
ESAIM: MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

DARIO BENEDETTO

EMANUELE CAGLIOTI

ROBERTO LIBERO
Non-trapping sets and Huygens principle
ESAIM: Modélisation mathématique et analyse numérique, tome 33, no 3 (1999),
p. 517-530
<http://www.numdam.org/item?id=M2AN_1999__33_3_517_0>

© SMAI, EDP Sciences, 1999, tous droits réservés.

L’accès aux archives de la revue « ESAIM: Modélisation mathématique et analyse
numérique » (http://www.esaim-m2an.org/) implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation com-
merciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1999__33_3_517_0
http://www.esaim-m2an.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Mathematical Modelling and Numerical Analysis M2AN, Vol. 33, N° 3, 1999, p. 517-530
Modélisation Mathématique et Analyse Numérique

NON-TRAPPING SETS AND HUYGENS PRINCIPLE*

DARIO BENEDETTO1, EMANUELE CAGLIOTI1 AND ROBERTO LIBERO1

Abs t rac t . We consider the évolution of a set A C M2 according to the Huygens principle: i.e. the
domain at time t > 0, At, is the set of the points whose distance from A is lower than t. We give
some genera! results for this évolution, with particular care given to the behavior of the perimeter of
the evoluted set as a function of time. We define a class of sets (non-trapping sets) för which the
perimeter is a continuous function of t, and we give an algorithm to approximate the évolution. Finally
we restrict our attention to the class of sets for which the turning angle of the boundary is greater
than —7T (see [2]). For this class of sets we prove that the perimeter is a Lipschitz-continuous function
of t. This évolution problem is relevant for the applications because it is used as a model for solid fuel
combustion.

Resumé . Considérons dévolution d'un ensemble A C M2 suivant le principe de Huygens : au temps
t > 0, cet ensemble est transformé en A*, l'ensemble des points dont la distance à A est inférieure à t.
Nous prouvons quelques résultats généraux pour cette évolution et nous étudions en détail l'évolution
du périmètre de A*. Nous définissons une classe d'ensembles (dits ensembles non-piégeants) pour
lesquels le périmètre est une fonction continue de t, et nous donnons un algorithme pour approcher
cette solution. Enfin, nous considérons la classe des ensembles pour lesquels l'intégrale de la courbure
sur tout sous-arc orienté de la frontière est supérieure à — n (voir [2]). Pour cette classe d'ensembles,
nous montrons que le périmètre est une fonction lipschitzienne de t. Cette évolution du périmètre est
utilisée comme modèle de combustion de propergols solides.
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1. INTRODUCTION

Let A C M2 be an open and bounded set, and let us define

At = {x € M2 : dA(x) < t} , (1.1)

where <2A(X) is the distance between x and A, that is

dA(x)=inf | x - y | . (1.2)
y€A
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Let us dénote with Pt and At the perimeter and the area of At respectively.
In this paper we are mainly interested in the properties of Pt as a function of t and of the initial datum A.
We describe the following physical situation: a solid homogeneous fuel has a cylindrical cavity whose plane

section is A. Suppose that the whole internai surface of the fuel is lit at time t = 0. Because of the homogeneity
of the fuel, the fire front moves with constant velocity v (for sake of simplicity we choose v = 1), therefore the
plane section of the cavity at time t is At. The energy produced up to time t is proportional to the volume of
the burnt fuel, then the power at time t is proportional to the measure (the perimeter) of the boundary of At.

In the applications the goal is to know the perimeter, as a function of the time, once that it has been given
the shape of the fuel (A).

The function "distance from a set" is also a subject of study of shape analysis (see [3] and références therein).
The évolution according to the Huygens principle can be considered as a particular case of the motion by

mean curvature, but for the fact that generally, in the literature, the velocity is a non constant function of the
curvature. Nevertheless the two problems may have similar features: in particular it is interesting to characterize
class of sets for which the évolution has good properties (see [2], and références therein).

