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MATHEMATICA!. MODELLING AND NUHERICAL ANALYS1S
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 30, n° 2, 1996, p. 157 à 183)

HIGH-ORDER FINITE ELEMENT METHODS
FOR THE KURAMOTO-SIVASHINSKY EQUATION (*)

by Georgios AKRIVIS 0)

Abstract. — We discretize the periodic initial-value problem for the Kuramoto-Sivashinsky
équation by implicit Runge-Kutta methods in time combined with the Galerkin-finite element
method in space. Optimal-order error estimâtes are established and the linearization of the
schemes is also discussed.

Résumé. — Nous considérons l'équation de Kuramoto-Sivashinsky munie de conditions aux
limites périodiques et d'une donnée initiale. Nous l'approchons en utilisant une méthode
d'éléments finis de type Galerkin pour la discrétisation en espace, et un schéma de Runge-Kutta
pour la discrétisation en temps. Nous obtenons des estimations d'erreur optimales et discutons
de la linéarisation de cette méthode.

1. INTRODUCTION

In this paper we shall analyze high-order finite element approximations to
the solution of the following periodic initial-value problem for the Kuramoto-
Sivashinsky (KS) équation : for **, v > 0, we seek a real-valued function u
defined on R x [0,?*], 1-periodic in the space variable and satisfying

(1.1) ", + MW* + Mx* + VW;axc = ° i n RX[O,**]

and

(1.2) w( , , 0 ) = w° in R ,

where u° is a given 1-periodic function. An alternative form of the KS équation
is obtained through the change of variables v(x, t) := Vv w( VVJC, vf ), namely

(1.1') vt+vvx+vxx + vm = 0 in Rxfo .Ç] .
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Work supported by the Institute of Applied and Computational Mathematics of the Research
Center of Crete-FO.R.T.H.

C1) Mathematics Department, University of Crète» 71409 Heraklion, Crète, Greece.
Current address : Computer Science Department, University of Ioannina, 451 10 Ioannina,

Greece.

M2 AN Modélisation mathématique et Analyse numérique 0764-583X/96/02/$ 4.00
Mathematical Modelling and Numerical Analysis (5) AFCET Gauthier-Villars



158 Georgios AKRÏVÏS

The function v is obviously periodic in the space variable with period -4=. It
Vv

is shown in [13] and in [22] that the periodic initial-value problem for the KS
équation is well-posed ; in particular for u° e H2

er there exists a unique
solution u of (1.1)-(L2), u( . , t ) e H and u( . , t) dépends continuously on
the initial data. Hère, for m e N, H™eT dénotes the periodic Sobolev space of
order m, consisting of the 1-periodic éléments of 7^C(R) and || . ||m is the
norm over a period in H™er. The inner product in L2( 0, 1 ) is denoted by
( . , . ), and the induced norm by || . ||. In the sequel we assume existence of
a solution u of (1.1)-(1.2), which is smooth enough for our purposes.

The KS équation was independently derived by Kuramoto and Sivashinsky
in the late 70's and is related to turbulence phenomena in chemistry and
combustion, cf. [12], [21] ; it also arises in a variety of other physical problems
such as plasma physics and two-phase flows in cylindrical geometries; cf. [18].
See also, for instance, [5], [7], [8], [11], [13], [14] and [19], for various
interesting properties of the KS équation and for related computational work.
We refer the reader to Temam [23] for an overview.

In [1] the discretization of (1.1)-(1.2) by a Crank-Nicolson finite différence
scheme and a linearization thereof by Newton's method is studied. In [2] the
semidiscretization of (1.1)-(1.2) by the standard Galerkin-finite element
method as well as the discretization of the resulting initial-value problem by
the Crank-Nicolson method is considered.

In this paper we analyze the discretization of (1.1)-(1.2) by implicit Runge-
Kutta (RK) methods in time combined with the standard Galerkin-finite
element method in space. For a suitable class of algebraically stable implicit
RK methods we shall show

(1.3) max \\u(.,tn)-Un\\ ^c(ka + hr)
0=£ n^ N

where a is the classical order of accuracy of the RK method and r is the
optimal spatial rate of convergence in L2 ; k = t*/N is the time step,
f := nk, w = 0, ..., N, and h is the spatial discretization parameter,
U , ..., U are the RK approximations and U is supposed to approximate
u° to optimal order in L2. Some mild mesh conditions are required for (1,3)
to hold. A slight modification of the results of [3] yields linearizations of the
RK schemes which preserve the overall accuracy of the methods.

