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MATHEMATICA!. MODELUHQ AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 30, n° 4, 1996, p. 467 à 488)

A REGULARITY RESULT FOR
A LINEAR MEMBRANE SHELL PROBLEM (*)

by K. GENEVEY (l)

Abstract. — We consider the membrane shell équations of a linearly elastic shell, clamped
along its ent ire boundary and whose middle surface is uniformly elliptic. The f act that an
associated reduced problem is amenable to the theory of S. Agmon, A. Douglis and L. Nirenberg
allows us to prove a regularity resuit for the corresponding solution.

Résumé. — On considère, en élasticité linéarisée, le problème membranaire bi-dimensionnel
d'une coque encastrée dont la surface moyenne est uniformément elliptique. La mise en évidence,
pour un problème réduit associé, de certaines propriétés de la théorie de S. Agmon, A. Douglis
et L. Nirenberg, permet d'établir un résultai de régularité pour la solution correspondante.

INTRODUCTION

The linear membrane shell model is established through an asymptotic
analysis, as the thickness goes to 0, of the solution of the équations of
three-dimensional elasticity. The method, introduced by Ciarlet & Destuynder
[1979] for plates, is as follows : Passage to a fixed domain, scalings of the
components of the displacement, assumptions on the data (see Ciarlet [1996]).
However, for shells, it is not possible to find simulîaneously the membrane
model and the bending model. These two problems, posed on the middle
surface S = <p(ô>), are obtained separately, according as to whether or not a
certain space of inextensional displacements V0(œ) reduces to {0} (see
Destuynder [1980, 1985], Sanchez-Palencia [1990], Miara & Sanchez-
Palencia [1996], Ciarlet & Lods [1994a] and Ciarlet, Lods & Miara [1994]).
In other words, it is the kinematic conditions and the geometry of the shell that
in duce the limit behavior of the three-dimensional unknown. In particular, if

(*) Manuscript received February 17, 1995.
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468 K. GENEVEY

the shell is uniformly elliptic and clamped along its en tire boundary, then
V0(co) = {O} (and an appropriate équivalence of norms holds ; cf. Ciarlet &
Lods [1994a]), and the covariant components C, of the limit displacement solve
a two-dimensional membrane shell problem.

By contrast, W. T. Koiter's model (see Koiter [1970]), commonly used in
engineering, is not a limit model when the thickness e of the shell goes to 0.
It posseses this distinctive characteristic that the left-hand side of the varia-
tional équation is precisely the sum of the left-hand sides of the membrane and
bending problems. For a mathematical justification of Koiter's model, see
Ciarlet & Lods [1994b] where it is proved that in a certain sensé, its solution
approaches the solution of the three-dimensional model as e goes to 0.

Existence and uniqueness for W. T. Koiter's model were established by
Bernadou & Ciarlet [1976]. Then another proof was given in Ciarlet & Miara
[1992] ; see also Bernadou, Ciarlet & Miara [1994]. The ellipticity of the
bilinear form of the bending problem is then a simple corollary of this result,
while the situation is more delicate for the membrane problem. Indeed, while
the variational formulation of Koiter's model is set over the space
Hl

0(co) x H\{OJ) X//Q(CO) and the variational formulation of the bending
shell model is set over a closed subspace of Hl

Q(co) x Hl
0(co) x H^{OJ), in

the membrane-dominated case the third unknown £3 is sought in the space
L2{co), which makes difficult the proof of ellipticity of the bilinear form.
Ciarlet & Sanchez-Palencia [1996] have established this result under assump-
tions of regularity on <p and on the boundary y of a>, provided that the shell
is clamped and uniformly elliptic. The proof makes use of a reduced problem
posed in terms of the tangential components of the displacement, and which
is proven to have a unique solution. Another proof was given by Ciarlet &
Lods [1996], which is more similar, as regards to its principle, to other proof s
of existence in linearized elasticity.

The present article is organized as follows : After recalling the variational
formulations of the linear membrane shell problem and of the reduced
problem, we show that the latter is uniformly and strongly elliptic in the sense
of Agmon, Douglis and Nirenberg [1964] (Theorem 2). Then, a regularity
result for the solution of the membrane problem (Theorem 3) is obtained as a
conséquence of theorems of Necas [1967] and Geymonat [1965].

1. THE MEMBRANE PROBLEM FOR A LINEARLY ELASTIC SHELL ; THE REDUCED
PROBLEM

We consider only linearized elasticity.