Let us sketch out the contents of this paper.
In Section 2 we define the mathematical problem and we give some preliminary properties of the function

"distance from a set" and of the perimeter as a function of the time. In particular we give an explicit bound on
the perimeter: Pt < 2At/t> This is a regularization result, in fact the perimeter of the évolution of any bounded
set of the plane is fmite at any t > 0 and it can diverge at most as l/t as t —> 0+. Then we define a class of
sets, non-trapping sets, for which the évolution has very good properties. In particular this définition assures
us the continuity of the perimeter as a function of the time, the fact that the boundary of At is a Jordan curve,
and the fact that the fuel remains connected for any t. This requirement is necessary in the applications we are
interested in, in fact otherwise the fuel would break up.

In Section 3 we construct explicitly the évolution of sets whose boundary is a Jordan curve made of segments
and arcs of circle. This évolution can be computed by means of a very simple algorithm. Then we prove that
we can approximate the évolution of the perimeter of a non-trapping set A with the évolution of the perimeter
of polygons that approximate A in the Haussdorff distance. Moreover it is possible to compute explicitly an
estimate from above and from below of P t , in terms of the perimeter of the evoluted of the approximating
polygons.

In [2], Chow, Liou and Tsai define the class of regular curves whose turning angle is greater than —7r. With
this condition, they are able to prove that the expansion of a curve, by a positive strictly decreasing function
of the curvature, has good properties. This extends the results, obtained by Tsai, for star-shaped curves.

In Section 3 we generalize this définition to sets with non regular boundary {TÏ—sets). We characterize this
kind of sets: in particular we prove that the boundary of a n—set is union of a finite number of Lipschitz curves,
and that this number is estimated from above only in terms of the turning angle. Then we give also a bound
on the perimeter of a TT—set only in terms of the turning angle and on the diameter of the set.

Finally, we prove that if A is a 7r—set then At is a n—set and Pt is a Lipschitz function of t.

2. THE DISTANCE FUNCTION AND THE NON TRAPPING SETS

Let A be a bounded set in M2. Let C£A(X) : M2 —> [0, +oo) be the distance between x and A, ie.

dA(x)=inf | x - y | . (2.1)
yGA

We are interested in the properties of the famüy of sets A* = {x : ^A(X) < £} . In the following we shall dénote
with A(D) and P{D) the Lebesgue measure and the perimeter of a set D respectively, and with At and Pt the
Lebesgue measure and the perimeter of At, where the perimeter of a measurable set D is defined as (see [5]):

P(£>)=supjVdivg: geCg°(IR2;R), | | g | U < l | - (2.2)
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Let us give some preliminary results (for an extensive analysis of the distance function see [3]).

Proposition 2.1.
(i) d\ is a Ltpschitz function, W A exists a.e. and \Vd\\ = 1 a.e. %n d\ > 0.
(ii) |x|2 — dA(x) is a convex function and d^ is twtce-dzfferenüable Urnes a.e. m the set d\ > 0.
(iii) For any D C At:

Pt-P{D)<-t{At-A{D)). (2.3)

(iv) In particular:

(2.4)

The first two points follows by the well known Rademacher and Alecksandrov Theorems. The a priori bound
(2.4) follows from (2.3) by considering D = 0. The inequality (2.3) is a conséquence of the fact that At is union
of circles of radius t. This fact allows us to deal with very rough sets. The main ingrediënt of the proof is the
following Lemma, which is also the main ingrediënt of the proof of almost all the results of this paper.

Lemma 2.1 (Addition of disks). Let A be a measurable set of area A with finite perimeter P. Let B be a disk
of radius t > 0? and A' — A U B. Fmally let Af and Pf be the area and the perimeter of A' respectwely. Then

9 A1 9 A

"-Ts'-T (2'5)

Proof First of all, let us notice that if M and N are measurable sets, then

P(M U N) + P(M f\N)< P(M) + P(N), (2.6)

which is conséquence of the fact that M and N can be approximated in area and perimeter with polygons, and
of the lower semi-continuity of the perimeter with respect to the convergence in measure of the sets (see [5] ).

Let C = AH B, and let us dénote with Ac and Pc the area and the perimeter of C respectively. From (2.6)
we have

p' <p

A'ZA + ̂ -A"
 (2-7)

then,

t - t t

By the isoperimetric inequality (see, for instance, [4,5]), Pc > 2^pK\[~A~c, then

^ -Pc < ̂ - 2 v ^ V ^ < 0 , (2.9)
z z

where in the last inequalities we have used Ac < rct2] (2.7) and (2.9) give (2.5). D
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(a) (b)

FIGURE 2.1. A trapping set.

