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ANALYSIS OF A ONE-DIMENSIONAL VARIATIONAL MODEL
OF THE EQUILIBRIUM SHAPEL OF A DEFORMABLE CRYSTAL *

ERIC BONNETIER1, RICHARD S. FALK2 AND MICHAEL A. GRINFELD3

Abstract. The equilibrium configurations of a one-dimensional variational model that combines terms
expressing the bulk energy of a deformable crystal and its surface energy are studiecL After élimination
of the displacement, the problem reduces to the minimization of a nonconvex and nonlocal functional
of a single function, the thickness. Depending on a parameter which strengthens one of the terms
comprising the energy at the expense of the other, it is shown that this functional may have a stable
absolute minimum or only a minimizing séquence in which the term corresponding to the bulk energy
is forced to zero by the production of a crack in the material.
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1. INTRODUCTION

The morphological instabilities of interfaces is a topic of primary interest in physics (e.g., see [4]). Currently,
many branches of the natural sciences, including low température physics, fracture, crystal growth, epitaxy of
nano-scale films, metallurgy, geology, and materials science show a rapidly growing interest in the so called
stress driven rearrangement instabilities (SDRI) of surfaces and interfaces in solids. Several examples of the
SDRI have been predicted on the basis of Gibbs thermodynamics [5] of heterogeneous Systems by studying the
positive definiteness of the second energy variations [7] of relevant functionals. At present, some of the predicted
instabilities have been confirmed experimentally and found applications in the above mentioned areas.

The thermodynamics of deformable solids with rearrangement leads to certain multi-dimensional variational
problems with unknown boundaries and with different spécifie constraints. Despite its quite simple formulation,
the problem in all its entirety is quite complex, and the study of its different features with the help of simpler
examples seems quite désirable. Many mathematical aspects of the gênerai problem of thermodynamics of solids
with rearrangement can be studied in the framework of the problem of equilibrium shape of deformable crystals
formulated in [7,8]. This problem is of a certain physical interest on its own in the theory of nano-scale solid
crystals [10]. Probably, it is the simplest mathematical problem possessing all of the crucial features of the most
gênerai situation. From a mathematical point of view, the problem of the equilibrium shape of a deformable
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crystal is the natural synthesis of two classical problems of mathematical physics: (i) the problem of equilibrium
shape of a rigid crystal of fixed total volume [11,12] and (ii) the problem of the equilibrium of an elastic solid with
fîxed geometry. The symbiosis, however, gives some qualitatively new features absent in the ingrédients. Some
valuable analytical facts for this problem can be established with the help of Nozieres's results [13]. Because of
the existing difficulties of the gênerai 3D-problem, it is expédient to analyze first its simpler one-dimensional
version which is studied in this and in a forthcoming paper. The one-dimensional problem has been formulated
in [9] and it allows us to describe some phenomena in elastic shells and strips with movable defects. Below,
we present without dérivation some facts relat ing to this problem. Mathematically it is formulated as the
minimization of the functional £ depending on two unknown fonctions: an elastic displacement u(x) and a strip
thickness h(x) of one variable x:

€ = f [(G/2)h(x)[uf{x)}2 + ay/l + [^(x)]2] dx

where G > 0 is the elastic modulus, a > 0 is the surface energy, v!{x) is the elastic déformation, and
^/l + [hf(x)\2 dx is the lengt h element of an out er boundary of the strip.

We assume that the elastic displacements u(x) and the thickness h{x) are fixed at the end-points, z.e.,

hOi h{L) = hL

and that the total volume of the strip is also fixed, ie.,

/ h(x) dx = A.
Jo/o

For simplicity, we consider the case when

L = l, t7 0=0, UL = 1, fto = l, hL = l, A = l , a - 1 , G = 2IV\

We are thus led to the minimization problem: Find

inf S(u,h) = inf N f h(x)[u'(x)}2 dx + / y/l + [h'(x)]2dx. (1.1)

The set of admissible displacements is V = {u G i?1(0,1) : u(0) = 0,u(l) = 1}, and the admissible thicknesses
lie in the set H of piecewise C1 fonctions on [0,1] satisfying

h(x) > 0 in [0,1], h(0) = ft(l) = 1, / h(x) dx = 1. (1.2)
JQ

For a given thickness h G H, one can easily check that

minimizes f (u, h) in V. Thus the displacement can be eliminated in (1.1) and the original problem reduces to
minimizing over h G H the functional

(1.3)
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It is a standard feature in such problems of the calculus of variations, that X may not attain its infimum on the
space of C1 functions. Generally, minimizing séquences may develop oscillations if X does not have the right
properties of convexity. In the case at hand, the second term of X is convex since

but the first term is concave, so the standard direct method is not applicable. Minimizing séquences may also
tend to functions which lie outside the initial set of candidates and which are usually less regular. To ensure
well-posedness, the problem must be relaxed: a larger class of admissible designs must be allowed and the
functional must be extended accordingly [3].