Our approach is similar to the one in [10], [9] where optimal-order error
estimâtes for the Korteweg-de Vries équation and the cubic Schrödinger
équation, respectively, are derived. In contrast to [9], due to the spatial
derivative in the nonlinearity of the KS équation, we use a time-dependent
elliptic projection operator in order to obtain optimal-order estimâtes in the
spatial discretization parameter h. The quasi-interpolant of u, cf. [24], can be
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APPROXIMATION OF THE KURAMOTO-SIVASHINSKY EQUATION 159

used instead of the elliptic projection in the error analysis, if one is willing to
restrict himself to smooth splines on uniform partitions, cf. [10],

An outline of the remaining part of the paper is as follows : in Section 2 we
introducé a time-dependent elliptic projection and dérive some error estimâtes
which play an important role in the sequel. Section 3 is devoted to the
time-stepping by a suitable class of implicit RK schemes. Under some mild
mesh restrictions, we establish optimal-order error estimâtes and prove
uniqueness of the fully discrete approximations. In the last section we briefly
discuss the linearization of the fully discrete methods by an explicit-implicit
procedure which retains the order of convergence.

2. AN ELLIPTIC PROJECTION

In this section we introducé a time-dependent elliptic projection operator
and dérive some estimâtes which will be useful in § 3.

We shall discretize (1.1)-(1.2) in space by the standard Galerkin method. To
this effect, let 0 = xö < JCJ < •- < Xj = 1 be a partition of [0, 1],
h := max (xJ+l - x}) and h := min (xj+1 - Xj). Setting xjJ+s :- xs,

j j

j e Z, s = 0, . . . , / - 1, this partition is periodically extended to a partition
of R. For integer r ^ 4, let Sr

h dénote a space of at least once continuously
defferentiable, 1-periodic splines of degree r—l, in which approximations
to the solution «( . , t) of (1.1)-(1.2) will be sought for 0 ^ t =£ f*. The
following approximation property of the family {Sr

h}0<h<l is well known

(2.1) inf

with a constant c independent of v and h, cf., e.g., [20 ; § 8.1].

Motivated by the following variational formulation of the KS équation

(2.2) (ut,v) + (uux,v)- (uxJ V) + v(Uja, v") = 0 V» e H2
psi, 0 *ï t ^ t* ,

we define the semidiscrete approximation üh( . , t) e Sr
h, 0 ^ t ^ f*, to u

by

(2.3) («„,,x) + («„fifa.x)-(a l ix,x') + v(ÜIIXX,f) = o

vol. 30, n° 2, 1996



160 Georgios AKRIVIS

where üh( . , 0 ) := u°h e Sr
h and u°k is such that

(2.4) l | w ° - ^ | | <chr.

The semidiscrete approximation is uniquely defined and has the following
properties

(2.5) l|fi*(.,OII « \\uh\\éh, O=Sf=Sr*,

(2.6) | | f f f t ( . , ï ) l l « \\üh(.,s)\\ , 0 « 5 * t « l * for v ^ - L
4 71

(2.7) max ||u( . , t) - üh( ., f) II « cW ,
0 ï£ f ̂  t *

cf. [2]. The error estimate (2.7) can be derived by comparing üh( . , t) to
P £ w( • , O> where P £ : H^er —> 5^ is the time-independent elliptic projection
operator defined by

v((v-PEvy\x")-av-PEvy,x') + Kv-PEviX)=O V/e S[

with X > ~— say. In this paper we will use the time-dependent elliptic
projection operator PE{t): H*a -» S'h> 0 ̂  t H t,* defined by

(2.8) v((v-PE(t)v)xx,X")-av-PE(t)v)x,x') +

with a sufflciently large constant A, say

This elliptic projection will play an important role in the next section in
deriving optimal-order error estimâtes for fully discrete methods.

