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MATHEMATICA!. MODELLING AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMERIQUE

(Vol. 30, tiö 5, 1996, p. 575 à 605)

STATIONARY VOLTAGE CURRENT CHARACTERISTICS OF A PLASMA (*)

by Naoufel BEN ABDALLAH (*) and Andréas UNTERREITER (2)

Abstract. — In this paper a one dimensional, relativistic model of a two component mono
energetic plasma of électrons and ions is investigated. Given an applied electric potential <PA the
électron and ion currents j e and y. are calculated. The analysis is hased on the associated
Lagrange functional. The model équation is a nonlinear ODE of order two in terms ofthe electric
potential <p. Electron and ion current are unknown parameters. This ODE is subject ta four
boundary conditions. It is shown that infinitély many solutions ((p^j^Ji) exist but only one
distinguished solution minimizes the Lagrange functional. The asymptotic voltage-current-
characteristics in non relativistic, relativistic and ultra relativistic settings are computed and
rigorously justified.

Key words : relativistic particles in plasma, (non) (ultra) relativistic Lagrange function of
motion in an electric field, nonlinear ODE of order two, two point boundary value problem,
asymptotics of nonlinear ODE of order two

AMS(MOS) subject classification. 34B10, 34B15, 34E10, 7ÖH35, 70H40.

Résumé. — Un modèle relativiste unidimensionnel pour un plasma monoénergétique, composé
d'ions et d'électrons, est étudié. Étant donné une différence de potentiel &A, les courants
électronique j e et ionique j i sont déterminés. L'analyse repose sur la minimisation de la
fonctionnelle de Lagrange associée au système. Les équations d'Euler associées à cette fonc-
tionnelle consistent en une équation différentielle semi-linéaire du second ordre, avec quatre
conditions aux limites. On montre Vexistence d'une infinité de solutions et l'unicité d'une solution
minimisant la fonctionnelle. L'étude asymptotique de la caractéristique courant-tension est faite
dans le cadre non relativiste et ultra relativiste.

1. INTRODUCTION

The aim of this paper is to analyze a one-dimensional» mono energetic
model of a two component, collisionless plasma of électrons and ions.

(*) Manuscript received February 2, 1995 ; revised January 4, 1996.
Part of this work was donc while the first author was member of the Centre de mathématiques

Appliquées of the Ecole Polytechnique and the second Author acknowledges support from
EC-network, contract # ERBCHRXCT 930413, and from the project entitled « Mathematische
Analysis und Numerik von Quantenhydodynamischen Modellen in der Halleiterphysik » funded
by the Deutsche Forschungsgemeinschaft

C1) Mathématiques pour Flndustrie et la Physique CNRS, UMR 5640, UFR MIG, Univ. Paul
Sabatier, 118 route de Narbonne, F 31062 Toulouse cedex, France.

(2) FB Mathematik TU Berlin Strape des 17 Juni 136 D-10623 Berlin, Germany.

M2 AN Modélisation mathématique et Analyse numérique 0764-583X/96/05/S 4.00
Mathematical Modelling and Numerical Analysis (S) AFCET Gauthier-Villars



576 Naoufel Ben ABDALLAH, Andréas UNTERREITER

We assume the plasma confined to the interval ( 0, L ) with L > 0 is in a
stationary state.

The main objective of subséquent investigations is the calculation of voltage
current characteristics. Given an applied voltage &A we wish to détermine
corresponding électron and ion currents je[<PA], j . t ^ ] -

The plasma under considération can be described by the phase space
densities fe(x,p),fi(x,p) of électrons and ions by the stationary relativistic
Vlasov-Poisson system [8, 9]

(1) cp
3x

Here x e (0, L) is the spatial variable and DG ( - » , + oo) is the velocity
variable, c ~ 2.998 . 1Ö8 ms~ l is the speed of light. The respective rest
masses me and mi of électrons and ions are approximatively
me « 9.109. 10"3 l kg and mi-Nmp where N is an integer and
mp « 1.673 . 10" 27 kg is the rest mass of a proton, e » 1.602. 10" 19 C is the
elementary charge and Ze with integer Z is the positive charge of an ion. The
dielectricity constant of vacuüm e0 is approximatively
8.854 . 10" 12 C2 kg" 1 m~ 3 s2 . In (1) the electric potential is denoted by
(p(x), The densities of électrons and ions, pe, p{ are given by

/>,(*) ^ fe(X>P)dP> Pi(X)= fi(x,p)dp.
Ju Ju

Stationary and transient (non-) relativistic Vlasov-Poisson (Vlasov-Maxwell)
Systems have been extensively analyzed within the last fifteen years, see e.g.
[17, 16, 9» 1] and the références therein. Vlasov-Poisson or Vlasov-Maxwell
Systems have found applicable in many areas of mathematical physics such as
stellar dynamics ([8, 21), plasma physics ([10, 11]) and semiconductor physics
([12, 6, 5]).