The uniform thickness /i0 = 1 will be called the trivial solution. The value of its energy is N + 1. One
readily checks that h0 satisfies the Euler-Lagrange équation associated to (1.3) (however, this is not a sufRcient
condition for h0 to be the absolute minimum!). Many other examples of variational problems whose minimizers
do not satisfy the Euler-Lagrange équation can be found in [1]. Because of the nonlocal nature of the term
corresponding to the bulk energy in the functional X(h), the problem discussed hère falls outside of the classical
theory.

The main resuit s of the paper are the following. In the next section, we consider the standard linearized
stability analysis and show that the second variation of the energy for smooth perturbations about the thickness
ho = 1 is positive for N < 2TT2. However, this does not guarantee that ho = 1 is a minimizer even for N in
this range. In Section 3, we show that there exists an No > 0 (^ 1.159) such that for ail N < iV0, h0 ~ 1 is an
absolute minimizer of the functional X. In Section 4, we prove that for N > 2, inîheHX(h) > 2 -f- TT/4. Then,
in the following section, we explicitly construct a minimizing séquence h€ G H such that X(h€) -» 2 + TT/4 as
e -» 0, which proves that inîheH X{h) = 2 + ?r/4. For this minimizing séquence, the term corresponding to the
bulk elastic energy tends to 0, and the functional reduces to a measure of the length of the curve defined by
h€. The disappearance of the bulk energy term is achieved by the production of a crack in the specimen and
the energy cost for this is equal to twice the extra length induced by the crack. This is shown explicitly by the
construction of a non-parametric curve %*, the length of which equals 2 + TT/4, such that he converges to %*
a.e. Finally, Section 6 stat es a relaxation resuit: since minimizing séquences for X satisfy natural bounds in the
space BV of functions of bounded variation, we define an extension J of X on a compact set of BV functions
and show that this extension is lower semi-continuous with respect to BV.

2. STABILITY FOR THE LINEARIZED PROBLEM

In this section, we consider the standard linearized stability analysis for the trivial solution ho = 1 and
establish the following result.

Lemma 2.1. If N < 2n2, and k is a smooth function satisfying j0 kdx = 0, then
D2X(h0)k®k>0.

Before proving this result, we note that we shall show in Section 4 that h0 = 1 is not a minimum for values
of N which are much lower than 2-K2. This is not contradictory with the lemma, since the linearized analysis
only gives information about smooth perturbations.
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Proof. If an admissible function h is smooth, bounded away from 0, and if k is a smooth function such that
JQ1 k dx = 0, then

X(h + ek) - X(h) + e f ^ W W drc + jve /* -£^L da; f f [/i(x)]-1 dx)

4 - A T F 2 /" f k ^ d r \ f f I b f r ^ ^ d r ) - Nf2 f t f c ( s ) l A T ( f \h(r)]~-1 d r I

2 Jo 3 / 2 + o ( e )

In particular, for the function ho = 1, the above becomes

0 + ek) = l(h0) +%- ( ([k'(x)]2 - 2N[k(x)}2) dx + O(e3).
^ Jo

Hence ho = 1 has a lower energy than a smooth perturbation, provided that

/ (l^O)]2 - %N[k(x)}2) dx > 0 V^f f J fO , 1) sueh that / kdx = 0. (2.1)
io Jo

Now the functions en(a;) = sin(nTrx), n > 1, form a basis of HQ (0,1) and satisfy

fl f1

/ e2n0) dx = 0, /
Jo Jo

ƒ c^(x) do: = n27r2/25
o

1 2

2n +17T

Let k(x) = Y2n>i an^n(^)- The condition that the average of k vanishes yields

at = (n/2 J\k(x) - aiei(x)]dx^ = TT2/4 ƒ

Condition (2.1) reduces to
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Obviously, this condition is fumlled if 2TV < n2. Using (2.1) directly, we see that TV must be smaller than 2?r2,
since the second eigenfunction e<i has a zero average. However, if n2 — 2TV < 0, the estimate on a± yields

J2 < 4 ( n V - 2TV) > J2 a%+1 {(2p + 1)2TT2 - 2TV + (TT2 - 2TV)(TT2/8 - 1)]

Since the factor in the first sum of the expression on the right hand side is positive for TV" < 2TT2 , we conclude
that D2l(ho)k ® k is positive for TV in this range. •

3. STABILITY OF THE TRIVIAL SOLUTION

In this section, the trivial solution ho = 1 is shown to be the unique minimum of X, if TV is sufficiently small.
Specifically, we prove the following.