In what follows, Greek indices and exponents take their values in the set
{1,2}, Latin indices and exponents take their values in the set {l, 2, 3}, and
we use the repeated index and exponent convention for summation.
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A LINEAR MEMBRANE SHELL PROBLEM 469

Let œ be an open, bounded, connected subset of R2 ; we assume that the
boundary y of œ is at least of class *$x, the set œ being locally on one side of
y. Let y — (y1, y2) dénote a generic point of the set â>, and let

a

Let <p — (pl e(. : œ —» R be a given injective mapping, at least of class
<^2, the vectors (e.) forming an orthonormal basis of the Euclidean space,
henceforth identifîed with R3. We also assume that the two vectors

are linearly independant at each point y e œ. Hence these two vectors
(att ) span the tangent plane to S = qt(cb) at the point <p(y).

At each point y e Ô>, we define the vectors aa (y) of the tangent plane to
S at the point (p(y) by the relations

a" . a , =<5;, (1.2)

ner
delta. We also define the vector
where . dénotes the Euclidean inner product in R3 and S^ is the Kronecker's

a V £1

a3 = a = l a x a I- ( L 3 )

i l 2

where x dénotes the vector product and | . | dénotes the Euclidean norm. The
three vectors a. form the covariant basis, and the three vectors a' form the
contravariant basis, at each point of S.

The metric tensor, or first fundamental form, of the surface S is defined by

Since this symmetrie tensor is definite positive at all points of cö, there exists
a constant a0 such that :

a(y)à~ det ( a a / y ) ) ^ a0 > 0 f o r a l l y e ^ . (1.5)

The contravariant components of the metric tensor are :

0a/?=att .a^ , (1.6)

so that the matrix (a ) is the inverse of the matrix (aap) defined in (1.4).
The second fundamental form ( bap) of the surface S is the symmetrie tensor

defined by :
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470 K. GENEVEY

Finally, the Christoffel symbols T9^ of the surface S are defined by

We have the following symmetry properties :

Since we assumed that the mapping <p : œ —> R3 is at least of class ^ 2 , the
functions aa^ a^a are at least in ^(cö), and the functions bap PJ

ao are at least
in ()

3Let the mapping <I> : cb x [- e, e] -̂> R3 be defined by :

The set 4>(ô> x [—£, fi] ) is the référence configuration of an elastic shell,
with middle surface S and thickness 2 £ > 0. We assume that the elastic
material constituting the shell is homogeneous and isotropic, and that the
référence configuration is a natural state ; the shell is then completely
characterized by its two Lamé constants X and JJL, with X > 0 and /i > 0.

We consider a linearly elastic shell with middle surface S and thickness
2 £, clamped along lts entire boundary.

The covariant components £,- : ö> —» R. of the displacement £. a1 of the points
of S are the unknowns of the two-dimensional membrane problem, which can
be written in the following variational form :

Ç e V and 5( Ç, i] ) = L( q ) for all n e V , (1.9)

where the space V is defined as :

V = {n = (J/,-) ; >7a e #J(Û>) , ^3 e L ' ( ^ ) } = #J(Û>> x #i(co) x L2(co) , (1.10)

the symmetrie billinear form B is defined by :

, t i ) = f ea (1.11)

with
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A LINEAR MEMBRANE SHELL PROBLEM 471

and

/ p / (1.13)

The linear form L : V -> R can be written as :

= p'rf.VâdyL ( T ] ) = | p'rf.vâdy for all n e V , (1.14)

where we shall assume that pl e L2(œ).
The fourth-order tensor (aaPpa) defined in (1.12) satisfies the following

property (cf. Bernadou, Ciarlet & Miara [1994]) : There exists a constant c
such that

c>0 and aafi""tpata^c^\tap\
2, (1.15)

a, fi

for ail y e CÔ, and for all symmetrie tensor (tan).
In this paper, we shall be concerned with uniformly elliptic shells, Le., those

whose middle surface S is uniformly elliptic according to the following
définition : There exists a constant b such that

b>0 and bafiÇ
a^*b\$\\ f o r a l l Ç = ( r ) e R2 . (1.16)

This means that there exists a constant p > 0 such that the two principal radii
of curvature R}(y) and R2(y) are of the same sign for ail y e eb and that they
satisfy

p ~ l ^ \ R a ( y ) \ * p , a = 1 , 2 ,

for ail j e ô ) .
We recall here that it is possible to solve a reduced problem, posed in terms

of the unknowns Ci and Ç2. Let Ç = ( £a ) ; then we have the following resuit,
proved in Ciarlet & Sanchez-Palencia [1996] :