We are here interested in space charge limited regimes where the flow of
particles is monoenergetic and the electric field vanishes at both électrodes.
The hypotheses are as listed in [13] :

a) Electrons and ions are assumingly mono energetic. Hence the phase
space densities are of the form

fe(x9p) - pe(x) ô(p - ge(Je.

fi(x,p)=pi(x,p)=pi(x)ô(p-gi(Ji, 0 0 0 ) ) .
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CHARACTERISTICS OF A PLASMA 577

Electron and ion current are divergence free which gives in one space
dimension

h = e\ ve(P) fe(P) dP ' h = Ze j vi(P)fi(P) dP constant

where

are the velocities of électrons and ions respectively. Furthermore, par-
ticles are assumed to enter plasma with vanishing velocities
pe{0) =pi(L) = 0 (this is the Child-langmuir regime). This leads
formally to boundary data

(2) ev€(p)fe(0,p) =je3(p) ,

b) Electrons leave plasma at x = 0, ions leave plasma at x = L.
Hence fe(L,p) = Q for p < 0 and ^ ( 0 , / ? ) = 0 for /? > 0.

c) The electric potential <p is assumed to be subject to four ( !) boundary
conditions

0 ( 0 ) = 0 ,

Actually this condition, called in the physical littérature the Space Charge
Limited regime condition, détermines the value of the currents, and should be
obtained via the Child-Langmuir asymptotics of the full Vlasov-Poisson
System in the spirit of [5, 6, 3, 7, 4]. The reason why we do not investigate
this limit in this paper is that the results we have are preliminary, the difficulty
being the lack of information on the shape of the potential (monotonicity).
This kind of problems was already noticed in [3] where some the ions are
described in a simpler manner (they have a fixed constant density).

Due to the mono energy assumption the respective velocities of électrons
and ions assume in dependence on the spatial variable x a single value

vol. 30, n° 5, 1996



578 Ben ABDALLAH, Andréas UNTERREITER

v (x), u.(jc). Therefore a relativistic non statistical model in terms of partiële
densities and velocitïes should be applicable. The model analyzed in the sequel
is settled on the Lagrange functional (see [14], p. 55)

The model equatiofls are constituted by the requirement to minimize this
Lagrange functional taking into account boundary conditions a), b), c). As we
shall see in Section 2 one gets an autonomous ODE of order two.

(3)

= l/el m e C +e<P
Pe ec TT'

A m. c2

Zee -mV

subject to the boundary conditions

f0(O) = O,0(L) = 0

with unknown constants j e and j . . In Section 3. existence and uniqueness of
solutions <p in dependence on j e , j . will be discussed.

Aside from these gênerai investigations it is important to know asymptotics
of je( <PA ) , Ji( $>A ) corresponding to different orders of magnitude of <PA :

A) Non relativistic case : The rest energy of électrons and ions is large
compared to their maximal kinetic energy :

me c
= r ':~Zm r = Ze<PA

M2 AN Modélisation mathématique et Analyse numérique
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CHARACTERISTICS OF A PLASMA 579

B) Relativistic électrons and non relativistic ions : Increasing the applied
potential <PA amounts to the necessity of taking into account relativistic
effects for électrons. For 0A not « too large » the maximal kinetic
energy of an électron is of the order of magnitude of its rest energy :

r ~ 1 , jur —» oo 9

Nmp
i.e. ju —> <*> for fixed r. (The ratio A* = 7 — - 5 . 1 0 3 is rather large.)

C) Ultra relativistic électrons and non relativistic ions : The maximal
kinetic energy of an électron exceeds considerably its rest energy while
relativistic effects are négligeable for ions. This amounts to

r < 1 , fur —> 00 .

A discussion of ultra relativistic électrons and non relativistic ions for
N = Z=l can be found in [13] where the following expressions for
j e , j . are given :

ïë n2
 ®A2

Z, g il A
e

n A lïë
Je » ce0 2 L 1 , ji - y m_ e0

Most interesting the current 7£. is almost identical with the current
of an N* - N - N+ diode in case of hot électrons, see [5] :

D) Ultra relativistic électrons and relativistic ions : The ions will become
relativistic wher <PA increases. If the maximal kinetic energy of an ion
is approximately equal to its rest energy then

r < 1 , /ar < 1 .

The paper is organized as follows.
In Section 2 a dérivation of the model équations (3), (4) based on the

associated Lagrange functional is given. Section 3 is concerned with ODE' s of
the form

0(0) = 0, 0( 1 ) = 1

vol. 30, n° 5, 1996



580 Naoufel Ben ABDALLAH, Andréas UNTERREITER

with a, ƒ? a priori unknown. Existence results are established and it is shown
that a distinguished solution (the « minimizing solution ») minimizes the
associated Lagrange functional

*i2

with (FlY=fv (F2Y = fr The limiting behaviour of the minimizing
solutions are investigated for/, —>/l0, f2 —>f2Q in Ll(0, 1 ). In Section 4 the
existence results of Section 3 are applied to a scaled version of (3), (4). The
discussion of limiting problems A), B), C), D) based on the respective results
of Section 3 is carried out and (5) is recovered.

