „ * , „2 1 t

] I E I I + l l H i l + I I M ) ! + | | H M | | = - M O T - ? dt
(126)

which is the semi-discrete equivalent of (31). Thus, as in the continuous case, we conclude that

la < (e0 HEfcoll̂ a + /io \\HhofL2 + (1 + K)no HMfcolli» + Mo ||H.||^3)
v ' (127)

+ (1 +üf)/io I

These estimations ensure that the local solution is indeed a global solution. Moreover, they do not depend on h.

3.2. T i m e s tepp ing

Our semi-discrete équations must be now discretized in time.

3.2.1. Construction of the approximate

We shall use to discretize (118) and (119) in time the standard leapfrog technique: if At > 0 is our time step,
the electric field is discretized at times tn = nAt:

BI ~ Efc(t = nAt) (128)

while the magnetic field, the magnetic induction and the magnetization are discretized at time tn + i = (n + | ) At:

Bn
h

+* ~ B h ( ( n + | ) At) , M : + ^ ~ Mh ( (n+i ) At) , U^ ^ H h ( (n+ | ) At). (129)

Besides we dénote by M£ (resp. H^ and B}J) the half sum of M h
 2 and M.h

 2 (resp. of H^ 2 and H^ 2 , and

p ^ )
Discretizing the System (121), we get the following scheme: on the one hand, for Maxwell's équations,

B
n + i _ B

n"i
h h = -curlfc E^ (130)



MATHEMATICAL AND NUMERICAL STUDIES OF NON LINEAR FERROMAGNETIC MATERIALS 617

and
i

€Q h = curlfe H^ 2 , withH^ 2 = —^ M? 2 (131)
Ai fjbQ

and on the other hand, for the (LLG) équation,

** - (132)
Ai ]n in n \M%\ n At

with H ^ = - B £ + Hs - KP (Ml) and
/i0 2

2 M 2When B^ 2 , M^ 2 and E£ are assumed to be known, the computations at the following step unfold like this:

1. B™+2 is calculated by (130);

2. M^ 2 is calculated by (132), hence HJ^ can be computed;
3. E£+1 is calculated by (131).
Moreover it can be seen that our time stepping is centered which ensures an approximation of order 2 in

time.

3.2.2. Existence and actual computation of the discrete solution

The calculation of B^ 2 , Hh
 2 and E£+1 from (130) and (131) is obvious but we have to make précise the

way we determinate M^ 2 from (132). Moreover, because of the non-linearity of this équation, we can't be
sure a priori either of existence of a solution, or of uniqueness. Also we shall see that although the scheme is
implicit, the computation of M£+1 can be carried out explicitly.

• A new form of the discrete (LLG) équation

First of all, we can "decrease" the non-linearity of (132) with the help of three simple mathematical remarks:
1. The conservation of the norm of the magnetization: one only has to take the scalar product of (132) by

M£ to find

/ • I * \ / • I I\
f TV/T "^2 TV/T 2 \ / ivyr ^"2 i n/r 2 \ i / . 1 1 \

= 0. (133)2 At

This means that |MJJ| is a constant in (132) and the superscript n can be omitted.
2. A change in the second vector product: we have

2 x Ai ~ 2 x Ai

Then, (132) becomes

( ]

\ _ M«-è = ^ ^ + _ | _ M r è ] x ( M r I + M : è ) . (135)
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3. The remark (14) about HO(M): we have

-KP(M£) x M ^ K ( p - M a P x Mg. (136)

Finally we have shown that the (LLG) équation is equivalent to

. _ [fcj£ ( I Î + H . ) + c*t* + *m (p • MB p] x (2M3 . (137)

Introducing the following notations:

we get the following non-linear vectorial équation:

x + a x x + A(p • x)p x x = f (138)

where f, a and À are data and x is our new unknown.

Remark 5. If K were equal to 0, we would get x + a x x = f; in this case, Lemma 1 applies, and we conclude
that

_ f + ( a - f )a -axf
1 | | *

• Existence and uniqueness of the solution

We first consider the linear function of Lemma 1

A(x) = x - f a x x = y ^ > x = A~ly. (140)

We recall that A~x is a contraction. Let x be now a solution to (138); we introducé

x - A'1 (f - A(p * x)p x x) = F(x). (141)

It is not difficult to see that F : B(0,1 + |f |) H-> 5(0,1 + |f|) as soon as |A| < r ^ :

|F(x)| < |f| + |A||x|2 < |f| + |A|(l + |f|)2. (142)

Then we compute

< | A | | ( p - x ) p x x - ( p . y ) p x y |

< | A | | ( p . x ) ( p x x - p x y ) - ( p * x - p - y ) p x y I (143)

< |A||(p • x)p x (x - y) - p • (x - y)p x y .

Hence

| F ( x ) - F ( y ) | < 2|A|(l + | f | ) | x - y | . (144)
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We conclude that F is a contraction from 5(0,1 -f |f [) to 5(0,1 + |f |) as soon as

|A| < Min ([2 |A| (1 + |f O]"1, (1 + |f | )-2) . (145)

Therefore, for At small enough, the contraction theorem applies and there exists a unique solution to (138).