Theorem 3.1. The trivial solution h$ ~ 1 is a stable minimum with respect to perturbations of magnitude
k < 1, provided that TV < ip(k) ~ (Vl + 4/c2 — 1)(1 — k + k2)/k2. Also, ho is an absolute minimum if
N < TV0 = info<fc<i tf>(k) « 1.16.

Proof We begin by seeking a lower bound for the elastic energy that is quadratic in terms of the maximal and
minimal values of /i, for any admissible thickness h e H. Since / is translation invariant, we can always assume
that

h(x) = 1 + K(x) > 1 on [0, a], h(x) = 1 — k(x) < 1 on [a, 1],

The volume constraint on h becomes

ƒ K(x)dx~ k(x)dx = ö. (3.1)
Ju JOL

Let 1 + Ko and 1 — ko dénote the maximum and minimum of h, 0 < KQ, 0 < ko < 1. Straightforward
computations show that if Ao — (1 — /co)~1

)

—^— < 1-K + K2 \/0<K<Ko, ~^-~r < l + fc + AoA;2 V0 < k < k0.

Using (3.1), it follows that

1̂ ra. pi

Ja

< f [1-K(x)+K2(x)}dx+ f [
JO Ja

< 1 + OLKI + (1 - a)Xokl.

Thus, the elastic part of the energy can be estimated by

TV TV

ƒ„ [/i(x)]"1 da;
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On the other hand, a term such as /Q
a ^/l + {hf)2 dx is the length of a curve that joins the points (0,1) to (a, 1),

and that rises up to the level 1 + Ko. Suppose that h(ja) = 1 + Ko for some 0 < 7 < 1. The Jensen inequality
applied to the convex function y/l + x2 yields

f01 y/1 + {h'Y dx > 7a ( 1 + f f"Y(z)—1 J = Ji2a
o \ Uo 7aJ J v

Similarly, on the pièce [7a, a], we have

f (h')2dx >

Using the convexity of \Jo? + x2,

Hence we obtain

.

A similar estimate holds on the portion [a, 1], with a lower bound y/(l — a)2

these two estimâtes yields

ƒ V 1 + {h')2 dx >

Adding (3.2) and (3.3), we obtain

Again, by convexity, adding

(3.3)

As a function of a, the first term on the right hand side is increasing if K2 < ÀO&Q. In this case, the lowest
value corresponds to a — 0 so that

. N(i-kp) r

Thus, X(h) > T(ho), provided N is less than

/ i i A jU2 1

° k2
0).

If, on the other hand, KQ > ÀQ^Q, then the lowest value of the bound corresponds to a = 1, and then

TV>
" l + KÎ



ANALYSIS OF A ONE-DIMENSIONAL VARIATIONAL MODEL OF THE EQUILIBRIUM SHAPEL 579

The trivial solution achieves the smallest bound, provided N is smaller than

The first statement of the theorem then follows from the observation that iprn(k) < ^M(&) for k G (0,1). This
together with some straight forward computations which show that ipM is an increasing function of k and that
info<jt<i i>(k) ~ 1.16 establish the second statement. •

4. A GENERALIZED MINIMIZER FOR N > 2

In this section, we compute the infimum of (1.3) for values of N > 2 and show that it corresponds to the
length of a parametric curve representing a generalized thickness.

Theorem 4.1, If N > 2, then inf heRX(h) > 2 -f ?r/4. In addition, ifU* is the parametric curve defined by
the functions

ft+(x) = 1 - TT/8 + y/(x + x*)(l -x-x*) if 0 < x < 1 - x*,

K(x) = 1 - TT/8 + y/(x + x* -l)(2-x-x*) if 1 - x* < x < 1,

and the segment x = 1 - x*; 0 < y < 1 — TT/8? with x* = (4 — \ / l6 — TT2)/8> then the infimum ofX corresponds
to the length ofU*, where the length of the vertical part ofU* is counted twice.

Proof. To establish this result, we rewrite the minimization problem in the following form.

inf X(h) = inf ( inf X(h)\ (4.1)
h€H 0<e<l \hEHe J

where He is the set of piecewise C1 functions satisfying the constraints (1.2) and

min h(x) = e.
xe[o,i]

For h G He, l/h < l/e, so the first term in X is bounded from below by Ne. Thus, we get

inf l(h)>Ne+ inf £(h), (4.2)

where C(h) = /0 y/l + [/i'(x)]2 dx is the length of the curve h. The second term in the above expression is the
minimal length of a curve that takes the value 1 at its end points, reaches the value e as its minimum, and
bounds an area equal to 1.