2. DERIVATION OF MODEL EQUATIONS

Ree all that the Lagrange functional associated with the investigated plasma
is given by

tat(/V/V0)

- mePec
2 \/\~{velcf + mePe c

( J ZePi( 0A - <p ) +

Since

Je = ePe ve = constant, j . = ZePi v( = constant

we can express ve and i;. in terms of je and j . to get the modified Lagrange
functional

&\P„ P„ 4> ;Ut) a &'j<Pt \tf + Ki (Pi \ii) + K,^Pe' P, <i> )

m.

ZePi(

M2 AN Modélisation mathématique et Analyse numérique
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CHARACTERISTICS OF A PLASMA 581

dL* dL* dL*Now the model équations are constituted by -r— = -— = ^~r = 0, i.e.op op- o(p

(6)

\Je\ mec
2 + e<t>

ec

m. c2 + Ze(0A-<p)
Lee V(m,.c2 + Ze(<PA- <t>)f - m) c4

subject to the boundary conditions

(7)

In (6), (7) the constants je and j( and the function 0 are unknown. Keeping
je and 7 • fixed, problem (6)-(7) is in gênerai not solvable (too many boundary
conditions). On the other hand the demand for solvability shall fixje and j . , but
this is not exactly the case as we will see in subséquent Section 3. To
distinguish the (unique) experimentally observable solution we have to take
into account the functional S£h of action obtained by replacing pe, pi via (6)
by 0 :

+ 7T

The requirement

allows to distinguish exactly one solution (the « minimizing solution ») of (6),
(7) (see Section 3).

vol. 30, n° 5, 1996



582 Naoufel Ben ABDALLAH, Andréas UNTERREITER

3. ON AN AUTONOMOUS ODE OF SECOND ORDER

We wish to analyze the folio wing two-point boundary value problem :

(1) <P" =«ƒ , (* ) -# 2 (<P) on (0,1)

( 2 ) I <2>'(0) = <£'(!) = 0 .

Hère we assume
(Al) fv f2 G L](0, 1 ), fv f2 * 0, ƒ, m 0 */ 2 .
(A2) Set

Fi(x)=\Xfi(s)ds and set fc(x) = F2(lX/i(x) -

Défi ne now

ƒƒ(*) = F2( 1 ) F^x) - Ft( 1 ) F2(x) =

We assume that H(x) > 0 on (0,1).
In (1), (2) the parameters a, fi G U and the function 0 are unknown.

DEFINITION 1 : A triple (a, fi, 0 ) e R x R x W^c
l(0, 1 ) IJ caUe<2 a

« vv̂ ûf/: solution of (1), (2) » if
(i) <P(x)e (0, 1)/or a/mö5f a//x€ (0, 1),
(ii) 0 satisfies (1) in the sensé of distributions, Le.

~( ( 0, 1 ) ) : j 4T» = - J 0 V = J ( a/,j J J a/, ( 0 ) -
(iii)

lim # (x )=0 , lim <P(x) = 1

Remark 1 :
a) W^(0 , 1 ) c C!( (0, 1 ) ) c: C( (0, 1 ) ) implies that <P{x) is pointwise

well defined for ail x G ( 0, 1 ) and so are ail terms of (3).
b) If (a,/?, 0 ) is a weak solution of (1), (2) then

0"=afl(&)-fif2(&) a.e. on (0,1).
Bef ore entering the analysis of (1), (2) we shall collect some simple f acts

whose proofs can be left to the reader.
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CHARACTERISTÏCS OF A PLASMA 583

Remark 2 :

a) Thanks to (Al) we have fv f2e Ll(0,l) and therefore Fv

F2 e AC{ [0, 1] ) where AC( [0 ,1] ) is the set of all absolute continu-
ous, real valued funetions defined on [0,1]. Clearly, F\ =fy and
F2 =f2 (where « '» dénotes differentiation in the sensé of distributions)
whereas (Al) implies that F t ( l ) , F 2 ( l ) > 0 ,

b) We have J / e A C ( [ 0 , 1 ] ) and / /(O) = ƒ/( 1 ) = 0. If
H~ m G L !(0, 1 ) does hold set

and put

(5) ao^ A ,

We check easily that the function &0 : [0, 1] ~> R implicitly defined via

(6) - 7 ^ = = = V5 r x
Jo vH(s)

belongs to C !( [0, 1] ) and satisfies the following differential équation

0 on ( 0 , 1 )

with boundary conditions (2).

3.1. Existence of solutions

The main resuit of this Section is :

THEOREM 1 : Assumed that (Al), (A2) do hold, Then :

(A) All weak solutions of(l), (2) belong to C\ [0, 1] ).

(B) (1), (2) has a weak solution iff H~ m e L !(0, l ).