Proof of point (iii) of Proposition 2.1. The set At is the union of D and a countable set of circles of radius t:

oo

(2.10)
fe=i

Let Dn — DU (Ufc=i ), An and Pn the area and the perimeter of Dn respectively, then, cause (2.5),

(2.11)

As n -^ co, A(At\Dn) = At — An —> 0; then équation (2.3) follows from (2.11), by the lower semi-continuity of
the perimeter with respect to the convergence on measure of the sets.

In the following we shall concentrate our attention on the family of sets A of the plane for which CAt = M2\A^
is always connected.

This requirement is necessary for the applications, in fact otherwise the solici fuel would break up.

Définition 2.1* Let À C l 2 be a bounded domain, i.e. a bounded, open and connected set: A is a non-trapping
set if Vx, Vt > 0 such that Bt(x.) n A = 0, there exists a continuous curve x(s) : [0, -j-oo) —>• IR2, with x(0) = x
and lims_>+oo |x(s)| = oo, such that Bt{x(s)) f) A = 0 [i.e. CZA(X(S)) > t], for s > Q.

In Figure 2.1a we have drawn a non non-trapping set and its evoluted at times t\ < Î2- At time t\ the
complementary of A* becomes disconnected. Notice that if A is a trapping set, we can put a bail in A trapped
by A (see Fig. 2.1b).

The condition d\{x.(s)) > t (instead of the more natural d\(x.(s)) > t) is necessary to obtain that the
boundary of At is a curve, and then that the perimeter is a continuous function of t (see Fig. 2.2). In
Figure 2.3 we have drawn a non-trapping set.

Let us summarize the regularity properties for non trapping sets.

Theorem 2.1 (Regularity). If A is a non-trapping set then:
(i) CAt is connected for all t,
(ii) 9{x | CZA(X) > t} — dAt — {x | CJA(X) = t} is a Jordan curve for t > 0;
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FIGURE 2.2. A trapping set.

FIGURE 2.3. A non trapping set.

(iii) dAt is rectifiable, and it is union of countable set of arcs with continuously turning tangent. In particular,
it is possible to parameterize dAt, in the arc length s, as

where a(s) is the turning angle of the tangent in x(s); and a(s) ~ s/t is not increasing in s. Furthermore, it

exists the curvature k(s) as a measure and k(s)ds < -ds;

(iv) the perimeter P(t) is a continuons function oft, as t > 0.

Proof The first assertion is quite obvious, while the proof is a little involved. We omit it, addressing the reader
to référence [7] pages 160-167, where are discussed some conditions for the connection of sets. Assertion (ii)
follows from direct inspection.

For point (iii) we proceed as in proving the regularity of the boundary of a convex set [1,8]. We can prove
the existence of the right and left tangent using the fact that in any points of dAt there is an internai tangent
bail of radius t. The jumps of the tangent, in terms of the turning angle, must be négative, then the jump
set is countable. This implies that we can define the are length. Moreover, in an interval [51,52] where 9(s) is

continuous, #($2) — #(si) > > because in any points of dAt there exists a tangent internai bail of radius t.
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FIGURE 3.1

The continuity of the perimeter, which is conséquence of the fact that At is a non trapping set and dAt Jordan
curve for any t. We omit the proof. •

3. EVOLUTION OF POLYGONS: A NUMERICAL ALGORITHM

In this section we consider the case 9A is a curve made of segments and arcs of circle. The main motivation
for studying this case, is the fact that the class of this kind of domains is closed for the évolution, and that
their évolution is easy to be described and explicitly calculâted. Therefore, we have a good tooi to obtain a
very satisfactory algorithm to approximate the évolution of a generic set.

First of all let us give some gênerai définitions.

Définition 3.1 (Curvilinear polygons). We say that A is a eurvilinear polygon if 7 = dA is a Jordan curve
union of a finite number of arcs of circle, with external concavity and segments.

Let j z : i = 1, 2,..., n; be the sides of 7 enumerated counterclockwise, including the vertex of local convexity
as arcs of circle of radius 0 centered m the vertex itself.