• Actual computation

If we tried to expand (138), a quadratic vectorial équation, it would lead to a scalar polynomial of degree 6.
We should use in this case some itérative met ho d and give up the hope of an explicit scheme.

To avoid this difficulty, our idea consists in projecting - when it is possible - the vectorial unknown x in the
basis (a, p, a x p). We distinguish two cases

1. |ax p| =0 .
Then (a, p,a x p) is not a basis, but there exits 9 G R such that a = 0p. Thus équation (138) is

equivalent to

x + [0 + A(p • x)] p x x = f. (146)

Taking the scalar product by p yields (p • x) = (p - f), so that (138) is equivalent to

x -f [0 + A(p • f)] p x x = f (147)

and Lemma 1 applies. The solution is explicit.
2. |ax p| / O .

We can work in the basis (a, p, ax p) and get a System of three équations in scalar unknowns X = (a-x),
Y = (p • x) and Z = (a x p) • x by taking the scalar product of (138) by a, p and a x p:

Y-Z = (p-f)

X + XYZ = (a • f) • (148)

Z - (a • p) X + ||a||2 Y + A (a • p) Y2 - XXY = (a x p) • f

This leads to

Y = Z + (p • f )

X = (a-f) - XZ(Z + (p.f))
(149)

X2Z3 + 2A ((a • p) + A (p • f)) Z2 + (l + ||a||2 - A (a • f) + 3A (a • p) (p • f) + A2 (p • f)2J Z

-A(a-f) (p • f) - (a- p) (p • f) + A(a- p) (p • f)2 + ||a||2 (p • f) - (a x p) • f = 0.

Solving this System is equivalent to finding the - unique - real root of a polynomial of degree 3 in Z, while
degree 6 was expected. This time again, solution is given explicitly. Knowing X, Y and Z, we can determinate
x by:

^ p ] . (150)
axpl
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3.2.3. Stability analysis

We want to show the decay at each time step of a discrete electromagnetic energy by adapting the pro of of

the continuous case. Multiplying (130) by At f H^ 2 -f H^ 2 J, we obtain

MO||H75I Mh
 2 - M f c

2
:

(151)

Using the conservation of |MhJ, the fact that the operator curl^ as we defined it is a self-adjoint operator, and
(131), we see that (151) is equivalent to

(152)

2D7l

By adding 2Heff(M£) to -, we obtain
Mo

Let us compute the left hand side; we have

(153)

/zo
i

" ' 2 • -2Kfj,0 (154)

Finally we obtain that —/x0 ^ ^ , 2Heff (M^) ) is equal to

- 2/uoH, T - ï (155)

Purther one has only to take the vector product of (132) by M h
 2 - Mh

 2 to get

, 1 1 2
u /rn+ 9 n iwn~ 9

M h
 2 - Mh

 2

Thus, if we introducé, Vn € N,

1 _
+ T =

we have established that, Vn > 1,

•Ml'
i

"2 |2

(156)

(157)

Mh
 2-Mh (158)
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This shows that the discrete quantity Uh(n + \) decreases at each step of the computation. We know that

2noK\P{M

H ,

n+2\|2 is a positive term. What can we conclude about the quantity
11
2

2
i /"C71 "C^n+lN
I" l " j L . " j . J

\ Al ' Al /
? Using the fact that

p n + 1 _L TT™

2

2 At2

4

I T7in+1 - E s | | 2
it II

A\ " ^

2
h

2 At 2

4

1 4 1
and the fact that ||curlfcHh

 2 1 | < —̂  | |H h
 2 ||2, we see that

%(»+§)> ( 1 - = ^ (159)

and we can conclude that Uh{n+ | ) is positive, and therefore that the scheme is stable, under the classical CFL
condition: ^ < 1.

4. NUMERICAL EXPERIMENTS

In this last part, we perform some numerical simulations. The results that we present are not really "dis-
cussed" ; our goal consists only in illustrating our numerical method.

First of all we consider the propagation of a sustained signal inside a homogeneous domain: a vacuüm first,
and then a ferromagnetic domain. We represent only one component of the magnetic field H at two different
times. (In every case, we use transparent boundary conditions, namely E x e^ ± ex x (H x ex) = 0 .) See
Figure 1.

In the second case (M ^ 0), we see the exponential decay of the propagating signal. After some time, a
steady state will be reached.

We show now some scattering experiments. The domain of calculation is divided into three parts: on the
left and the right sides we consider a vacuüm (M = 0), in the center of the calculus domain, a ferromagnetic
material. Six snapshots of one component of the magnetic field H are represented. See Figure 2.

At time £3 and £4, we see propagating toward the left a reflected part of the signal due to the interface, while
a transmitted part is decreasing inside the ferromagnetic media. At time t5, the transmitted part of the signal
reaches the vacuüm on the right side.