(C) Assume that H~ m e L*(0, 1 ). Then

(i) (ao*^o* ^o) te a weak solution of (1), (2).
(ii) (a0 , fi0, &0) is the unique weak solution of (1), (2) iff

&oe w 2 1 ( o , i ) .
vol. 30, n° 5, 1996



584 Naoufel Ben ABDALLAH, Andréas UNTERREITER

(iii) If<P0 € W2' *( 0, 1 ) then (1), (2) has infinitely many weak solutions

a ; = ( 2 / + l ) 2 a 0 > ^

(7) #,(x) = V = l

• Proofof(A)
Assume that (a, ƒ?, 0 ) is a weak solution of (1), (2). Then

(8) <P e C( [0, 1] ) n ^ ( 0 , l ) c C ( [ 0 , l ] ) n ^ ( ( 0 , 1 ))

Let flcc(0,l). Then there exists an MQ > such that |<P'|
^3. Let now define the function g

on

x\

The function g belongs to C°' 1( R ) and since 0' e W1" '( ö ) we can make use
of the chain rule (see e.g. Ziemer [18], Theorem 2.1.11., p. 48) and get

(9) "= WILC on£2

and <P'<P"z L\Ü). Since Q c c (0,1) is arbitrary and
®"=af^&)-Pf2(&) a.e. on (0,1) formula (9) establishes

(10)

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



CHARACTERISTICS OF A PLASMA 585

a.e, on (0, 1). On the other hand

a F , - / Î F 2 E A C ( [ 0 , l ] ) , F\=flt F'2=f2, * e W j J ( ( O , l ) )

(see (8)) implies (see Marcus and Mizel [15], Theorem4.3, pp. 315-316)

which, in connection with (10), implies the existence of c* e IR such that

(11) (<P')2(x) =2(aFi(&) -pF2(4>)) (x) + c* e C( [0, 1 ] ) .

Letting tend x in the right-hand side of (11) to 0 and 1, respectively, yields

lim (<P'f(x)=c\

lim

This gives together with (3) and the Mean Value Theorem of elementary
ealculus

with

This proves (A).
Finally, there exists X e IR such that

(12) a = AF 2 ( l ) , J5

We deduce from this and from (10) that

(13) ^ # '

• Proofof(B)
Assume that 0 is a weak solution of (1), (2). Using (12) we re-write (11)

as

We note that # ' cannot vanish identically on (0, 1) because
0 ( 0 ) = 0 < 1 = <2>( 1 ). Hence X > 0.

vol. 30, n° 5, 1996



586 Naoufel Ben ABDALLAH, Andréas UNTERREITER

Since the function H vanishes only at 0 and 1, then

(14) 0 ' = O iff $ = O o r 0 = l .

Besides, the open set {x e (0, 1 ) : &'(x) ^ 0} ig a n a t most countable union
of disjoint open intervals

{xe (0, 1 ) : # ' ( * ) * 0} = U (a»bk)

where 0 ^ Jf er N and (akybk) n (alt bt) — 0 for k ^ L Moreover, since
<P'(ak) = &(bk) = 0, then, thanks to (14), one of the four following
possibilities occurs,

fc) = 0 or ii) *(fljk) = 1, 0(ftJfc) = l or

iii) &(ak) = 09&(bk) = l or iv) ^ ( ^ ) = 1, &(bk) = 0 .

But (^>')2 > 0 on (a^ ̂ ) for all k e ^ and 0 ' e C( [0, 1] ) implies that
the function <P is either strictly monotone increasing or strictly monotone
decreasing on [afc, èfc], Hence for given /: G ^K either (iii) or (iv) must hold.

Let k G Jf and assume that (iii) is valid. Then

a.e. on

This leads af ter intégration to

Letting x and y tend respectively to ak and bk implies that

H ' e L ( O , l ) , \H m(s)ds = VTI(bk-ak) and

f ,ds ^V2l<jx-ak) for all x e [ak, bk] .

Hence bk — ak = yiVX where y is given in (4).
Assume now that (iv) holds on an interval (am, bm) with m e ^T. We

proceed in analogy and get H~ m e L*(0, 1 ),

= V 2 l ( j c - û m ) for XG [am ,*m]

M2 AN Modélisation mathématique et Analyse numérique
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CHARACTERISTICS OF A PLASMA 587

and bm - am = y/VX

We conclude from this case-distinction that HT 1/2 e L ! (0 , 1 ) and
1 S? bk- ak = y/VX independently of k € Jf. Therefore Jf must be finite
and we deduce from (13) that ^ " = Àh(<P) on (ak, bk). But his implies that

XaQ

where a0 and fiö are defined in (5). For later référence the following obser-
vation is useful. Since # ( 0 ) = 0 and # ( 1 ) = 1 one has

2 I + 1 with / e N u { 0 } L :

1 ) = * ' ( o 2 / + i ) = 0 .

Since / /" 1/2 e L l (0 , 1 ) we can deflne d>0 as in (6) to write 0 as

\<

0(X)={

v = l

I

V = l

. 1 ,

We observe that

(0, 1 ) :

u u ..

