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MATHEHATICAL MODELLING AND NUMERICAL ANALYSI5
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 30, n° 6, 1996, p. 731 à 742)

STABILITY OF SADDLE POINT PROBLEMS WITH PENALTY (*)

by Dietrich B R A E S S (»)

Abstract. — We c on si der s ad dl e point problems with penalty ternis. A counterexample shows
that penalty tenus may have a destabHiz'uig effect. Two extra conditions which guarantee stability
are established. A short review of the theory of the Mindlin-Reissner plates is given in ihis
framework.

Resumé. — On considère des problèmes de points-selles avec pénalisation. Un contre-exemple
montre que les termes de pénalisation peuvent nuire à la stabilité. Deux conditions supplémen-
taires assurant la stabilité sont établies. Dans ce cadre, on donne un court aperçu de la théorie
des plaques de Mindlin-Reissner.

1. INTRODUCTION

In the framework of mixed finite éléments the theory of classical saddle
point problems is well developed since Brezzi's famous paper [8]. Now saddle
point problems with penalty lerms occur when some stabilized cléments are
used or when almost incompressible materials are treated. Moreover, mixed
methods with penalty are crucial for the analysis of Mindlin-Reissner plates.
These problems with penalty are not so well understood. A reason for the lack
of investigations is the folklore that penalty terms always have a stabilizing
influence on the saddle point problem.

It has turned out, however, that the situation is not so simple and that some
extra conditions are necessary to guarantee stability. One reason is the fact that
in actual problems the penalty terms correspond to singular perturbations. We
will provide a gênerai theory for saddle point problems in Hubert spaces
which extends Brezzi's resuit when penalty terms are present.

In this framework the recent dcvelopment of finitc éléments for Mindlin-
Reissner plates becomes very clear. Some arguments which looked to be
technical appear now to be very natural. For this reason we provide a short
review of Mindlin plate theory in the last section.

(*) Manuscript received december 13, 1994 ; revised May, 24, 1995.
(l) Faculty of Mathematics, Ruhr-University, 44780 Bochum, Germany — e-mail :

braess@num.ruhr-uni-bochum.de.
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732 Dietrich BRAESS

A part of the results can be found in the book [6] which is wrïtten in
German.

2. SADDLE POINT PROBLEMS WITH PENALTY IN HILBERT SPACES

Let X and M be Hilbert spaces with norms || . ||x and || . \\M, respectively.
Moreover let Mc be a dense Hnear subspace of M The saddle point problem
will be determined by the définition of three bilinear forms

a :XxX -ï R , a(u, v) = a(v, u)

b:XxM -» R , (2.1)

c : Mc x Mc —> IR , c(p> q ) = c(q, p), c(q, q) ^ 0 .

The forms a and b are assumed to be bounded. On the other hand c gives
rise to a seminorm

\q\c:=c{qiq)
m for q e Mc. (2.2)

We will assume that Mc is a complete space when it is endowed with the norm
( II . II *" + | • |2. )1/2- Finally t will be considered a small parameter,
0 ^ t ^ 1.

Saddle Point Problem with Penalty. (St) Given f e X'and g e M'c, find
(u,p) e XxMc such that

a( M, u ) + b{ v, p ) - (fyv) for v e X ,
(2.3)

b(u, q) — t~ c(p, q) - (g, q) tor q e Mc .

As usual with this variational problem the bilinear form

A(utp\ vyq) : = Ö ( M , V) + b(v,p) + b(uy q) -t2c(p,q) (2.4)

is connected. For the saddle point problem the norm

IIICu, 4)111:= | | u | | x + M„ + t\q\c (2.5)

is the natural one. The problem St will be called stable, if

V,q

holds with some y > 0 for all (u,p)eXxMc and 0 =S / ^ 1.
A natural point of departure is Brezzi's splitting theorem [8],
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SADDLE POINT PROBLEMS WITH PENALTY 733

THEOREM A : The classical saddle point problem {with t = 0) is stable, if
and only if the following conditions hold :

1° The bilinear form a is Z-e Hipt ie with

Z:={v e X\b(vtq) = Qforallqe M} ,

Le., there is a > 0 such that

a(v,v) ^ a\\v\\2
x forv e Z . (2.7)

2° The bilinear form b satisfies an inf-sup condition

infsup ii»Tikii =fi>0- (28)

ge Mue X W V W X W Q W M

In view of the folklore mentioned above we are interested in the influence
of the penalty term. To be précise, we put the following

Question : Assume that the classical saddle point problem is stable and that
c is a nonnegative symmetrie quadratic form. Is the penalized saddle point also
stable, Le., does (2.6) hold with y > 0 for all 0 ^ t ^ 1 ?