APPENDIX A

We have shown in Section 2.5 how to get H1 estimâtes of our local solutions to guarantee that they are
indeed maximal solutions. In this appendix, we show that the computations of Step 3 of our proof are still valid
in the case (a ̂  0, Heff(M) / 0).

In other words, we work now from the complete (LLG) équation

a.<9M a.
— = HT(H,M) x M + — M x (Hr(H,M) x M)

(160)
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FIGURE 1. h = 4 x lCT4m, At = 1.33 x 10"4s, ƒ = 13GHz, Hs = 105A/m, |M0

O and 105 A/m, if = 1 SI.

and we want to get again H1 estimâtes from (74):

2
<9H

L2
||curlH||22 j = \ (||curlH0||

2
L2 + ||A(0)||2L2) - ƒ

First, let us recall that Heff (M) is affine with respect to M which yields to:

3Ci, ||Heff||roo < HHSIILOO + Ci||M||i,oo and <
9M
~dt

We shall use in the forthcoming computations the fact that the (LLG) équation ensures that

<9M
dt < (l+a)|M||HT(H,M)|

(161)

(162)

and also a generalized Gronwall type lemma.

Lemma 6. Given two positive constants C and Cf and a positive continuons function G(t) on [0, T] such that,
VtG[0,T],

G(t) < G(0) + C't + C f G(s)ds.
Jo

Then

G(t) < G(0)eCt (ect - l) .
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FIGURE 2 ft = 7,5 x l(T4m, At = 2,5 x l ( r 4 s , ƒ = 13GHz, Hs = 105A/m, |M0 |
105 A/m, K = 1 SI.

Proof. We introducé the differentiable function <£(i) = G(0) +C't + C Jo* G(s)ds. We have

4>'(t) = C' + CG(t) < C'

and we deduce that Xit±\ — ̂ * This r e s u ^ ls then integrated in time to give

Hence the result, given that G(t) < <j>(t) and G(0) = D
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Taking the derivative in time of the (LLG) équation, we can compute at each point:

d2M
dt2

dM a dM /TT __
— + M — x(HTxM)

x M)+ W\M x 1 H er)

or, by eliminating —— with the (LLG) équation,
dt

d2M
dt2 x M + HT x (HT x M) + T ^ J H T X [M X ( H T X M)]

+ [M x (HT X M)] x (HT x M) + — M x —f x M
|M| \ ut

Oi ( (X \

+ -.—-M x [HT X ( H T X M)] + —-r M x [HT X (M x (HT X

|M| VIMly
<9HThen we can take the scalar product with •—-:

CJXr

Ô2M
^ = | H T X (HT x M) + Ï ^ - H T x [M x (HT x M)]

2

[M x (HT X M)] x (H r x M) + ^ M x [HT x (HT x M)]

a

T2 + r3,

where

^ M x [HT X ( H T X M)] +

a x M, 7
ai

x [HT x (M x (HT x M))]} • ^

Each term can be bounded:

1. Using Cauchy-Schwartz inequalities, we have

a + a2)|M||Hr|
du
dt

a + a2)|M|(|H|2 m.
dt

and then, with (161), we get

( Txdx < 2 (1 + a + a2

JM.
H|2 Ci||M||L-)2

dt

(163)

(164)

(165)

(166)

(167)

âx\ . (168)
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2. As ,M, f f ) , using (161) and (162), we have

T2 <
dt\\dt

a)|M|2 |H| m

Thus

3. As T3 = a

W\ dt
x M

f T2dx < d (1 + a) HMlli» ƒ |H3

\
+ ( _ ^ £ x M ) • f ̂ 5 x M ] ] , we have with (161) and (162)

V OT J \Ot } J

[Tsdx < allMHj
Jm

on
at

dx.

Then, if we define C2 by

C2 - Max {(1 + a + a2) (||H5||Loo + d ||M||Loo), Ci (l + a2) ||M||ioo}

we can add (168), (170) and (171) to obtain

9H
dt

The last term to integrate is exactly the one that we have considered in Section 2.5 in (87)

'2IIÖH
dt

Using (90), we see that this is equivalent to

dx < |curlH||
2

dH
dt

If we let C = (1 + £o) (1 + C2), we can deduce from (74) that, Vt e [0, T],

— (t)

This is equivalent to

||curlH(i)||M < i

+C (l + ||Ho||22 + ||M0||
2

2) t + cj* M|curlH||22 + dn
~dt

ds.

G{t) < G(0) + C't + C f G{s)ds,
Jo
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(169)

(170)

(171)

(172)

(173)

(174)

(175)

(176)
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where G(t) = ( ||curlH(t)||*2 +

get the desired estimate:
at

(t) and C' = C (l -f ||H0|£2 + | |M0 |£2). Applying Lemma 6, we

~ < ( ||curlH(0)|||a 4- (177)

This is the equivalent of (93) for the case (a ^ 0, Heff (M) ^ 0).
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