{XG (0, l)

= [bva2] Kj [bva4] u

vol. 30, n° 5, 1996
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588 Naoufel Ben ABDALLAH, Andréas UNTERREITER

Since (a , /? , # ) is a weak solution of (1), (2) it foilows from Définition l(i)
that both sets must have measure zero. This proves that

O = avbl = a2»è2 = a3, ...,£?2/_1 = a2/, h2l+l = 1 .

Hence

a n d

for an / e N w {O}.
Let us now assume conversely that / T 1 / 2 6 L l ( 0 , l ) and prove that 0Ö is

a solution of (1), (2). Recall first that <PÖ is defined via

f
Jo

As mentioned in Remark 2 the function &Q : [0, 1 ] -» [0, 1] is well-defined,
strictly monotone increasing and belongs to £^ ( [0 ,1 ] ) with # 0 ( 0 ) = Ö,
<PO(1) = 1, # Q ( 0 ) = 0, # Q ( 1 ) = 0. This establishes 0 < # 0 < 1 on (0,1)
and therefore 0o(x) e (0, 1 ) for almost all x e (0, 1 ). Furthermore,

on (0,1). Employing these properties of &ö it is an easy task to show that
( ÛÎ0, /?0, # 0 ) is aetually a weak solution of (1), (2). This finishes the proof of
(B) and establishes (C)(i).

• Proof of (C)
We can turn our attention to (C)(ii) and (C)(iii),
First of all assume that &0 e Wx l (0 , 1 ). Referring to the proof of (B), all

weak solutions of (1), (2) must be as in (7). A change of variable argument
immediately settles &t e W2i \0, 1 ), i.e. h{&t) e L^O, 1 ) for all
I G N U {0}. We already know that H~m e L l(ö, 1) implies that
( a0, jS0, &0 ) is a weak solution of (1), (2) no matter if <P0 e W2*% ( 0, 1 ) or not
We just have to prove that &t is a solution of (1), (2) for any Z € N. But this
is obvious since

on ( JC V , JC V +1) where y, = ( 2 Z + l ) y . The equality is then true almost
every where and then in the sence of distributions. Now it remain to prove that
0t is in Wfo(09 1). For this aim, we deduce from % € W%l(Q, 1), that
h(0t) is in L\xv,xv+ 1) which leads to h(0l) e L J(0, 1).

M2 AN Modélisation mathématique et Analyse numérique
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CHARACTERISTICS OF A PLASMA 589

Now suppose that (1), (2) is not uniquely solvable. Then it follows from the
previous discussion that there has to exist an ƒ e N such that (a ; , ƒ?,, &t)
is a weak solution of (1), (2). Then &" e LIOC(0, 1) and a change of
variable immediately gives &% e L*(0, 1 ) and finishes the proof of (C)(ii),
(C)(iii). D

For the sake of completeness we shall discuss in short which properties of
h are sufficient for <P0 e W2y l(0, 1 ). To answer this the following définition
is useful:

DÉFINITION 2 : ForxQ e [0, 1] thefunction h e L !(0, 1 ) is called « locally
semi-bounded at x0 » if there exists an e > 0 such that

or

h ' l(xb-€,JC0

The point of this Définition is

LEMMA 1 : Assume that (Al), (A2) and H~ m e Ll(0, 1 ) do hold. Assume
that h is locally semibounded at 0 and 1, Then <&0 e W2tl(07 1 ).

Proof: We assume for the moment that h has the property

O 5 ) A" l ( o . o € L " ( 0 ' 1 ) a n d ^ l ( i - e i D e ^ C 0 ' 1 ) .

Since h(&0) = y~ 2 0$ e ^ioC(0» 1 ) it sufficies to prove that there exists a
Ô > 0 with

As &oeC([0,l]) is strictly monotone increasing and
0Ö( 1 ) ^ 1 there is a S > 0 such that

We fix this <5 > 0 and choose a séquence (<5„), n e N of test functions
$n e CQ( (0, <5) ) such that for all n e M

*„3>0,*fl=l on [ -L

vol. 30, n° 5, 1996
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Then 0 ^ ûn

0 ^ h~ ^ m
1 and l ( 0 a.e. (0, 1) as « -> «>. Since

a.e. (0, e) we have

a.e. on (0,1). By non-negativity of h(<P0) + m and thanks to
®n ^ ^n + 1 the séquence (h(&0) + m) -dn is monotone increasing a.e. on
(0,1). But 0O is also a weak solution of (1), (2), i,e.

for all n e N. Since #Q > 0 on (0, 1) we have

ƒ<

Now the Monotone Convergence Theorem provides that

eL'(0,

and consequently

We prove in analogy

A 2 ( # 0 ) € L 1 ( 0 f l ) .