Let Fe be the set of piecewise C1 curves satisfying

ƒ(x) > e in [0,1], /(O) = / ( l ) = e, f ƒ (x) dx = 1.
Jo

To each element ƒ of Fe, we associate an element h of He in the following way. If 0 < e < 1, the area constraint
forces ƒ to take the value 1. Let xi be the first point where ƒ = 1. Set

h(x) = f(x + xi) for 0 < x < 1 - xi, h(x) = ƒ(x - 1 + xi) for 1 - xi < x < 1.
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Since the volume constraint and the length of the curve are translation invariant, the function h lies in He. In
a similar fashion, we can associate to a function h G H€, a function ƒ G F€: if xe is the fîrst point where h
achieves the value e, we set

ƒ (a:) = h(x + xe) for 0 < x < 1 — xe, ƒ (re) = h(x — 1 + x€) for 1 — xe < x < 1.

It follows that the infimum of C can be computed either on He or on Fe. The latter is a case of the isoperimetric
problem. Its solution is described in the next proposition, the proof of which is given in the Appendix.

Proposition 4.2. If (1 — TT/8) < e < 1, the curve of minimal length, with value e at its end points, lying above
the value e? and bounding an area equal to 1, is the are of circle of radius R£ given by

1 - e = -y/4R^-l/A + Rl arcsin(l/[2iïc]). (4.3)

Moreover} the corresponding length is mïfepe £(ƒ) = 2Eearcsin(l/[2jRe]).
If 0 < e < 1 — TT/8, the infimum of C(f) is attained by the curve consisting of the vertical straight Unes

[0? y]7 e < y <1~ 7r/8 and [1, y], e < y < 1 — n/8, and the half-circle of radius 1/2 joining the point (0,1 — TT/8)
to the point (1,1 — TT/S). The minimal length is then

Returning to (4.2), we can bound the energy from below by

h{e) = Ne + 2Re arcsin(l/[2i?e]) if 1 - TT/8 < e < 1,

I2(e) = (N - 2)c + 2 + w/4 if 0 < € < 1 - TT/8,

and it follows from (4.1) that

inf J(M>minf inf Me), „ inf , J2(e) . (4.4)

We next show that for N >2, the infimum in (4.4) is attained at e = 0. Differentiating Ii with respect to e, we
get

On the other hand, the définition (4.3) of R€ yields

1 = 2 f J l

Eliminating dR€/de between these two relations shows that

since Jïe > 1/2. Thus5 for N > 25 Ji is an increasing function of e. On the other hand5 I2 is also increasing in
this case, which establishes the result.
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FIGURE 1. Plot of T*(x) along with y = 1 and corresponding plot of H*(x).

It is then easily checked that ^(O) — 2 + TT/4 is the length of the curve T* defined by the function

f*(x) = 1 - TT/8 + y/x(l - x) if 0 < x < 1

and by the two vertical lines

= 07 0 < 2/ < 1 - TT/8, x = 1, 0 < y < 1 - 7T/8.

To go back to the original boundary conditions, let x* = (4 — y/16 — TT2)/8, let

h*{x) = f*(x + x*) i f O ^ x ^ l - x * , h*(x) = ^ ( x + x* - 1) if 1 - x* < a; < 1, (4.5)

and let H*(x) be the curve defined by ft* and the segment X = X * , 0 < Ï / < 1 — TT/8. Then H*(x) satisfies the
conclusion of the theorem. D

The curve ^ ( x ) and corresponding "generalized thickness" K*(x) are shown in Figure 1. As is easily seen,
ft* is obtained as a rearrangement of ƒ* by first taking the part of ƒ* lying above y = 1 and then appending the
part lying below y = 1.

The theorem shows that to minimize X, it is advantageous to cancel the bulk elastic energy term, which is
achieved by breaking the specimen. However, the length of the crack has to be accounted for in the remaining
surface energy term.
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5. APPROXIMATION OF THE GENERALIZED THICKNESS

By constructing a minimizing séquence, we now show that the value 2 + 7r/4, given in the previous section
as a lower bound for mîh^H %(h)i is in fact the value of this quantity.

For 0 < e < 1 — TT/8, Ô > 0, p > 0, we consider the function f€t$ which is continuons on [0,1], linear on
[0,<5] U [1 - <5, 1], with value e at x = 051 and slope s€ts = ±(1 - TT/8 4- p - e + y/6(l - 6))/6, and for x G [6,1-6],

f€i6(x) = 1 - ?r/8 + p + V ^ T -

The constant p is selected so that f€i$ satisfies the volume constraint

/ f€iô = 2 / [se ̂ aî + e] dx
Jo Jo

= Ö [l - TT/8 + p -

- TT/8

- ?r/8 + p)

arcsin(l - 26)/4 + 26e.