First, for the elliptic projection we have the following estimate

2

( 2 . 9 ) ^hfWv-P^OvWj^ch'WvW,, veHs
veT, 2 ^ s ^ r ,

; = o
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APPROXIMATION OF THE KURAMOTO-SIVASH1NSKY EQUATION 161

with a constant c independent of h, v and t This estimate can be proved in the
usual manner. For v e Hper, obviously ||v'|| =— (u, u"), i.e.,

Now, the bïlinear form a(t ; . , . ) > 0 ^ t ^ **,

a(t;v,w) := v(t;7', w") - (y', w ' ) + (w( . , O »'. w) + A(v, w)

is obviously continuous in H^., i.e.,

(2.11) \a(t;v9w)\ ^ q ||i; ||2|| w||2 , Ü . W G H ^ ,

and the constant c1 can be chosen independent of t. Further, using (2.10), the
Cauchy-Schwarz and the arithmetic-geometric mean inequalities, we easily
see that a(t ; . , . ) is coersive in H2

tT, i.e.,

(2.12) a ( f ; ü , i ? ) ^ c 2 | | i ; | | ^ ^ ^ e r ,

again with a positive constant c2 independent of t. Hence, the Lax-Milgram
lemma yields in view of the approximation property (2.1)

with a constant c independent of t Next, to estimate || v - PE(t) v \\, consider
the auxiliary problem

cf. [16]. Then, for j e ^ w e have

\\2 = a(t;v-PE(t)v,y,-x)^cl\\y,-x\\2\\v-PE(t)v\\2.

Now, the easily established regularity estimate
II vWt ^ c\\v - PE(t) ü||, with a constant c independent of *, and (2.1)
yield, since r ^ 4

inf Hv'-;dl2*cft2 | | i>

and in view of (2.13) we obtain

(2.14) \ \ v - P E ( t ) v \ \ * * c h s \ \ v \ \ s , v ^ H s ^ l ^ s t k r

The estimate (2.9) follows now from (2.13), (2.14) and (2.10).

vol. 30, n° 2, 1996



162 Georgios AKRIVIS

Consequently, setting W( . ,*) := PE(t) u( . , 0> we have the foliowing
estimate

(2.15) || u{ . , t) - W( . , 011 * chr\\u( ., O I U 0 *: / = £ * * .

Next, we want to estimate time derivatives of PE. To this end we prove the
following Lemma, cf. [4].

LEMMA 2.1 : Let v e HS , 2 ^ s ^ r. TTien, w/r/z P{i\t) :=

(2.16) | | ^ m ) ( 0 ^ l l 2 ^ C(m) /z 5 | | i ? | | 5 for 0 ^ ? ^ r* and m > 0 .

Proof: Differentiating (2.8) m times with respect to t, we obtain

(2.17) û ( r ; 7
ot

Taking now x = P^\t) v, using (2.12), integrating by parts the first term on
the right-hand side of (2.17), applying the Cauchy-Schwarz inequality and
using (2.14), we can easily show inductively that (2.16) holds.

Remark 2.1: Setting Wim\ . , t) := ( ^ ) m W( . , t), uim)(.,t):=

(ft)
mu(. - , 0 . we have

I
and, therefore,
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Hence, in view of (2.9), (2.16), we have

(2.18) Hw(m)( . , 0 - W(m)( . , t) || ^ Ch \ m ^ 0 .

163

3. RUNGE-KUTTA DISCRETIZATIONS

In this section we discretize in time the semidiscrete problem by suitable
implicit RK methods, and, under some mild mesh hypotheses, dérive optimal-
order error estimâtes and prove uniqueness of the RK approximations.

For q e N, a ^-stage implicit RK method is specified by a set of constants
arranged in tableau form

aqq

We shall assume that these methods satisfy certain stability and consistency
conditions. We start with the well-known algebraic stability condition

(5) {•
bt

the matrix M, m- := a- bt + ajt bj — bi b-, is positive semidefinite

The consistency conditions are given by the simplifying assumptions

(B) = O,..., o - 1 ,

(D) g«*-<*
vol. 30, n° 2, 1996
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for some integers a, /?, p 5= 1, where p and a is the stage-order and the
classical order, respectively. We will assume that

(3.1a) a t* p+p+l

The positivity property

fA is invertible and there exists a diagonal matrix D with positive

(̂  diagonal éléments such that C := DA~ l D~ l is positive défini te

plays an important role in proving existence of the numerical approximations.
The Gauss-Legendre methods, the Radau IIA methods (with tq = 1 ) and

the two- and three-stage optimal-order diagonally implicit (DIRK) methods
are examples of implicit RK methods which satisfy all these assumptions
(except of the three-stage DIRK that does not satisfy (3,1a)), see [6]. These
methods satisfy also the hypothesis

(H) r(p + 1 ) ^ a

which will be occasionally used in the sequel to avoid mesh conditions in the
consistency proofs.