The remaining cases can be treated in analogy. O

3.2, Existence and Stability of a minimal solution

Referring to the subséquent discussion of Section 3, the fonction h of the
model équations (6), (7) is locally semibounded on [0, 1], Theorem 1 and

M2 AN Modélisation mathématique et Analyse numérique
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Lemma 1 imply that (6), (7) has infinitely many solutions. To isolate amongst
these the physically relevant solution we introducé the Lagrange funetional
££h( # ; a, ƒ? ) — where the subscript « h » refers to the nonlinear function h
— associated with (1), (2)

Jo Jo A

i.e. (1) is the Euler Lagrange équation —— = 0.

We assume that h is loeally semibounded at 0 and 1. According to
Theorem 1 and Lemma 1 the class of all solutions of problem (1), (2) is
given by ( (2 l + 1 )2 a0, (2 l + 1 )2/?0, # z ) . A straight-forward computation
gives

VI E N u {0} : J^(<fy, appt) = (21 + 1 f JSPA(*0 ; a0,/?0)

whieh means that S^h{0l\a{tpi) is minimal for / = 0. We formulate this
resuit as

COROLLARY 1 : Assume that (Al)f (A2) do hold and let
H~ I / 2 e L ^ C l ) . Assume that h is loeally semibounded at 0 and 1. Then
( a0> /?0, # 0 ) defined in (5), (6) is the unique minimizer of££h in the set of all
weak solutions of (1), (2).

To stress the distinguished importance of (a0,/?0> <PQ) we give

DEFINITION 3 : Assuming the validity of (Al), (A2) and requiring
r I / 2 6 l ' ( ö , l ) the triple (ao,/?o, <PQ) is called « minimizing solution (of
(1), (2)) »•

Our next aim is to analyze the limiting behavior for n tending to zero of the
minimizing solutions ( aOfJ, fSOt]J <POt] ) of

(16) *S, = « * ƒ . , ( * * ) - V 2 , < * o , ) o n
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where we assume that
(LI) VTJ^O :fxrij^ e Ll(0, 1 ),ƒ,„,f̂  > O,/,, ï 0

(L2) 0 :

(s)ds-

EE fV(j)<fc>0on(0,l).
Jo

(L3) \/rj > O : hn is locally semibounded at 0 and 1.
(L4) V?
(L5) / l v , / ^ a n d

f20 and Ho
 m.

0 : H~ m e L [(0, 1 ).
//^ 1/2 converge strongly in Ll(0, 1) respectively to /1

10,

Remark 3 : Thanks to (L1)-(L4) and Theorem 1, Lemma 1 the minimizing
solution (ot0i?,fi0n, &Or}) of (16), (17) is welï-defined for all rj ̂  0.

Concerning the limit rj —» 0 we have

THEOREM 2 : Assume that (L1)-(L5) do hold. Then

(A) 0OtJ -> 0OO in C\ [0, 1] ) and aQr} -> a,,, ̂  -> ̂  a ^ -> 0.
(B) /ƒ V i / ^ 0 : ^ e C ( ( 0 , l ) ) and if hn -> /io m C ; o c ( (0 , l ) ) oj

^ ^ 0 te V/7 5* 0 : çZ>0?7 e C2((0, 1) ) and d>^-» ^ in C2
OC((0, 1) ) as

rj -> 0.

• Proofof(X)

Recall that V77 ̂  0 : Flff = f flfJ(s) ds and F2r}(x) =\ flrj(s) ds,
Jo Jo

uov

F, ( i ) ri
m.

Hence a ^ —> a^, )ff„ —» / ^ as ̂  —•» 0 follows from (L5). Now we shall prove
that

(18)
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Recall that for rj ^ 0 and x e [0, 1]

( 1 9 ) I "' 'f5 = V 2 x.

Since H m converges in L1 to Ho
 1/2, the antiderivatives converge uniformly.

As a conséquence, we can pass to the limit pointwise in (19) and deduce that
0Off converges pointwize to <&mi and since the #0^ are monotone increasing
functions, a resuit of elementary calculus implies that the convergence is
uniform.

To establish the C1 convergence of &On to Ö^, it remains to prove the
uniform convergence of the derivatives but this is straightforward since

and H and <POJ} converge uniformly.

• ProofofiB)

Thanks to ^ G C( (0, 1 ) ) and ®Qff e Cl( [0, 1] ) for all r\ 2* 0 we have
*S, = ^ V * o , ) G c ( ( 0 ' ! ) ) and therefore G^e C2«Q, 1 ) ) for all
1/^0. The limit #o* ""* ^00 i n c foc((°» 1 ) ) f o l l o w s a t o n c e f r o m

ft -> Ao in Cloc( (0, 1 ) ). This proves (B). D

4. VOLTAGE CURRENT CHARACTERISTICS

In this Section the model équations (6), (7) are rescaled and the framework
of Section 2 is applied to discuss the non relativistic, relativistic and ultra
relativistic settings of A)-D) of Section 1.

Remark 4 ; The notation of a weak solution of Section 2 a priori excludes
that the potential 0 equals to zero or one on a set of nonzero
measure. However we do not ignore any physically relevant solution with this

concept: If {cP = O} or { 0 = 1 } had nonzero measure then \ p = <

f J

p. = 00 would follow. These infinité masses clearly make no sensé from a

physical point of view,

Naturalïy the subséquent discussion is restricted to minimizing solutions.