The évolution at time t may be constructed in the following way (see Fig. 3.1):
1. An arc of circle evolves in the are of circle with the same center, the same angle at the center, and with the
radius increased of t. A segment is translated externally for a distance t.
2. Some parts of the arcs constructed in this way fall in the interior of the domain, and they are eut away.

For curvilinear polygons which are non-trapping set, the évolution is particularly simple: bef ore the first time
of shock (the time when an arc disappears), we have to compute only the intersections of two consécutive arcs
(it is sufricient to solve at most second degree équations).

Another important feature, from the numerical point of view, is the fact that the number of arcs can not
increase, and the number of shocks is at most equal to the number of arcs minus two.

The exact computability of the perimeter of the evoluted of a non trapping curvilinear polygon suggest us
to approximate the value of P(At) for a generic non trapping set A with P(Dt) where D is a polygon which
approximate in some sense the set A (see Fig. 3.2). This program is successful as stated in the following
theorem.

Theorem 3.1 (Approximation). Let A be a non trapping set, and D C M2 be such that djj(D,A) = inï{S :
A c D5, D c As} = e. Let us indicate with pt and at the perimeter and the area of Dt respectively. Then Pt

satisfies

Pt <Pt< Pt
+, (3-1)
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FIGURE 3.2

where

Furthermore P t
+ — Pf

Pf =

Pt+=Pt_e+2

O as e —»• 0: m particular

Pt - *T < ^t-£ - Pt+e +

,&t+e — dt-e

(3.2)

24e
max PT.

£ — £ rG[t-2e,t+2e]
(3.3)

Theorem 3.1 gives us an estimate of the error made approximating the évolution of A with the évolution of D.
If D is a polygon, pt, at, and therefore P t

+, Pt~, can be explicitly calculated. We have seen that the error is
estimated by Pt-e ~ Pt+e + O (e). Then it is clear that if the perimeter is only continuous, we can only say that
the error vanishes as e —> 0. Below we shall define a class of sets whose perimeter turns out to be a Lipschitz
function of t. For this class of sets, the error vanishes linearly in e.

Proof. From (2.3), being Dt^£ C At:

Pt—e £ T ^ *t £~r~j (o.4a)

which implies, using At < at+€) Pt < Pf+- By noticing that At C Dt+£'

(3.4b)

which implies Pt > Pt . By writing down (3.4a) at time t + 2e and (3.4b) at time t — 2e, we obtain

^ r> o ^ t + 2 e ~~ at-\-e
Pt+e ^ ^t+2e - ^ f 4-0 '

Pt-e < Pt-2e + 2-

(3.5)

t-e
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By substituting (3.5) in the expression for P t
+ — Pt~ and by writing down At^2e — ̂ t-2e as jt-2e d^Psj with a

little algebra we find (3.3). D
In the following proposition we summarize the regularity properties of the perimeter along the time évolution.

Proposition 3.1. Let A be a non-trapping curvüinear polygon. Ift is not a time of shock, then

(3-6)

where ai is the turning angle at the vertex between the sides % and i 4- 1 of dAt, ie . the angle between the left
and right tangent vectors, measured counterclockwise (ai = ir — pi, where j3i is the internai angle at the vertex
and ai is positive if and only if the vertex is a vertex of local convexity for Kt).

Moreover, for any t and r > 0,

Pt+r <Pt + 2TTT. (37)

The pro of of (3.6) follows by direct calculât ion, by reminding that the total turning angle along d At is 2?r.
lal

The Steiner-type inequality (3.7) is a conséquence of the fact that 2tan -~- — \a\ is non négative. We call

équation (3.7) Steiner-type inequality, because Steiner proved that for convex sets it is Pt+r = Pt + 2TTT. Steiner
type inequalities have been considered, for example, in [6].

In order to give an explicit bound from below of the perimeter, we need to impose more initial regularity
for A.

Définition 3.2. The turning angle for a closed curvilinear polygon dA is

6(ÔA)= inf [ k(s)ds, (3.8)
rcôAJr

v/here F is a conriected arc of 9A, s is the arc length, and k(s) is the curvature with respect to the outer normal.
In the vertex of abscissa 5, from the arcs i, i + 1, the curvature is defîned as k(s)ds = aiS(s - s) ds.