THEOREM 1 : Assume that the surface S is uniformly elliptic in the sense of
(1.16), and let

à-a^bi)obar (1.17)

Then there exists a constant dQ such that

d(y)^do>O forallyeeb. (1.18)
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472 K. GENEVEY

Let Ç - (C/) CL solution of the variational problem (1.9), Then Ç = (£a

solves the following reduced variational problem :

Ç e V and S(Ç, ij) = L(f]) /oraZ/f jeV, (1.19)

r/ze space V zs defined as :

V = {fl = ( i / a ) ; i7 a e ffi(o))}=ifi(cB)xHj(co), (1.20)

symmetrie bilinear form B is defined by :

= f (1.21)

1 ( * w fl <, è^ ) , (i .22)

^ ( L 2 3 )

= ƒ {^a'7a O-24)

Conversely, if Ç = (Ca) solves the reduced problem (1.19), then

solves the problem (1.9).
If we assume that y is of class # and that <() is analytic in an open set

containing eb, the reduced problem (1.19) has a unique solution, and conse-
quently the variational problem (1.9) also has one and only one solution (see
Ciarlet & Sanchez-Palencia [1996, Theorem6.2] and Ciarlet & Lods [1996,
Theorem 5]).

2. STRONG ELLIPTICITY OF THE REDUCED PROBLEM

The reduced problem (1.19) can be written as follows :

V CO

*la + 4 ( f l * bpJ«p(n))}^dy for all fj e V , (2.1)
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A LINEAR MEMBRANE SHELL PROBLEM 473

or, if we substitute f ^ f j ) by îts expression given in (1 23) :

We deduce that the vanational problem (2 1) is formally equivalent to the
following boundary-value problem :

(2.2) -

=pa - ̂  4
in cofor a = 1, 2 ,

(2.3) Ca = 0 ony, a = 1, 2 .

The purpose of Section 2 is to prove the following resuit :

THEOREM 2 : The second-order System (2.4) of partial differential équations
and boundary condition with respect to the unknowns Çl ond £2> is & « uni-
formly », and « strongly elliptic » System that satisfies the « supplementary
condition on L » and the « complementing boundary condition », in the sensé
of Agmon, Douglis & Nirenberg [1964]

Proof * The proof is divided in five steps. As we will often use notations
introduced by Agmon, Douglis & Nirenberg [1964], any référence to a page,
or équation, number of this paper will be simply ïdentified by the sign #.

(i) Let

dénote the left member of équation (2 2). We can wnte :

vol 30, n° 4, 1996



474 K GENEVEY

so that :

and :

Thus

which can be written as :

L f$p 'O" p ' (7 ^ ff J '

with

Let
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A LINEAR MEMBRANE SHELL PROBLEM 475

the system (2.4) reads :

Ca = 0 o n y . ( 2*5 )

We deduce that for every ^ = ( < J , , { 2 ) e R 2 , and for every y G co, the
matrix {lap(y> %}) of page 38# is given by :

. (2.6)

(ii) Uniform ellipticity of the system (2.4).

The integers t'a of page 43# are chosen as follows

t \ = 1 and 12 = 1

so that

C - . Ç ) = *; + *£ and

We dénote by Va^ the terms in (/aJ?) which are just of the order f̂  +

Let

In order to prove the uniform ellipticity of the system (2.4), we must verify
that there exists a constant A such that :

a n d A - ' l ^ l 4 ^ \L(y^)\ ^ A \ $ \ 4 (2.7)

for all y e cö and for all Ç = ( f v Ç2 ), the integer m of (1.6)# being here equal

to x d e g L ( ^ , ^ ) = 2. We first verify that the system (2.4) is elliptic in the
sense of (1.5)#, i.e. that :

for all ^ G R2, ^ ^ 0 . (2.8)
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476 K GENEVEY

We have :

L( . , O = fi2[(5U V 2 1 2 - (51112)2) tf + (â222V212 - (â2212)2)

( 2 âni2â2212 - 2 a-ii22â1212 - ( â

For conciseness, let :

After some calculations, we get :

AK2

- 4 bl2 bu Çx e2 + 2( 6U b22 + 2( 612 )
2

Let

We have :

^ = 2 ̂  > 0 ,

a(y) ^ ao>0 for ail y G œ (cf. (1 .5 ) ) ,

a(y) ^ do>O for ail v G œ (cf. ( 1.18) ) .