Let Fh:S
r
h-^ Sr

h be defmed by

(3.2) (Fh(v),x) = - (vv\x) + (i>',/) - v( i / ' , / ' ) \fvtXe Sr
h .

Then, (2.3) may be written in the form

(33) l a ( o ) l

Let iV e N, k := t*/N and tn := nk, n = 0,..., N. The RK approximations
U°9 ..., J7

N G 5^ to M°, ..., uN, u := w( . , rn), are defined by t/° := M°, and

(3.4) Un+l =

M2 AN Modélisation mathématique et Analyse numérique
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where Un'\ ..., E/"'* <E Sr
h are such that

(3.5) Un-j=UH + k^ajiFh(U
n'i)9 j '= 1, ...,*, n = 0, .... iV- 1 .

i=i

Note that (3.4) can also be written in the form

Existence. For sufficiently small k (independent of h), the existence of
f/1, ..., t/^ e 5^ can be shown inductively via a well-known variant of the
Brouwer fixed-point theorem. The proof proceeds along similar lines to
analogous proofs in [10], [9], using (P), (2.10) and the arithmetic-geometric
mean inequality and will be omitted.

Remark 3.1 : Let us note for later use that the same argument that shows
existence of the RK approximations, allows us also to conclude that the
homogeneous linear system

where Lh dénotes the linear part of Fh,

has for k < cv, where c dépends only on the spécifie RK scheme, only the
trivial solution in (Sr

h)
q,

Error estimâtes. Given n, 0 ^ n ^ N — 1, let the 1-periodic functions
aji 7 = 1,.»»^, be recursively defined by

i; = 1 L m = 0

The following auxiliary results will be used to prove consistency, see Propo-
sition 3.2 below. The proofs of Lemmata 3.1, 3.2 and of Corollary 3.1 are
similar to analogous results in [10], [9] and are omitted.

vol. 30, n° 2, 1996



166 Georgios AKRIVIS

LEMMA 3.1 : Let ae :~ ( ̂  e, ..., aqï )
r , D\ U := 2-ff- ( • , fn),

u := u{ . , rrt), T := diag {xp .„, xq}, a ^ e := ( 1,..., 1 f e R .̂ Then, if (C)
and (3.1i?) hold, we have

(3.7) a^^Dlufe, £=0,...,p i

(3.8) ap+.

-A y\

LEMMA 3.2 : Assume that (B), (C), (D) and (3,1) AÖW. T^n

( 3 . 1 0 ) bTTsae = g , ( g +
1

J + n ^ ^ s, f = 0 , . . . . a - 1, j + f ^ a - 1 . D

COROLLARY 3.1 : Asswmé? f/ia^ (B), fQ, (Dj amf (3.1) Ao/öf, ör that the RK
method is the 3-stage DIRK Then

(3.11) bTA-la^-^D2
tuy f = l f . . . , a . D

Now, given n» 0 ^ n ^ i ¥ - l , define the pseudointermediate stages
unJ by

(3.12)

M2 AN Modélisation mathématique et Analyse numérique
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and ün + l by

(3.13) w" + 1 := u + bTA~ \uthl - un
t ..., u

n'q - unf ,

cf (3.4f). Using (3.12) and (3.11), we have

and, consequently,

(3.14)

The main step towards a consistency proof is undertaken in the following
proposition. For the sake of brevity we set F( v ) :=