: 00 or
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4.1. The gênerai case

We rescale (6), (7) via

ce0 <PA ce0 <PA

Li LI

and get by omitting the index « s » henceforth

(1) <P"= \L

where we recall that r=mec
2/(e&A) and

fi = m(/(Zme)=Nmp/(Zme).

Employing the notations of Section 2 we have a = \je |, /? = |7(. |,

2/jr - V ( 1 - x ) 2

Obviously/p /2 e L^O, 1 ),fvf2 3= 0 and/ t & 0 & f2. Hence (Al) does hold.
The validity of (A2) can be checked by

LEMMA 2 : Assume that gv g2 e L ](0, 1 ) and that

h\x) = gl(x) g2(s)ds-g2(x) g{(s)
Jo Jo

is monotone decreasing with meas ({x e (0, 1 ) : h*(x) = 0} ) = 0. Then

\
Jo

s \h\s)ds>0on(09l).
Jo
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Proof: We note that ff* e C([0, 1]) and ff(0) = ff(l) = 0. Assume
f*1

that there is an x} e (0, 1) with //*(x ])= A*(,s) <fe ^ 0. Since
* *°

meas({xe (0, \) : h (x) ~0\) -0 there must be an e > 0 and a
z e (0, Xj ) such that Zz (z ) ^ — e. As h is monotone decreasing we have
A*(JC1) ^ ft*(z*) =S - e for all x e [z \ 1 ). This implies

ff*(l) = f Xh*(s)ds+ f A*
Jo Jx,

0 - e < 0

which contradicts H*( 1 ) = 0. D
Since fc(jc) = F2( 1 ) ƒ , ( * ) - F , ( 1 ) / 2 ( J C ) where Fx( 1 ), F2( 1 ) > 0 and

/ p / 2 are respectively strictly monotone decreasing and h is strictly monotone
decreasing. Hence meas ({jt e (0, 1 ) : ft(x) = 0} ) = 0 and Lemma (2)
applies. This proves (A2).

To verify H~ m G Ll(0, 1 ) recall that

is continuous on [0,1] and H > 0 on (0, 1). Hence it suffïcies to check the
behaviour of ÏT m(x) at 0 and 1. We get

and consequently

H' u\x) = o ( ^ ) as x -> 0+ , TT

which establishes ff" 1/2 e L^O, 1 ).
Furthermore we note that / i (0 + )= + o° and h( 1" ) = — oo implies that

/i is locally semibounded at 0 and 1. The function h also belongs to

Having thus checked all assumptions of Theorem 1, Lemma 1 and Theo-
rem 2 we deduce.

COROLLARY 2 : Problem (1), (2) has a unique minimizing solution

( bel- U/1- *o)- The Potential <P0 e c\ (0, 1 ) ) n C\ [0, 1] ) tfejino* v/a

f
Jo
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f1

with y = H~ ï/2(s) ds is strictly monotone increasing. The currents are
given by

\JA=y2F2(l) = y2VTT2jrr> ^ | = y2 F,( 1 ) = y2 VTTT7 .

Remark 5 : Since <PQ is strictly monotone increasing the negatively charged
électrons movein the positive x-direction while the negatively charged ions
move in the négative x-direction. Hence \je\ =je, \j^ =jr

4.2. Non relativistic voltage current characteristics

If the moduli of the velocities of électrons and ions are small compared with
the speed of light c we expect that the kinetic terms ££rel of the Lagrange
functional =5? defined in Section 1 can be replaced with good accuracy by

where the respective model équations can be derived in analogy to Section 1.
Instead of doing this formally we carry out the limit r ~> ©o.

We introducé n = 1/2 r, rescale jeJ j ^

3i

and set

_ 1 1 + 2 1 +2 iy ( l - x )

Then < Ôv is defined to be the minimizing solution of

(3)

(4)

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



CHARACTERISTICS OF A PLASMA

The functions FlJj9 F2^ are given by

597

so ƒ/ becomes

- X ) 2

4.2.1. 17 = 0

We get the non relativistic model by putting rj = 0 in (3), (4)

(5)

(6)

JeQ

Hence

(7)

- O
We can proceed in analogy to the dérivation of Corollary 2 to get

COROLLARY 3 : Problem (5), (6) has a unique minimizing solution
,ol> l/al- 0oo>- ™* potential ^ e C 2 ( (ö , 1 ) ) n Cx( [0, 1] ) Wa

f
Jo

ith Ho as in (7) and

0.9105
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is stnctly monotone increasing. The currents are given by

~ 1 1 7 2 i - ^ ~ L 1 7 2

Remark 6 : a) Smce /i >̂ 1 we have jeQ > j l 0

b) In 5 / units we have for ff = 0

— "4- «4.353 10" 6 -

/ _ ^3/2 ^3 /2
e A/Z__d_ if tum-H /ZWA

422

We are concernée with the analysis of the limit
O ^ V ^oi?) "^ ÜeD'JiO' #oo)- Xt 1S o u r a i m t o aPp!y Theorem2. Hence we
have to check (L1)-(L5).