Thus there exists a positive constant J f 0 such that :

Jt(y) ^ JT0>0 for ail y G œ .

Then we can write

a . , ç ) = j r [£22 ^ - 2 feI2 ̂ j ^ 2 + b n e2f.
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A LINEAR MEMBRANE SHELL PROBLEM 477

Property (2.8) is then a direct conséquence of assumption (1.16).
In order to prove the stronger property of uniform ellipticity, we only have

to verify that property (2.7) is true for ail Ç e R2 such that |Ç| = 1, since
for ail y G œ, the polynomial £ = ( £ p £2) e R2 •-» L{y, Ç) is homogeneous
of degree 4. It is therefore sufficient to prove that there exists a constant A such
that

A>0 and A~ 1 ^ |L(v, £)] ^ A

for ail y e ö;, for all Ç e R2 such that | Ç | = 1. This follows from the
continuity of the functions y e ô> >-> aa^y) and }G ö j ^ ^aöC)')» fr°m the
compactness of the set ô> x {£, G R2 ; |^ | = 1} and from property (2.8).
Hence, property (2.7) is established, and the System (2.4) is uniformly elliptic
in the sense of Agmon, Douglis & Nirenberg [1964], as stated.

(iii) Strong ellipticity of the System (2.4).
We then show that the System (2.4) is strongly elliptic in the sense of (2.5)#

(see also Lions & Magenes [1968]), i.e. the following property is satisfied :
There exists k > 0 such that, for any Ç G R 2 , Ç ̂  0, and for any
r\ e C2 , r\ =* 0,

ap(y Ç
ail Ç e R2 , Ç ^ 0, and for ail TJ G R2 , i\ ^ 0,
Since the functions l'ap(y, Ç) are real in our case, it suffices to show that, for

2 or ail TJ G R2 , i\ ^ 0,

- 2 /'12(y, ^) ^ 2̂ - ^2(^, ^) ^ ^ ^l^l 'hl 2 ^ (2.9)

We have

â12!2 + à1122)

~YLVl E2 , o -2212 K £ . -2222

For conciseness, let :

vol. 30, n° 4, 1996



478 K GENEVEY

Then we have :

f - (fî11 )2) ̂  + 2(Kda11 a11 - Bu B12)

2(Kda22a2-B22B12)ÇlÇ2

(2.10)

We then compute the coefficients of £j, ̂ \ and ^ 2 :

dK{an f - (BU f = 4-+ [K(a11 bl2 + an b22f+\(K-Kx) (b22)
2] , (2.11)

dK{a22f - (B22)2 = 4^[K(an bn+ a22 bnf + l(K ~ K,) (bn)2] , (2.12)

, (2.13)

dKanal2-BnBl2 =

= 2 -± [K(a22 b22 - au bn) (a12 b22 + a11 bi2) + \{K,-K) bn b22] ,

(2.14)
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A LINEAR MEMBRANE SHELL PROBLEM 479

, ^ 12 22 „12 D22

dKa a — B B

= 2-+[K(al2bn-a22b12)(a
ubn-a22b22)+l(Kl-K)biibn],

(2.15)

- 4 K(a" bl2 + a12 b22) (an bu + a22 bl2) + | (AT - *T, ) (fc12)2] . (2.16)

Substituting (2.11)-(2.16) in (2.10), and ordering certain terms, we rewrite
(2.10) in the following way :

F ïCK
, n ) = - ^ ['7,[a11(2 bl2^ - bu 42) + b22(2an £, + a22 f 2 ) ]

1
ö a

Since the middle surface is uniformly elliptic by assumption, we see by
applying (1.16) that

4eK(K-K.) 7 ?

) 3 * 1 l ^ l 2 l l 2

and thus inequality (2.9) is established. Therefore, the reduced problem is
strongly elliptic in the sense of Agmon, Douglis & Nirenberg [1964]. We note
that the assumption of uniform ellipticity of the shell is definitely needed in
this proof.

(iv) « Supplementary condition on L » : We must verify that, for each
y £ cb and for any pair of linearly independent vectors Ç = ( <î; p £2 ) e R and
r\ - (*7p 772)

 G ^ 2 » t n e polynormal

TG C ^ L(>, Ç

vol. 30, n° 4, 1996



480 K GENEVEY

which is of degree 4, has no real root and thus has exactly two roots
*i+ (y> S» *1 ) a n d T2 (y- ^. Ï | ) venfying

+ (y, Ç , i | ) > 0 a = 1,2.