The volume constraint yields

_ (5(1 - e) + TT/8(1 - ö) - 1/(5(1 - <5)/2 - arcsin(l - 26)/4

Expanding p as a series in Ö yields p = (1 — TT/8 — ejö + O(<53/2), so that p is positive and tends to 0 as <5 —> 0.
Thus, when ô is small enough, f€^$ is an admissible function.

Let us now compute the energy T(f€i§). For the surface energy, we have

ƒ
Jo

where K\ is the length of the linear part, z.e.,

K\ = 2 / \ / l + 52
 ö dx = 2

Jo v

and K2 is the length of the are of the circle, ie.,

J Q

For the elastic part, let

where J i corresponds to the linear part, l e . ,

- TT/8 + p - e

= TT/2 - arccos(l - 2(5).

— _ j x _j_ J 2 J

0 Je}<5

:lOg 1 +
1 - ir/8 + p - e + ,/e5(l - 5)
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FIGURE 2. Plot of y = fe,s(%) along with y = 1 and corresponding plot of y = hej{x).

The term J<z is the contribution of the are of the circle

0 < J

Thus, the total energy is

fl-6 j x

/ -=- dx < - / 8

= TT/2 - arccos(l - 25) + 2\ 52 -f [l - TT/8 + p - e + y/ó(l - ö)}
V L J

— TT/8 + p — e

1 - TT/8 + p - e +
:l0g 1 +

where J2 is bounded. When p, e, and ö tend to 0, this quantity behaves like

) ~ TT/2 + 2(1 - TT/8) + TV \j2 + —^— log
- 1

- 1

The choice <J = [log(l/e)]~1/2 shows that I(f€t$) -> 2 + TT/4 = /2(0), the length of F+{x), when e -> 0. On the
other hand, the séquence /€j<$ converges pointwise to ƒ*. Therefore, it follows from Theorem 4.1 that /Cj$ is a
minimizing séquence, when N >2.
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From (fe,s)y it is then straightforward to construct a minimizing séquence he$ that satisfies the boundary
conditions. Let hEis be defined by

U ç.(™\ f s(™ _t_T 1\ if 1 T <T T <T 1

The function (f€iô) and corresponding function /i£)5 are shown in Figure 2 for the choice e = 10~160 and
ô - log(l/e)-x/2 « 0.05.

For iV > 2, the curve ?{* (ie., /i* defined by (4.5) and a crack) is thus a "generalized minimizer" for our
original problem.

6. A RELAXED FORM OF THE ENERGY

In the resuit of stability for values of TV > 2, we constructed a séquence of piecewise C1 functions /in,
the énergies of which converge to the value of the infimum 2 + TT/4. This number is also the length of the
non-parametric curve 7/*, defined in Theorem 4.1. The séquence {hn}, satisfies the estimâtes

pi pi
ll^nlli,1 = 1) / |^n|da;< / \ / l + (hf

n)
2àx < M

Jo Jo
for some constant M. In other words, {hn} is a séquence in the space BV of functions of bounded variation [6],
which is bounded in the norm in BV. It follows that {frn} is precompact in BV [6], ie., that upon extracting
a subsequence, {hn} converges to the BV function /i* defined by (4.5):

*(x) = 1 - TT/8 + V(«+ » * ) ( ! - « - » * ) f o r 0 < x < 1 - x* = (4 + V16 - TT2)/8,

h*(x) = 1 - TT/8 + V(^ + ^* - l ) ( 2 - a ; - x * ) for 1 - x* < x

The convergence holds in the following sensé:

hn —> ft+ strongly in 1^(0,1),

y/l + (h'n)
2dx> / V 1 + C

Jo
liminf

We would like to cast the problem of minimizing (1.3) in a setting that ensures well-posedness. In other words,
we would like to consider a functional, which is lower semi-continuous in the natural norm, and which is defined
on a compact set of admissible thicknesses.

The space BV seems to be the natural space and for h e BV, strictly positive, the définition oiX(h) in (1.3)
makes sensé. The closure of this subset of BV functions however, contains functions that vanish, for which we
need to extend the définition of J. Clearly, the trouble cornes from the term (JQIHX)]'1 dx)"1 that reflects
the fact that no uniform coercive estimâtes on the displacements are available in the original minimization
problem (1.1).

Let H* dénote the set of positive BV functions, satisfying the boundary conditions and the volume constraint
of (1.2). In i/*, wedefme

/ N \ f1 >
J(h) = min 2 min(A), — + / ^1 + (hf)2 dx, if min(h) > 0,

V J0[Kv)]-ldxJ Jo
J(h) = / V1 + (h')2 àx, otherwise.