Définition 3.3. A curvilinear polygon A is a TT—polygon if 0(<9A) > —?r.
Let us dénote with 77(dA) the intégral on dA of the négative part of the curvature:

7}(dA)= fmin(k(s),O)ds= ^ a». (3.9)
J i:cti<Qi:cti<Q

Proposition 3.2 (Some properties of n—polygons.). If A is a TT—polygon then
(i) A is a strictly non-trapping set.

(3.10)

0(ôAt) > 0(ÔA), (3.11)

(iii) At is a TT—polygon.
(iv)

where d is the diameter of A.
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The proof of (i) follows by geometrical considérations. The inequalities (3.10-3.11) follow by direct inspection.
The assertion (iii) is a conséquence of the assertion (ii). To prove the inequality (3.12), we need to estimate the
curvature of dAt. First of all, by (3.9), r/(dAt) = f k~(s) ds, where k~ is the négative part of the curvature.
Let us notice that ƒ k(s)ds — ƒ k+ (s) ds -f ƒ k~(s) ds, and k(s) < l/t (see Theorem 2.1). Therefore:

ri(dAt)= fk-(s)ds = 27T~ [k+(s)ds>2<K-Ij- (3.13)

By équation (2.4)

Pt<2^<^(d + 2t)2, (3.14)

where d is the diameter of A. Using équation (3.14) in (3.13) we obtain équation (3.12). D
As said before, the requirement that A is a n—polygon give more regularity to the function P(t), as stated

in the following theorem.

Theorem 3.2. If A is a ir—polygon then Pt is a Lipschitz function oft. In particular, as r > 0

27r " j e f ^ l / ( | 0 ( O A t ) l ) ) r - Pt+T ~Pt-
where f (6) = 2 t a n | — 6, and where, by Proposition 3.1,

r](dAt) > max < r](dA), -TT f — + — ) L

f3

S(dAt) > max je(flA), -TT (™ + Ç\\ -
t t2jj

Notice that if Q(dA) — O, PÉ+T = Pt 4- 2TTT; m £/ws case the set is convex.

Proof. The right end side of (3.15) is the Steiner type inequality proved in Proposition 3.1.
We have to estimate from above the left end side of (4.2) of Proposition 3.1, with the constraints ]T .̂ a < 0 \ai\ =

\ï](dAt)\ and |a^| < \Q(dAt)\. In fact, from Proposition 3.2 \r](dAt)\ and \Q(dAt)\ are not increasing in t. By
observing that ƒ (a) + ƒ (6) < ƒ(a - e) 4- ƒ (6 + e), as 0 < a < b < TT, 6 + e < 2?r, and a - £ > 0, then

(3.17)

where, by denoting with [ ] the integer part, n = , , *. , and r = ^ — n. Equation (3.16) follows
|_ \v{oAt\ J ^(aAtl

from équation (3.17) and form the fact that f(rd) < rf{9), if r < 1. D

4. 7T-SETS

In Section 2 we have seen how the perimeter is a continuous function of time if A is a non-trapping set.
As for the 7r-polygons, we may obtain stronger regularity for the perimeter function if we make some extra
assumptions on the domain A.

In a recent paper [2], Chow, Liou and Tsai have defined a class of regular curves, the curves which have
turning angle greater than —?r. For this class of curves: the expansion by a positive strictly decreasing function
of the curvature has good properties: in particular if the curve is initially embedded it remains embedded at all
times, eventually becomes convex and tends to a circle in a C2 norm.
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Définition 4.1 (See [2]). A regular curve, 7, satisfies the property (*) if its turnzng angle^ 6(7), is greater
than — TT: the turning angle of a curve is defined as

6(7) = inf fr Jv
kds,

where ds is the are lengt h, k is the curvature, and the inf is taken on all connected arcs, F, on 7.
In our case, the évolution is different, in fact the set is evolved by a constant function of the curvature and

therefore we cannot, in gênerai, avoid shocks. Nevertheless, for sets whose boundary satisfies the property (*),
let say n—sets, we can prove that they remains n—sets at all times and that the perimeter is a Lipschitz function
of the time (notice that in Section 3 we have proved these results in the case À is a polygon). In this section
we extend Définition 4.1 to non-regular sets, and we give a characterization of these class of sets: in particular
we prove that the boundary of a TV—set is union of a finit e number of Lipschitz curves (their number being
bounded by a function of the turning angle), and that its perimeter is bounded from above by its diameter
times a function of the turning angle. Finally, we prove the Lipschitzianity of the perimeter for the evoluted of
these sets.