We recall that :

L( . , Ç) = J f [£22 £
2 - 2 i1 2 e, £2 + i n

Let

[ _ b i 2 ( y ) b u ( y ) ) (2,7)

Then :

L(y^)={E(y)ï,.$}2. (2.18)

Consequently,

TT|) = [E(y) (Ç + m ) . (Ç + T Ï ] ) ] 2 ,

The matrix £"(y) is positive defimte for, according to (2.9),

for any vector % e R2

Then {^(j) £ . t]} defines an inner product and in particular, Ç and TJ bemg
two linearly independent vectors :

{E(y ) %. T!}2 < {E(y) % . $} {E(y) ^ . $} .

This shows that the polynomial T <-̂  L(v, C + rr|) has no real root, and thus
the supplementary condition on L is established.

(v) « Complementing boundary condition » : It remains to venfy that the
« complementing boundary condition » of page 42# is satisfied (see also Lions
& Magenes [1968, p. 240]) for the problem (2.4). This property can be proved
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A LINEAR MEMBRANE SHELL PROBLEM 481

in detail, but in f act it follows from the strong ellipticity of the System, because
in this case Dirichlet conditions are always complementing {cf. Agmon,
Douglis & Nirenberg [1964, p. 44]). This finishes the proof of Theorem 2.G

3. A REGULARITY RESULT IN THE LINEAR CASE

We first recall that existence and uniqueness of a solution for the reduced
problem (1.19) are established in two cases :

y is ofclass *€ and <p is analytic in an open set conîaining cô, (3.1)

y is of class ^ 4 and <p € <<?5( cb ) ; (3.2)

see Ciarlet & Sanchez-Palencia [1996] and Ciarlet & Lods [1996].

THEOREM 3 : Assume that assumption (3.1) is satisfied, that pa e Lq{œ)
and p3 € W'q(w)f where q ^ 2. Then the solution
Ce H1

0(CÛ) xHl
Q(co) x L2(co) of the membrane problem (L9) is in the

space W%q(m)x W2'q(co) x Whq(co). Let m be an integer ^ 1. /ƒ the
boundary y is of class <ëm + 3 and ifpa € Wm' q( œ ), p3 e Wm + 1 ' *( m ), then the
solution Ç e Hl

Q(at) x Hl
0(co) x L2(co) of the membrane problem is in the

space Wm + Xq(œ) x Wm+2>q(co) x Wm+hq(w) .

Proof: The proof is similar to the one in Ciarlet [1988, Sect. 6.3] for the
pure displacement problem in linearized three-dimensional elasticity. The
proof is divided in four steps :

(i) We recall that the reduced problem can be written as a System of partial
différent!al équations :

= P * in ai

= C2 = 0 on y ,

The first équations can be written :

T
vol. 30, n° 4, 1996



482 K GENEVEY

We note that, if q> e <ï?3(ö>), then [dfi(a
a^a 7 " ^ ) ] e L2(Ö>), and

[aT/?/MTy'(Dl^p] G L2(co) Likewise, if pa e L2<>), p3 e H\co), and
<p e ^ (ö>), we have

Finally, if <p e ^3(cb), pa e L2(co), p3 e H\co), then

In particular, if (3 1) or (3 2) is satisfied, the solution Ç = (Ca) of the
reduced problem also vérifies

1 Ca = 0 ony

The previous sections show that this system is umformly and strongly elliptic,
satisfies the supplementary condition on L and the complementing boundary
condition, in the sense of Agmon, Doughs & Nirenberg [1964]

(n) The system (3 3) is strongly elliptic and, as in Ciarlet & Sanchez-
Palencia [1996], we also have the Y-ellipticity under the assumption (3 1)
Hence we can apply Lemma 3 2 of Necas [1967, p 260] , If the boundary
y is of class <if2, and if ƒ* G L2(œ), then

Ce Hj(co)nH2(co)

Thus the result is estabhshed for m = 0 and q = 2, the required regulanty
of £3 bemg a conséquence of the relation

(111) Define the space

and consider the mapping

j -(o) ÜE v̂
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A UNEAR MEMBRANE SHELL PROBLEM 483