Jo
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Proposition 6.1. The functional J extends the functional X in the following sense:
(i) If h e H* is bounded away from 0, i.e., h(x) > a > 0 a.e. in [0,1], then T(h) > J(h).
(ii) If {hn} is a séquence of functions in H* that converges to h G H* in X1(0,1), such that each hn is bounded
away from 0, then liminfn_).oo^(^n) > *J{h).

Proof. The first statement is a trivial conséquence of the définition of J. To prove the second point, we consider
a séquence {hn} C iï*, such that for each n, min(ftn) = m^ > 0, and hn{x) —> h in I/1(0,1). By density, we can
always assume that the functions hn are C1 on [0,1] [6].

Case 1. If min(ft) = 0, then

liminf X(/in)>liminf / ^ 1 + (hf
n)

2 dx > f ^1 + {h1)2 dx = J(h),
n^oo n^oo jo j Q

where the last inequality follows from the lower semi-continuity of Jo yjl + (hf)2 dx (i.e., the length of h) in
BV [6].

Case 2. If min(/i) = m > 0 and liminf^^oo mn > 0, then, h~x G L1(0,1) and for a subsequence

hn —» h a.e., h~l —> h~x a.e.

Prom the Lebesgue Dominated Convergence Theorem, it follows that

N N
> —i

Thus, using again the lower semi-continuity of the length in BV, we obtain

n) > - p ^ + /
Jo h~xdx Jo

liminf l(hn) > - p ^ + / y/l + (h')2dx > J(h).
n^°° J hxd J

Case 3. If min(/i) — m > 0 and liminfn^oo mn = 0, then we can always assume that the whole séquence hn

tends to h a.e. and that

mn -> 0. (6.1)

Let e > 0 be such that m — e > m/2 > 0. For n larger than some TVQ, mn + e < m — e. Let (j>n(x) =
sup(m — e, hn(x)). Since hn < <pn < sup(/i, hn) a.e.,

4>n —> h a.e.

Moreover, since hn is continuous, for n > NQ there exists an interval [xn,yn], of length dn, such that

hn(xn) = K(yn) = m - e, min(ftn) = mn in [xn, yn], hn<m~ein [xn, yn].

The length of hn on [xn, yn] is greater than the length of two straight lines Connecting the points (xn, m —
e), ([in + yn]/2,mn), (y n ,m-e ) . Hence,
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On the other hand, since the length of <pn on that segment is simply dny we get

[ y/l + (h'n)
2 dx > / y/1 + (<^)2 dx + yfdl + 4(m - e - mn)2 - rfn.

Jo Jo

We claim that

dn -» 0 as n -> oo. (6.2)

Indeed, if dn —» a > 0, we could find a subsequence such that a : n 4 x , yn —> y, and for n large enough,

xn - a/5 < x < xn + a/5 < yn- a/5 < y < yn + a/5,

so that we would have ftn < m — e on [x + a/5,2/ — a/5] for n large enough. This contradicts the fact that
hn -^ h a.e.

Finally, using (6.1-6.2) and the semi-continuity of the length in BV, we have

liminf X(hn) > liminf f y/l + [hl
n)

2 dx
n—^00 n—>oo J ç.

> liminf [ / y/1 + (<£'J2 dx + 7 4 + 4(m - e - mn)
2 - dn]n->o° Uo J

Letting e tend to 0, we obtain liminfn_^oo X(hn) > J{h). D

Proposition 6.2. The functional J is lower serai-continuons on H*.

Proof. Let {hn} C H* be such that hn —> h in L1(0,1) and ƒ ->/l + (hf
n)

2 dx is bounded. We want to show that

liminf J(hn) > J(h). (6.3)
n—»oo

We can always assume that the functions hn are C1 [6].
If min(/i) = 0, then (6.3) is satisfied trivially. If min(/i) = m > 0 and min(frn) = mn tends to some value

m* > m, then

( N \ f N \ . { N \
2mn, —r: ! —>• m i n ( 2m*. —* > min I 2m, —, ,

and (6.3) follows from the lower semi-continuity of the length.
If m* < m, then let e > 0 be auch that m* + e < m — e and let <t>n(x) = sup(m — e, hn(x)). Then, by the

same arguments as those of Proposition 6.1,

liminf f y/l + (hf
n)

2dx > liminf [ [ y/l + (</>'n)
2 dx + y/d2

n -h 4(m - e - mn)2 - dn^ ^ ^ Jo n-»oo [y0

> / A/ 1 + C1')2 dx + 2(rn - e - m*).
Jo

If rn* — 0, since liminfn_>oo Jihn) is larger than the right-hand side of the above inequality, (6.3) is obtained
by letting e -> 0.
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If m* > 0, then we get

liminf \2mn+ f y/\ + (h'n)
2 dxl >J(h)-2e.