PROPOSITION 3.1 : Let the truncation errors en'J, en+ be given by

(3.15) unJ = un + k ^ « / ( / ' ' ) + enJ, j=h . . . q ,

g

(3.16) u = u + /c ̂  bjF{u J) + e

, under the hypotheses of Corollary 3.1, we

(3.i7) ikn + i i im+i:
7 = 1

vol. 30, n° 2, 1996
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Proof: We have

aje -

X ^ o,, + k± aA 2
r-i ' = 1 U-o

e-I a-1 ( q

— ^ ^ lrl + ^ 4- If ^ * Ir< ^? l " A- "" -4- ^ * \ ^ -1- "'^

f = 0 ^=0

with ||finJ | |m = O(it<T+1). Using (3.6) we conclude enJ = enJ, i.e.,

(3.18)

Further, using (3.15), (3.13), we obtain

7=1

- U" - 2 2
i i

and (3.17) follows from (3.18). D
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Henceforth we shall let Wn := W( ., f) = PE(tn) u{ ., tn), tnJ :=
f + ktj, u;i := PE{tnJ) unJ and fi^t1 := PE{tn+l) u+ \ respectively, see
(2.8).

LEMMA 3.3 : Let r/"'J, j = 1,..., q, rjn + 1 in Sr
h be given by

(3.19) un
h
j =Wn + k ^ % Fh{ un

h ' ) + rjnJ, j=\, ..., q ,

q

(3.20) ün
h
+1 = Wn + k ^

7 = 1

Theny under the hypotheses of Corollary 3.1, unconditionally if (H) is
satisfied and for k = O(h ) otherwise, we have

(3.21) 2
7 = 1

(3.22) | | ^ + 1 | l ^

Proof: Subtracting (3.19) from (3.15) we get

(3.23) rjnJ = enJ + [ ( « £ ' " - un>J) - ( Wn ~ un)] + k ^

Now, using (3.12), we have

"A - « ) - ( W - M ) = (PE(t 'J)-PE(t ) ) w + 2 ^ / c ( P £ ( f 'J)aje- aje)

and thus, by (2.16) and (2.9),

(3.24) || ( un
h
J - u"-'' ) - ( Wn - un

vol. 30, n° 2, 1996
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Further, let a>nJ := P0F(u"J) - Fh(u"J), PQ being the L2 -orthogonal
projection operator onto Sr

h. Then, with -&1'1 := un'] - 1%',

\\œnJ\\2 = (F(unJ) - Fh(un
h

J),œnJ)

= - ( [unJ -ui., tnJ)] ûn
x

j + Vnj i £ / - WJ, conJ) .

Therefore, using (2.9), (3.12) and (3.7), we easily see that, with
p' :— min (/», er),

(3.25) \\conJ\\ s= C(*p'+1 hr~x +hr) .

Now by Young's inequality

(3.26)

Combining (3.23) with (3.17), (3.24) and (3.25), (3.26), we get (3.21). Now,
using (3.19), (3.20),

and by (2.16)

rf+x = PE{f)(ün + ' -un- bTA~ '(M"'1 - H", ..., u"-q - un)T)

M2 AN Modélisation mathématique et Analyse numérique
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with ||£n+1|l ^ ckhr \ thus, (3.22) follows from (3.13) and (3.21). D

LEMMA 3.4 : Assume that the implicit RK method satisfies ( P ) , k is sufficiently small, and

vn'\.„,vn'q,vn + l G Sr
hsatisfy

(3.27) vnJ=Wn + k^ajtFh{vnJ), j = 1, .... q ,

(3.28) vn+ï = Wn + k 2 bjFh(v
nJ)

7 = 1

under the hypotheses of Lemma 3.3,

(3.29) l l«î y- t>B ' i ^

(3.30) | | M ^ + 1 - I ;

Proof: The existence of un '!, „., vn'q for sufficiently small k can be shown
in exactly the same way as the existence of f/"'1, ..., Un'q satisfying (3.5).
Letting CJ := u1:3' - vnJ, from (3.19), (3.27), we obtain

ji dt d£ r \ CJ) = k^ d){ Fh{ un
h

j ) - Fh( vnJ ), CJ

j l

7 = 1

7=1

vol. 30, n° 2, 1996
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Now

J, CJ)

Hence, using (P) , the Cauchy-Schwarz inequality, (2.10) and the arithmetic-
geometric mean inequality,

(3.31)

c, X \\CJ\\2 < c2 K ^ ^ i
7 = 1 i 7 = 1 ; , Ï = I

and (3.29) follows from (3.21) in view of (2.9), (3.12) and (3.7). Further, from
(3.19), (3.20), (3.27), (3.28), we get

and (3.30) follows from (3.29), (3.21) and (3.22). •
We are now ready to prove consistency.