There are two positive answers. The first refers to the case in which c is a
bounded bilinear form (s. [7]).

THEOREM 1 : If the classical saddle point problem is stable and if

c(p, q ) ^ C o \\p || M || 9 1 | M for all p,qe Me , (2.9)

then the extended problem is stable for 0 ^ t ^ 1.
In this case Mc = M holds.
Another positive resuit refers to the case that the quadratic form a is elliptic

on the whole space X and not only on the kernel Z (s. [13]).

THEOREM 2 : If the classical saddle point problem is stable and if

a(vyv) ^ a\\v\\2
x for all v e X (2.10)

holds with a > 0, then the extended problem is stable for 0 ^ t ^ L
Although the extra conditions in the two theorems refer to very different

features, we cannot do without them.

vol. 30, n° 6, 1996



734 Dietrich BRAESS

Counterexample : Let X - M = L2(Q) and Mc = HX{Q) and

a(uyv) : = 0 ,

The classical version of the problem

is obviously stable. If on the other hand t > 0, then a formai solution is

/>=ƒ. u = g-t2Ap, (2.11)

provided t h a t / e H2
0(Q). There is no stability with respect to the norm (2.5).

3. PROOFS

Originally, the theorems in the preceding section were proved by indepen-
dent arguments. It was observed by Kirmse [14] that they are corollaries of the
following lemma, see also [6. p. 130].

LEMMA 3 : Assume that the classical saddle point problem is stable. If in
addition

a(u, u) b(u, q) ,, (1

TTT + ^ i ï i M ï i ; •" '" '" (3J>

holds with oc > 0, then the augmented problem is stable for 0 ^ t ^ 1 and
the constant y in (2.6) dépends only on a, /?, and || a ||.

For convenience, the factors in (2.7) and (3.1) are written with the same
symbol a. This is possible, since a may be replaced in both inequalities by a
smaller value if necessary.

At the first glance, the lemma looks very technical. On the other hand let
a(v, v) ^ 0 for all f e X. Then (3.1) is equivalent to an inf-sup condition
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SADDLE POINT PROBLEMS WITH PENALTY 735

with some a>0. Indeed, (3.1) implies (3.2) with a > a/2. Furthermore,
we conclude from (3.2) that

a(UyV) + b(u,q)

a(u,v) b{ u
\ ' y + sup

Now we use the fact that

2
x ^ y + z implies x ^ 2 y + — (3.4)

whenever x, y, and ^ are positive numbers, and obtain from (3.3)

, „ „ ^ II«II a ( u , u ) , o _ b(u,q)
a \\u\\x q

Hence, (3.1) holds with a ^ a I2\\a\\, and the proof of the équivalence is
complete.

Obviously, (3.2) is a special case of (2.6) and is therefore also a necessary
condition. The essential différence between (3.1) and the corresponding rela-
tion in the classical case is the additional term \q\c in the denominator.

Proof of Lemma 3 : First we note that

We distinguish two cases :

Case 1. Let |[M||^ ^ n { \\p WM
 + Îfflc-}- F r o m l n e inf-sup condition (2.8)

it follows that in this case

A(u7p ; f, 0) - a(u, v)

\nx

vol. 30, n° 6, 1996



736 Dietrich BRAESS

The second term in the last expression can be absorbed by spending a factor 2.
We set /?, = min{ \\a\\,/?} and have

UI(M,p)ll =S PI '( Hall • ll«llx

V, tj

Referring to (3.4) we obtain

Case 2. Let | | « | | x > ^ | { H P l l * # + ' K i T h i s i m P l i e s

lll(M,p)lll ^ M\\u\\x with M := 1 + 2\\a\\ip

From assumption (3.1) and (3.5) we conclude

«M" 'lll(M,p)lll « a || u || x

< a(u,u) A(u,p ;0,q) + t2 c(p,q)

^ ll«ll T M

A ( « p ; 0 ? )
lll(0?)lll | K |
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SADDLE POINT PROBLEMS WITH PENALTY 737

We multiply by a ' M and refer once more to (3.4)