n->°° l Jo J

On the other hand, the Dominated Convergence Theorem and the lower semi-continuity of the length yield

liminf - y — ^ + / y/1 + (h'n)
2 dx > - ^ + / y/1 + (hf)2 dx > J(h),

and (6.3) follows from these last two inequalities by letting e tend to 0. •
Proposition 6.2 and the precompactness of séquences in H* in the norm in BV imply that J achieves a

minimum in H*. For N > 2,

N N
> >2mm(h)

and thus,

V/i G £T t , J(h) = 2 min(fc) + / y/l + (h')2 dx.
Jo

The arguments of Section 4 show not only that X(h) > 2 + TT/4, but also that J(h) > 2 + TT/4. On the other
hand, the function ft*, defined by (4.5) satisfies

J{K) = 2 + n/4 = min J.

7. APPENDIX

Proof of Proposition 4-2. Assume ƒ G Feo, i.e., that ƒ is a piecewise C1 function such that

/(O) - ƒ(1) = eo, f{x) > eo, xe [0,1], f f(x) dx = 1.
Jo

Since the minimal length of ƒ E Feo dépends on the value of eo, we shall consider two cases.
Case 1. 1 -TT/8 < e0 < 1.
In this case, we first show that there is an arc of a circle which is an admissible curve. To this effect, we seek
2/o and .Reo •> such that

fo(x) = yo -

defines an arc of a circle that connects the point (0, e0) to (1, eo), that encloses an area equal to 1, and that lies
above the Ie vel eo- Expressing these conditions, we get

( e o - I / o ) =

= yo+ V 4 i ^» X + R^ arcsin(l/[2 Reo\).
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It follows that

e0 = 1 + ( 1 / 4 ) ^ 4 * 2 , - 1 - R2
eo arcsin(l/[2 Reo]). (7.1)

For r G (1/2, oo), let

(j>(r) = 1 + (1/4) v ^ r 2 - 1 -r2arcsin(l/[2r]).

Then <f>'(r) = 2rp(r) where p(r) = (4r2 - l ) " 1 / 2 - arcsin(l/[2r]). Since p'(r) = -l/[r(4r2 - l)3 '2] < 0 for
r > 1/2, /? is a decreasing function. Since p tends to zero as r tends to infinity, it follows that p and hence <f>f{r)
are positive, which implies that <j> is a strictly increasing function. It is easy to check that <f> maps (1/2, oo) onto
(1 — TT/8, 1). Thus, for each 1 — TT/8 < e0 < 1, there is a unique Reo solution of (7.1). Furthermore, Reo tends
to 1/2 (resp. oo) as e0 tends to 1 — TT/8 (resp. 1).

Let DQ dénote the upper half of the dise of radius Reo, centered at (l/2,yo)> and let Fo dénote the part of
its boundary that lies below eo and above yç>. The domain D enclosed by Fo, the line y = yo> and the curve
defined by ƒ has the same area as JD0. The classical isoperimetric inequality [2] implies that the length of the
boundary of D is greater or equal to the length of the boundary of Do • Thus

f
Jo

= 2Reo arcsin(l/[2it!eo]).

Case 2. O < e0 < 1 - TT/8.
We can no longer draw an arc of a circle bounding an area of 1 through the points (0, e0) and (1, eo). The proof
of this case is divided into two steps. In the first one, we replace ƒ by another function ƒ* that has length less
than or equal to the length of ƒ. Then in the second step, we obtain a lower bound on the length of ƒ*.

Step 1:
In addition to the previous hypotheses, assume that ƒ is piecewise linear. We shall subsequently extend the
results obtained by a density argument. Let e M be the maximum of ƒ. For e G [CO^M]»

 we define

n e - {0 < x < 1 : ƒ (re) > e}, g (e) = [ (f - e) dx, ft(e) = TT/8 |Oe|
2.

The function ft is the area of a half circle of diameter \fle\. It is a right-continuous, decreasing function. The
function g measures the area enclosed by ƒ above the level e. One can readily check that g is decreasing and
continuous: if e < e',

9(e)=

< f (/-e;)dc+ f

Also, we have

g(e0) = 1 - eo > TT/8 = h{e0). (7.2)

Again, we consider several cases.