PROPOSITION 3.2 : Assume that u, the solution of (1.1)-(1.2), is sufficiently
smooth. Then, under the hypotheses of Lemma 3.4,

(3.32) \\vn + 1-Wn+l\\ ^

Proof: Since Wn + l - vn + l = ( M
suffices, in view of (3.30), to show that

Writing
W n + 1 - ün

h
+l = {(ün+l - un+l) - PE(tn+l)(ün + l - wn+1)} + (un+l - ün+i)

the result follows from (3.14) and (2.9). D
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In addition to our assumptions on Sr
h, we suppose in the sequel for the

family of partitions that

(3.33) h ^ ch2»

for some positive constants c and JJL. It is well known that this hypothesis
implies, cf [15],

(3-34) lUII,.-^c*~" II* II V * e S ; .

We next prove stability.
PROPOSITION 3.3 : Let Un + \ vn+l satisfy (3.4) and (3.28), respectively, and

assume that the implicit RK method satisfies (S) and (P). Then, for
ka+l h~ * and khr~^ bounded,

(3.35) ||f/n + 1 - i ; n + 1 | | < (l+ck)\\Un- Wn\\ .

Proof: Let enJ := vnJ - UnJ and SFJ
h := Fh{ vnJ ) - Fh{ UnJ).

Subtracting (3.4) from (3.28), and taking inner products, we obtain

vn+l - Un+11|2 = || Wn - Un\\2 + 2 * 2 ) bj(SFj
H, Wn-Un)

ji

Subtracting (3.5) from (3.27) we have

Therefore

J =

vol. 30, n° 2, 1996
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i . e . , b y ( S ) ,

( 3 . 3 6 ) | | i ; n + 1 - C / n + 1 | | 2 ^ \\Wn-Un\\2 + 2 k ^
7 = 1

Now

, e»-'' ) = || £ > | | 2 - v|| ̂ | | 2 - (»"• ' v"x'
J

and, using (2.10),

Therefore, in view of (3.29) and the inverse inequality (3.34),

and (3.36) yields

T. \\enJ\\2,

Moreover, it can be easily seen that

q

(3.37) 2 II£ n J II2 ^ c II W" " u" II2 >
7 = 1

cf. the proof of Lemma 3.4, and the result follows. D
Combining consistency and stability we can now easily prove convergence.
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THEOREM 3.1 : Assume that u, the solution of (1.1)-(1.2), is sujficiently
smooth, ka + h~ M and khr~** are bounded, and that (3.33) holds. In case
(H) is not satisfied assume further k = O(h1/(p + 1)). Then, under our
hypotheses on the implicit RK method, we have

(3.38) max \\un - Un\\ ^ c(k° + hr) .

Proof : From (3.32), (3.35) we obtain

^ ck(ka + hr) + (1 +ck) || Wn- Un\\ ,

and we easily conclude

(3.39) max || Wn - Un\\ ^ c{ka + hr) .

Now, the result follows from (3.39) and (2.15). D
Uniqueness. For fixed n, 0 ^ n ^ N- 1, let Vn>1, ..., Vn*q e Sr

h be such
that

(3.40) Vn'J = Un + k£iajiFh(V
ntl)J j=l,...9q.

Let EnJ := UnJ - Vn'\ j = 1,..., q. Subtracting (3.40) from (3.5), we obtain

Proceeding as in the proof of Lemma 3.4, we see that for sufficiently small k

(3.41) ^ \\EnJ\\2 ^ ckmzx \\Uthi\\2
L~ j ? \\EnJ\\2 .

Now, from (3.29), (3.37) and (3.39) we conclude
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Le., using (3.34),

\\uîi-Un-i\\L-*ch-»(ktr + h')9

Therefore, using (3.12), (3.6) and (2.9), we have

max \\UnJ\\L~ =£ C( l +k<ThT*1

and (3.41) yields, under the hypotheses of Theorem 3.1, for k2a+l h~ 2*i and
khtr'2fi sufficiently small, En'J' = 0, i.e., uniqueness of the RK approxima-
tions.