(LI), (L2), (L3), (L4) are easüy venfied by raeans of the argumentation of
Section 3.1.

(L5) : The convergence in Ll(0,l) of fltJ to fm and /2^/20 follows
immediately from Lebesgue's Theorem. It remams to venfy
\\H1^2 - ^O /2IÎL !(O ï) ~* Q A straight-forward computation gives
HJ?(x)=H0(x) + 0 ( 7 ) . We introducé for rf ̂  0 and x e ( 0 , 1)

H(x) Hn(x)

We easily see that hm P^(x) = F2tJ{ 1 ), lim ö^(^) = tftZFlfJ( 1 ) and we

get after some elementary manipulations

\/XG (0,1/2] :P (x) ^ M2
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But then

2 - « ö 1/2|lz.'(o,.)= P K m(x)-H-o
u\x)\ dx

= r i i \P,(X)-
f

1 1 WX)-QO(X)\

V2(l-je)

This proves (L5).
We furthermore have hn —> /ip in Cloc( (0, 1 ) ) as rj -» 0 so we deduce from

Theorem2 and from \\H~ * - / ^ 1 / 2 | |L . ( 0 i O = O(rj).

COROLLARY A : As rj tends to zero, 0~ converges to ^ in
C\ [0, 1] ) n Cfoc((0, 1 ) ) , 7^ converges to j e ö and jir} converges to jlO.
Moreover the following expansion holds

4.3. Relativistic électrons and non relativistic ions

Electrons and ions can be treated as non relativistic particles as long as the
applied potential <PA is small enough. If <PA ~ 105 V then r ~ 5 while
jjr ~ 2.5.10 . In this case the électrons are already in the relativistic regime
while ions are still non relativistic particles. This amounts to r ~ l ,
ja —» oo.

We introducé r\ = Xly. and rescale the currents via
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Then we get or rj = 0

x + r
/x2 + rx '

v;

(8) F I 0 (x ) = Vjc? + 2 r x f F2 0(x) = V27 ( 1 - VT^x) ,

H0(x)= Vïr ( Vx2 + 2 rx + V1 + 2 r ( V f ^ - l ) )

and the model équations become

oo '(9)

(10)

and we proceed in analogy to Section 3.2 to get

COROLLARY 5 : a) 0m is defined via

1

with

0

ds

strictly monotone increasing and the currents are given by

Ji0~
r+ 1/2

Je, =JeO =ji0 +0(1/).
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c) In SI units we have

si —
JeO ~ 2

10" 5 Vl-022 • 106

1/2

601

4.4. Ultra relativistic électrons and non relativistic ions

Increasing the applied potential 0A up to the order of magnitude 107 we
typically have r ~ 0.05, \xr ~ 250. Hence the ions still behave as non
relativistic particles while the électrons have already reached the « ultrarela-
ti vis tic » (i.e. rest energy small compared with kinetic energy, see e.g. [14],
p. 33) regime. As /jr > 1 does hold we are obliged to consider the limit
r —> 0, jjr —* oo where typically ju ~ 5 • 10 ~ r~ . Defining a > 0 via
jj{r) ~r~ x~a and setting tj = r we put for r\ > 0

Jen Je '

We get for 77 = 0

(11) F10(x)=x,

and the rescaled model équations read for rj = <

(12) ^ - - - - - 1

(13)

We proceed in analogy to Section 3.2 to get
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COROLLARY 6 : a) 0QQ is defined via

,(*) ds :=V2-

with

1 1 ds

strictly monotone increasing and the currents are given by

= ^ ~ 4.935, j i 0 = I2
c= 3.489

c) For rj = 0

(14)

currents read in SI units

^0 = ^ ^ = 0.01310-

Remark 7: (14) recovers (5) for Z = N=\.

4.5. Ultra relativistic électrons and relativistic ions

The assumption that the ions are in the non relativistic regime ceases to be
true as soon as jur ~ 1 which amounts to &A ~ 109 V and r <§ 1. Setting
rj = r we let

J erj Je ' Jirj ~ Ji

For p O we get

(15) Fl0(x)=xi

i/0(jc) = Vl +2/ i r (x - 1 ) + V ( l - x ) 2 + 2jur(l - x)
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and the rescaled model équations read for n = 0

(16) • JeO Jm

(1 -

„(0) = 0,.

Again we easily deduce

COROLLARY 7 : a) &W is defined via

Jo
»(*) ds

-s)

with

ds

2/jr(s-

is strictly monotone increasing and the currents are given by

jir) =jo + O( 17).

c) For n = 0 the currents read in SI units

f'

2.654 • 10" 3 837 ̂ ) \/l.887 • 1 0 9 ^ + ^ - ^ -

SI
7 = C€o Z) T2
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