Définition 4.2 (Regular TT—sets). We say that A C M2 is a regular n—set if 7 = dA is a regular Jordan curve
that satisfies the property (*).

In Section 3 we have considered the generalization of this définition to a polygon. For the following we need
to extend this définition to a more gênerai class of sets:

Définition 4.3 (?r-sets). We say that À C I 2 is a n—set if
1.7 = dA is a Jordan curve,
2. there exists 0 > —n such that, for any e > 0 it exists a n—polygon Ae with Q(dA£) > 0, such that

where dn is the Haussdorff distance.
We define the turning angle of dA as G(<9A) = sup{# : the property 2 holds}.
First of all let us give some gênerai results about n—sets.

Theorem 4.1 (Characterization of n—sets). If A is a n—set then
1. A is a strictly non-trapping set.
2. 7 %s union of a finite number, let say n(j), of Lipschitz curves; each one is a Lipschitz function with respect
to a suztable System of coordmates. The number 71(7) is bounded from above only m terms of the turning angle
0(7) ofj:

where [} is the integer part.
3. The perimeter P(A) ofj is bounded from above only m terms of the diameter of 7 and of its turning angle:

diam(A) /f ar+ie(flA)|jU2 J
s in

* - |9(ÖA)| J

(Proof in Appendix).

Remark. In Figure 4.1 we have drawn a strictly non-trapping set which is not a n—set.
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A

FIGURE 4.1. A non-trapping set that is not a 7r-set.

Theorem 4.2 (Evolution of a 7r-set). Let A be a ir—set, then:
1. At is a ir—set
2. As t > 0? the perimeter is a Lipschitz function of t: in particular, as e > 0,

M (4.3)

where f(x) = 2tan(x/2) — x, and

2d d2
(4.4)

Proof. By Définition 4.3 it exists a séquence of ir—polygons, {Afc}fceN, such that dür(Afc, A) —> 0, and

0(A). By Proposition 3.2, we know that

max

max , - T T

(4.5)

is a séquence of 7r-polygonswhile, by définition of dH, it is dj{{&k}t>At) — dH(Ak,A). Therefore {A^
converging to A , and At is a vr-set.

Equation (4.3) is a direct conséquence of the analogous results for polygons (Theorem 3.2), and of the
approximation Theorem 3.1. In fact {Afc)t}fcGN is a séquence of polygons which satisfy (4.3), and P(Ak,t) —»
P(At) as k -> oo. •

Remarks.

1. Notice that, if r](dAk) does not diverge to -oo as k —> oo, we can choose r\t as the maximum between the
expression in (4.4) and the lim supfe_>+00 r)(dAk).

2. In gênerai, r](dAk) and —Pt may diverge, as t —> 0. For instance, let us consider the curve 7 in Figure 4.2,
dt

which is the boundary of a TT—set. We choose {^}i)+oo = l / i a , where a > 0, and the heights yi — xi — xi+i.
3

The length of 7 is 21 -f 2 + \f2. The turning angle of 7 is ©(7) = —TT, while 77(7) = —00. An estimate from
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AAA

FIGURE 4.2

FIGURE 4.3

above of — P*, as £ > 0, is:
at

—Pt<2n-cN(t),

where c = 2tan — |©(7)|, and N(t) is the number of angles equal to 6(7) not yet disappeared at time t.

The ith. angle, starting from the right, begins to increase when t = y%+\ tan — (see Fig. 4.3), then N(t) may be
8

easily explicitly estimated from below as

N(t)> const.

Therefore — Pt -» —00, as t
at

•0.