4. SOLVING THE NONLINEAR SYSTEMS ARISING IN THE RUNGE-KUTTA METHODS

The implementation of the implicit RK method (3.4)-(3.5) requires solving
the nonlinear system (3.5). The quite gênerai theory of [3] for linearizing RK
équations by Newton's method or by a modified Newton method applies to the
KS équation as well and yields under some mild mesh conditions optimal-
order error estimâtes for the resulting approximations provided that at least a
spécifie number of itérations is performed at every time step and accurate
starting values are used. In [3] a simpler itérative scheme of explicit-implicit
type, explicit in the nonlinear and implicit in the linear part of the équation,
for implementing RK methods is also analyzed. This result is not directly
applicable in our case, since, due to the présence of a spatial derivative in the
nonlinear part of the KS équation, the nonlinear part of Fh does not satisfy
hypothesis (7/6) of [3] with 7 = 0, an assumption for the analysis of the
explicit-implicit scheme in [3], cf. Theorem 6.1 in [3]. However, the particular
form of the linear part of the KS équation allows us to modify the analysis
slightly and prove that the explicit-implicit scheme retains the order of
convergence of the RK methods shown in Section 3.

Let <ph \S
r
h -» Sr

h dénote the nonlinear part of Fh,

Note that <ph(v) = — P0(vv'), where Pö dénotes the L2-orthogonal projec-
tion operator onto Sr

h. Separating linear and nonlinear parts in (3.5), we deflne
Vn

e
J e Sr

h recursively by

(4.1)
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f = 0 , . . . , £ „ - 1 . Given V*', i = 1, . . . ,$ , the Vn
e'

J
+v j = l , . . . , < ? , are, for

sufficiently small fc, well defined by (4.1), c / Remark 3.1. The starting values
are assumed given, and £n ^ 1 is the number of itérations to be performed
at step n. We then define Vn+l by

(4.2) Vn+l := Vn + bT A~ \Vn^ - Vn,.... V^9 - Vn)T,

c/ (3.4'). Starting values VQ'1 may be generated by extrapolating previously
computed values V", V""1,..., according to

(4.3)

where /?n ^ n is a nonnegative integer, and where the extrapolation coeffi-
cients are generated as follows : For integer f, 0 ^ £ =S n, let L*'n,
/ = 0,..., Î, be the Lagrange polynomials of degree £ that satisfy
Le.>n(tn-j)=öih i , j = 0,... ,^. Then set

(4.4) ^ . - L j ' V + fct,.), f = 1 «, j ' = 0, . . . ,* .

It is easily see that for a smooth function y

Since the accuracy of the extrapolated values is limited by the number of
available past data as well as by p + 1 and o\ we shall take

(4.6) pn := min ( w, p, a - 1 ) .

It is easily seen that the Fréchet derivative D<ph(co) is given by
D(ph(co)v = -P0((cov)'), o),veSr

h. Hence, (D(ph(w) u, w) = (œv, w'), Le.,
for K > 0,

(4.7) C

Further, obviously,

(4.8) (Lhv,v)= K l | 2 -v | | i / ' | | 2 VUE Sr
h.
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THEOREM 4.1 : Assume that the hypotheses ofTheorem 3.1 are satisfied and
that we are given initial data V\. . . , V ,̂ p := min (/?, a — 1 ), in Sr

h satisfying

(4.9) max \\iJ -Vj\\ *k c(kG + hr) .

Then for r > ju and kp+yh~fl sufficiently small, 2n^2(o-p) + \, and
Vp+\ ..., VN given by (4.1)-(4.2), w

(4.10) max \\un-Vn\\ s

Proof: It follows from (2.15) and (4.9) that

We shall prove inductively that

( ƒ.. ) c — ( 1 + ck) c„ _, + ck, n — p + 1,..., A ,̂

where c dépends only on the implicit RK method and the constant c in (3.32),
(3.35). It follows easily from (ƒ..) that

cn ^ c* := {cp+ 1 ) e , n=p,...,N.