Therefore, in each case the inf-sup condition for A(u,p ; u, q) holds. D

Theorems 1 and 2 are now immédiate.
Ellipticity on the whole space (2.10) means that (3.1) holds even if we

ignore the second term on the left hand side. This proves theorem 2.
To prove theorem 1 we start with an estimate of the pair (w, 0) by the

inf-sup condition for the classical problem and recall that

Hence, (3.2) holds with a = y/( 1 + | |c| | ). D

We note that the proof of stability is much easier if the quadratic form c is
assumed to be also elliptic on M, i.e., c(q7q) 5= c2( | | ^ | | ^ + M ^ ) - ^ o r t m s

we refer to [1], [12, p. 65] and [3]. In order to see that Theorem 2 in [3] is a
special case of Theorem 2, one has to identify Mc with W and M with the
completion of W with respect to the norm \\q\\M := sup{6(i>, q)/\\ v \\x}.

4. REVIEW OF MÏNDLIN-REISSNER-PLATE THEORY

The Reissner-Mindlin plate is a model which is difficult due to a small
parameter which is related to the thickness of the plate. In particular the small
parameter implies that simple finite element discretizations are not successful.
In the last years there has been much progress by treating the Mindlin plate
as a saddle point problem with penalty. This model is attractive also since the
corresponding classical saddle point problem refers to the Kirchhoff plate.

The saddle point formulation of the Mindlin plate which is close to the
formulation of the Kirchhoff plate, does not satisfy the assumptions of
theorem 1 or 2. Now the successful investigations of the last decade can be

vol. 30, n° 6, 1996



738 Dietrich BRAESS

understood as a scarch for a possibility to reduce the problem to another one
which can be covered by these theorems. Under this viewpoint the recent
treatment of the finite element discretizations look very natural and are by no
means technical.

For this reason we present a short review of the stability theory for the plate
model. In this framework we disregard the questions which are concerned with
the good approximation of boundary layers, see e.g. [5].

The Variational Formulation

Let Q a U2 dénote the région in R2 which is occupied by the plate when
it is projected onto 2-space. The déformation of the plate at each A- G Q is
specified by the vertical displacement vv and the rotation 0 = (0v 02) of the
fibers normal to its midsection. Moreover, let t be the thickness of the plate.

The variational problem for the clamped plate may be written as follows.
Find (w, 0) e Hl

Q(Q) x Hl
0(Q)2 such that

a{Oty) + kt-\Vw-OtVv-v) = (fiv) V(i>, y) e Hl
0(Q) x Hl

Q{Q)2

(4-1)

with

ri V ri \ ! ' (j Y J-J V r\ M / /-"} M \ * /

, 1 - V
\dy + dx) \dy + öx ) \ -

Here, E is Young's modulus, v the Poisson ratio, k the shear correction factor,
and X = Ekl2(\+v). Moreover, ( . . . ) refers to the inner product in
L2(Q).

By Korn's inequality, a(0> y/) is an inner product on H0(Q) which is
equivalent to

(VO, V(//) . (4.3)

For convenience, we will ignore the factor X since it can be eliminated from
(4.1) by a simple rescaling of a and of the load ƒ

The displacement formulation of the plate (4.1) is changed into a mixed
formulation by the introduction of the shear strain vector

y :=r2(Vw-r;) . (4.4)
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Equs. (4.1) and (4.4) are equivalent to

(Vvv - 0,17) - *2(y, ? ) = 0 V?/ e L2(Q)2. (4.5)

This formulation has the advantage that t enters now as a small parameter.
Moreover for r = 0 we have the mixed formulation of the Kirchhoff plate
where the Kirchhoff hypothesis 0 - Vw = 0 is strictly satisfied. If
t = 0, then y is understood as a Lagrangian parameter and is not deflned by
(4.4).

The equs. (4.5) fit into the gênerai framework of (2.3). To see this, following
[4], one sets

X := H\{Q) x H[{Q? , a(w, 0, v,W):= a{0,

M:=H~\div,Q) , b(v, y/,r]) := (Vu - y

MC:=L2(£2)2,

Here, H~\div, Q) is endowed with the norm

A simple application of Green's formula shows that b is a bounded bilinear
form on X x M

K v, y/, rj ) = ( Vv - yj.rj ) = - ( v, div rj ) - ( y/y rj )

One cannot choose a stronger norm for M if an inf-sup condition is to be
satisfied. Since L2(Q) ^ H~ '(div, Q), the penalty term c corresponds to a
singular perturbation.