Case a: h(e) > g(e) for some value of e G (eo, CM) or h{eu) > 9{^M)-

The motonicity and continuity properties of g and ft, together with (7.2), imply that ft (e*) = #(e*), for some
value e* £ (eo,eM).
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Since the area enclosed by ƒ and the length of ƒ are translation invariant, Jïe# can be assumed to be connected
and centered at some point x*. Then, the function ƒ*, given by

ƒ•(*) = ƒ(*) i fxe[O, l ] \ f ie . ,

ƒ*(*) = e* + ^ | î î 2 . | / 4 - ( x - x . ) 2 i f

also encloses an area equal to 1. It is a conséquence of the standard isoperimetric inequality on ne„, that ƒ*
has a smaller length than ƒ.

Case b: h(e) < g (e) for all e € (eo,eM) and /I(6M) < )

First, observe that if fieM contains a subset o; where ƒ is flat, then gieu) = 0, while h(cM) > ?r/8 |u;|2 > 0.
Since this cannot occur under the hypothesis of Case b, we conclude that ƒ ' / 0 a.e. in ÇleM. Hence, for e close
enough to ÊM, fie consists of a finite number of intervals

such that ƒ is increasing on [xi — r~}Xi] from /(e) to f (eu) and decreasing on [x^Xi + r̂ 1"] from f (eu) to /(e).
Again, by translation invariance, üe can be assumed to be connected (z.e., x̂  + r2

+ = Xi+i — ^ i ) and centered
at some point x*. Since ƒ is piecewise linear and has a saw-tooth profile in fie, we have

e)/2. (7.3)

Thus, ft(e) < g(e) implies that (eM — e)/2 - ?r/8 |fie| is positive. Hence,

e* = e + (eM - e)/2 - ?r/8 |îîe| = (eM + e)/2 - ?r

Clearly, we also have e* < eu- Let ƒ*(#) be the function defined by

f*(x) = f(x) if X e [0, 1] \ fïc>

f*(x) = e* + \/|fie |2/4 - (x - x*)2 i f ze f ie , ie., |x -x*[ < |fïe|/2,

and let C* be the curve defined by the union of the half circle (x, ƒ*(x)), |x — x* | < |fïe |/2, and the two vertical
segments [x* ± |fie|/2,y], e < y < e*.

According to the définition of e*,

f (f*-e)àx= f [(e* - e) + Vl^eP/4 - (x - x,)2l dx - (e, - e)\Qe\ +

= [(eM - e)/2 - 7r|îîe|/8] |îîe| + 7r|ne|
2/8 - |fie|(eM - e)/2 = / (ƒ - e) dx.

Besides, (7.3) gives the following estimate of |Qe|-

h(e) - 7r|Oe|
2/8 < g(e) = \Qe\(eM - e)/2 ie., 7r|fie[/4 < eM ~ e. (7.4)
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Now the length of ƒ on fte is given by

N

(eu — •
i=i

+ 4iV2(eM - e)2 > Vl^el2 + 4(eM - e)2,

by the convexity of the function Va2 + #2- On the other hand, using (7.4), the length of C* is

2(e* - e) + 7r|^e|/2 = (eM - e) + 7r|ne|/4 < 2(eM - e) < Vi^el2 + 4(eM - e)2,

and thus is smaller then the length of ƒ.

Step 2:
So far, given a piècewise linear admissible function ƒ, we have constructed another admissible functîon ƒ*, which
may have jumps, but whose length, £(ƒ*), is less than or equal to the length of ƒ. In particular, the constraint
on the area yields

1 = f ƒ* dz + / ƒ* dx.
J{f*>e*} ^[0,l]\{/*>e,}

In Case a, Oe* is also the set where ƒ* > e* and so it follows easily from the above that

1 < f /„dx + e^l - |fiej) =

In Case b, Qe is the set where ƒ* > e* and so

1 < / /*dx + e , ( l - | ^ e | ) -
Jne

Hence, in both cases,

e* > 1 - TT/8.

Let Z> be the domain that consists of the area enclosed by ƒ* above the level eo and its symmetrie image about
the line y = eo- Its area is A(D) = 2(1 — e0), and its length is l(D) = 2Z(/*). Further, by construction, D
contains two dises of radius |fle# |/2, whose centers are separated by a distance d = 2(e* — eo). In this situation,
the following isoperimetric inequality holds (see p. 7 in [2]).

1{D?>

z.e.,

l{f*f > 2^r(l - e0) + 4(e* - e0)2 > 2TT(1 - e0) + 4(1 - TT/8 - e0)
2 = [2(1 - e0) + TT/

By density, it follows that for ail ƒ G Feo

i
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It is easy to check that this value is attained by the curve consisting of a half circle of radius 1/2 centered at
(1/2, e*) and the two vertical segments [0,2/], and [1,2/], with eo < y < e*, where e* = 1 — w/S. Note that this
is precisely the curve C* in the case when e — e0 (and £le = [0,1]).
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