We show that we can apply theorem 3.5 of Geymonat [1965]. Since this
theorem refers to certain notations introduced by Agmon, Douglis & Niren-
berg [1964], we first recall that the integers sa and tp of page 39# are chosen
as

s{= s2 = 0 and tl = t2 = 2,

so that they verify :

Besides, the boundary conditions being

C, = 0 on y , C2 = 0 on y ,

the matrix ( Bap( y, % ) ) of page 42# is given by

the associated integers being r, = r2 = - 2, so that :

Let us now verify the assumptions of theorem 3.5 of Geymonat [1965] :
Assumption 1 : Regularity of the bounded open set œ : It should have a

boundary y of class # / l + f+ \ with lx = max (0, rj + 1, r2 + 1 ),
r = max (tv t2).

Assumption 1 thus requires that y be of class ^3 , which is the case hère.
Assumption 2 : Regularity of the functions âa^p<J : If we let

with J=(p,a), and £ƒ = ^ ^ > w e should also have

Kpj* W'i'^'icb) for |y| < aŒ + r̂
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In our case,

which we can write as follows :

Moreover, we already saw that s^ = s^ = 0 and lx — 0. Since we assumed
that q> G ^ 3 ( ö ; ) , then the functions aa^pa are in <ë>l(ö>) and assumption 2 is
satisfied.

Assumption 3 : Regularity of the coefficients of the boundary operator : If
we let

then we should have

for

f o r

In our case,

1 i

0

hence assumption 3 is satisfied. Besides, we already pointed out that the
system (3.3) is uniformly elliptic, and that it satisfies the supplementary
condition on L and the complementing boundary condition. It then follows
from Geymonat [1965, Theorem3.5] that the mapping

dprjaVa)\ G Lq(œ)

has an index ind sé '(O) independent of q G ]1, » [ ,
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A LINEAR MEMBRANE SHELL PROBLEM 485

We already know from step (11) that md se \ 0 ) = 0 when q — 2, for
se '(0) is a bijection m this case. Besides \ q ^H^ (O>) when q 5= 2, and
consequently, the mappmg se '( 0 ) : \ q —» L9( a> ) is mjective for these values
of q , but smce md si '( 0 ) = 0, then J / '( 0 ) is also surjective when
q S= 2 Concerning the unknown £3, we conclude as in step (n) Hence we
have proved the regulanty resuit for m = 0 and q ̂  2.

(îv) In order to establish the regulanty resuit for m 5= 1, we apply
theorem 10.5 of Agmon, Douglis & Nirenberg [1964] : Once we know that
each || Ça || W2 q is finite, we have .

f

and thus there exists a constant C such that

But if p a e Wm'^(o;) andp3G W"+1 ?(o)), it follows that f G W W q (co).
This complètes the proof of the theorem. D

Remark • There exists a nonlinear membrane shell model, which is obtained
from an asymptotic analysis of the nonlinear elastic shell problem for Saint
Venant-Kirchhoff matenals with suitable scalings and assumptions , this as-
ymptotic analysis is due to Miara [1994] The two-dimensional nonlmear
variational problem found in this fashion reads : Find

such that

f /"£ ; |„(OFo |/Tl,Q^ (fy= [p'v.yfcdy for all tj
v co v œ

where

î S^ ~ ^a^ C3
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This variational problem can be written as a boundary-value problem :

f ^ ( Ç ) = p in G>,

\ C = 0 ony,

where the nonlinear operator si = ( sé{) is given by :

One can easily verify that the linear part of sé{ Ç ) coincides with the operator
associated with the linear membrane shell problem.

However, contrary to the three-dimensional case (see Ciarlet [1988,
Sect. 6.4]), it is not possible to obtain an existence theorem for this nonlinear
membrane model by using the regularity of Theorem 3 and applying the
implicit function theorem. Indeed, sé is infinitely differential between

X , = { Ç = ( C , ) e WXq(œ) ;Ça = 0 On y} andX2 = Whq(oi) x

xWhq(a>) xWhq(co),

and thus sé : Xx •-> X2 is differentiable at 0. Besides, «B/ is still differentiable
between Xx and Lq(co) x Lq(co) xWhq(co) with the same derivative

but J3/ is no longer differentiable in the space

{ Ç f W 1 ' V ) ; C = 0ony}. D

This work is part of the Human Capital and Mobility Program « Shells : Math-
ematical Modeling and Analysis, Scientific Computing » of the Commission of the
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