On the other hand, the bilinear form a does only depend on the rotations and
not on the transversal displacements. It is elliptic only on the kernel, i.e., on
the subset of functions which satisfy the Kirchhoff condition.

vol. 30, n° 6, 1996
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The mixed formulation (4.5) cannot be treated by the theorems in Section 2.

The Helmholtz Décomposition

Of course, the problem (4.5) may be treated by the above theory if
X x M can be split into two factors such that the subproblem for the first
factor satisfies the assumptions of theorem 1 while the second one satisfies the
assumptions of theorem 2. Brezzi and Fortin [10] found even a better splitting.

By Helmholtz' theorem each vector field on a simply-connected domain
Q with smooth boundary can be decomposed into a divergence free field and
a rotation free field :

L2( Q f = grad H^Q) + curl H\Q)/R. (4.6)

If the shear terms are decomposed in this spirit :

y = Vr + curl p ,

rj — Vz + curl q ,

then the following équations are obtained from (4.5).
Find (r, 0,/?, w) e H]

Q(Q) x H^Q)2 x Hl(Q)/U X Hl
0(Q) such that

(Vr, Vu) = (ƒ*>) V Ü E / / J ( f l ) , (4.7)

a((h y O - ( j 7 , r o t v ) = (Vr, y/) V^ e Hl
0(Q? ,

- (rot (hq)-t\curl p, curl <y) = 0 V<? e Hl(Q)/Uy
 ( 4 ' 8 )

( Vw, Vz) = (0, Vz) + r2CT. z) Vz e / / ^ ( ^ ) . (4.9)

Note that (4.7) is a simple Poisson équation, (4.8) a saddle point problem with
penalty, and (4.9) is again a simple Poisson équation.

The crucial point is that (4.8) is a good problem. Since
( y/, curl q) = (rot y/, q) due to boundary conditions, one can set

X = Hô( Q f , M = L2( Q )/U , Mt. = / / ' ( « )/R .

Now, the quadratic form a is elliptic on X, and the singular perturbation by
c(p, q) := (curl /?, curl <?) is no longer a drawback. Stability with respect to

W V ||0 (4.10)
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holds, and the stability with respect to the components 0 and p is provided by
Theorem 2. —We note that the ellipticity of the variational problem (4,8) may
be obtained by more elementary arguments, but the standard arguments do not
yield stability with respect to the norm (4.10) and a ^-independent constant.

Moreover, one has convergence for t —> 0 to the Kirchhoff plate for
II w| | p | | ö | | p and | | y | | „ - . ï d i v ) .

The analysis of the finite element discretization can be performed in this
spirit, if one has a Helmholtz décomposition for the finite element spaces

rh = grad Wh 0 curl Qh . (4.11)

Here Fh is the finite element space for the shear term, Qh for the generator of
the divergence free part, and Wh for the vertical displacements, respectively.
This was done by Arnold and Falk [4] for a nonconforming method. The
analysis of the family of the MITC element was obtained by [11] and [15] by
using relaxed versions of (4.11).

An Alternative Décomposition of the Shear Term

Recently, Arnold and Brezzi [2] found a much simpler stable method which
contains some similarity with the method of the augmented Lagrangian. They
observed that the original quadratic form in (4.1) is elliptic on the whole space
Hl

0(Q) xHl
0(Q)2, and they modifled the transformation which yields the

mixed form (4.5) such that this ellipticity is saved.
Specifically, they set

split the shear term, and put only the second part of it into the shear parameter
y :

y : = r 2 ( V w - ö ) . (4.12)

With this one gets instead of (4.5)

a(0y y/) + ( V w - 0 , Vv - y/)

+ ( V u - ^ y ) = (/1y) V(u,V/)e Hl
0{ Q ) x Hl

0( Q f ,

( Vvv -O.rj)- t'2(y, n ) = 0 V^e L2(Q f . (4.13)

The bilinear form

a(0, W) + (Vw-Ö, Vu - yj)
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742 Dietrich BRAESS

is elliptic on Hl
0(Q) x H[

Q{Q)2 and not only on the subspace on which the
Kirchhoff law holds. Theorem 2 yields the stability of the variational équa-
tions (4.13). A good problem is obtained and the décomposition is no longer
necessary.
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