3. Equations (3.10-3-12) of Proposition 3.2 hold also for generic strictly non-trapping sets. Then. if A is a
strictly non-trapping set it will eventually become a n—set. More precisely, see équation (3.12), At is a TT—set
if i > (14- v/2)diam(A). After this time, Theorem 4.2 applies to At.
4. In this section we have extended Définition 4.2 of n—set to non regular sets, by means of an approximation
procedure. We can consider the following geometrical définition, that extends, in a more natural way, the
définition of turning angle to non regular sets.

Définition 4.4 (Geometrical 7r-sets). We say that A d 2 , open and connected, is a geometrical ?r-set if it
exists a > 0 such that for any x,y G dA there exist two half-line rXi ry, of end points x and y respectively,
such that rx D A = 0, ry f] A = 0, rx Cïry = 0, and the angle between rx and ry is not lower than a. The turning
angle of öA is G(9A) = a — ir.
It is easy to prove that if dA is a regular Jordan curve, then Définition 4.4 is equivalent to Définition 4.2.
Moreover we conjecture that it is also equivalent to Définition 4.3.
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APPENDIX. PROOF OF THEOREM 4.1.

We consider for first the case A is a regular ?r—set, Le. 7 is a regular curve that satisfies (*). Let us
parameterize 7, in the are lengt h s, as 7 = {x(s) : s G [0, L)}, where L is the perimeter of 7, and

f\ (cos a(s)\
/ ds . ; M,

JQ \sm a(s)J

where ( ( 1 is the versor of the tangent to 7 in x(s). Notice that a (^) — <x(ti) is the turning angle along
\sin a(s)y

the pièce of curve that goes from x(si) and x(s2). Therefore

a(s2) - a(si) > 6(7) > -7T, as s2 > si;

a(L) - a(0) = 2TT; (A.l)

a(s2) — a(s\) < 2?r -h |6|, as $2 — s\ < L,

where the third inequality is a conséquence of the first two. Now let us define the séquence Si : i — 0,1,... as:
so = 0, and Si+% is defined as the supremum of s on the set Si < s < L such that the variation of a (s) over
[s», s»+i] is lower than ?r - ƒ?; where f3 G (0, TT - |Ö(7)|). Let a + = maxsG[s.]S.+1] a(s), a_ = mins€[siïa.+1] a(s).

By the second of (Al) it is

a(Si) - a_ > -8 (7) ,

then it must be

Then we have

- a + - a^ + a_ -

and a(sfc) — a(0) > k (ir — |8(9A)| — /?). By the third (Al), it cannot be k > rĵ -p therefore we can divide

r 27T + |e(9A)| i
the curve m at most ,^,^A x, + 1 pièces.[n~\e(dA)\~/3\

In other words, in order to have the variation of a on a pièce of curve T not smaller than n — /?, the turning
angle must increase along F at least of the quantity n — f3 — |9(7)|. Then, being bounded by 27r + |0(7)| the
maximum turning angle along a tract of 7, we have the previous bound.

Equation (4.1) follows in the limit P —> 0.
So we have divided the curve in a finite number of pièces and in any of this pièce the total variation of the

tangent is strictly lower then TT — f3 and therefore any of this pièce may be represented as a function. Now let us
consider a pièce of curve, let say F .̂ Fj may be represented by a function for which the variation of the tangent
is lower than TT-/?, therefore, by choosing appropriately the coordinate system to represent the function as 2/(x),

7T — 3

we have that \yf(x)\ < tan( ), while the domain of the function, let say / , extend at most for the diameter
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diam(7) of 7. Then in any of this pièce we have

< diam(7) Wl + tan2 {^~) • (A-2)

Finally (4.2) may be obtained by summing on all the I\ and by choosing /3 — Notice that this
z

choice of (3 is, in gênerai, not optimal.
The extension of the proof to a generic 7r-set may be obtained by a compactness (Ascoli-Arzela) argument:

in fact the approximating polygons of a 7r-set, as Définition 4.3, are representable as union of a finite, and
uniformly bounded, number of Lipschitz curves.

The fact that a n—set is a strictly non-trapping set, follows from the fact that the approximating n—polygons
are strictly non-trapping sets [see Eqs, (3.10=3.11)], and we can pass to the limit in the proof by a compactness
argument. •
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