Let V"' \ ..., V"'* and V^ï+I in Sr
h be such that for n = 0, . . . , / / - 1
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N o w a s s u m e t h a t (ƒ , . ) , (Iu) h o l d u p t o s o m e n, p^n^N—l.To e x t e n d
t h e s e t o n + 1, w e s h a l l p r o v e i n d u c t i v e l y t h a t

(ƒƒ,) max HVJV^ff , £=0, ...,£„,

( //,,. ) max || V- ' - V? '|| ^ ( cK Vk ) ' max || Vn- ' - Vj ' ||,

where /ïT := 2 max {|u(x, t) \ :0 ^ x ^ 1 , 0 ^ ? ^ r*}. Next, we verify
(ƒƒ.) for 2 = 0 . Obviously

max l lV^-t / 1 ' 1!! ^ c | |W M - V"|| ,

see (3.37), and consequently by the induction hypothesis,

(4.14) max || Vn> ' ' - i/1' ' || ^ cc*(ka + hr) .

Further

yrt ' ' - W( . , f"'*') = ( Vniï - ^ ' " ) + (vnJ - u^) + (u^ « unJ) +

+ (M r t ' / - \ y

and, hence, in view of (4.14), (3.29), (2.9) and (3.7), (3.12), (3.6)

(4.15) max || V"'1' - W( . ,

Therefore, by (2.9) and (3.34), for k and h sufficiently small,

(4.

vol

16)
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Further

2

and, using (4.15), (4.5), (2.18) and the induction hypothesis,

(4.17) max || Vn'( - Vn
0
J\\ ^ Cc*(kp+1 + hr) ,

1 *= i ^ q

where C does not depend on k% h, n and the induction indices. Thus, by (4.16)
and (3.34) we see that, under our hypotheses, for sufficiently small k and h,
(ƒƒ.) holds for f = 0.

Now assume that (ƒ/.) and (Hu) hold up to some 2, 2 < 2n. We shall next
prove, for k sufficiently small, the estimate

(4.18) max || V1 ' - V?i 11| ^ cKVk max \\VnJ - Vn
g
J\\ ,

1 ^ i ^ q 1 ̂  i ^ q

for some constant c depending only on the RK method and v. Indeed, from
(4.1), (4.12), we obtain, for j = 1, ..., q,
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Multiplying this system by D2 A~ \ taking inner products, using (4.7), (4.16)
and the induction hypothesis, for k and h sufficiently small, we obtain

= k"2d] f'
i « l WO

o -

C and D being as in (F) . Hence, in view of (P) and (4.8),

/ = !

and (4.18) follows easily using (2.10). From (4.18) we conclude that (ƒƒ.-)
holds for £ + 1 as well. We next verify (ƒƒ.) for e + 1. From (ƒƒ..) and
(4.17),

max
1 ^ / s= q

therefore, for ^ sufficiently small,
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(4.19) max || Vn>l - Vj'* || ^ ( Vk)e(kp+l + hr) .
q

Using (4.16) and (3.34), we see that, for k and h sufficiently small, (ƒƒ.) is
satisfied for 2 •+- 1. This complètes the secondary induction argument (II),
and we return to the primary argument (ƒ). For £n ^ 2(a — p) + 1 it
follows from (4.2), (4.13) and (4.19)

(4.20) | |V r t + 1 -

w n + l - v r t + 1 = ( w" + 1 - u n + 1 ) + o r t + 1 - v n + l ) + ( v"*1 - vn+1),
and thus in view of the consistency and the local stability of the RK method,
cf. (3.32), (3.35), respectively, and (4.20)

\\Wn + l - Vn + Ï\\ ^ [ ( 1 +ck)cn + ck] (k° + hr) .

This establishes both (ƒ.) and (/„)- The estimate (4.10) follows now imme-
diately using (2.9) and (4.9). D

Remark 4.1 : The implementation of the method described in this section
requires solving at every time step a number of q dim Sr

hx q dim Sr
h linear

Systems, see (4.1). These Systems have the same matrix, and in some important
cases, e.g. for Gauss-Legendre and for Radau HA methods, can be decom-
posed into q dim Sr

h x dim Sr
h Systems independent of each other, which can

be solved simultaneously on a computer with at least q processors, see [3] and
the références therein. We refer the reader also to [3] for some techniques for
generating initial data V°,..., Vp satisfying (4.9).
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