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MATHEMATICAL MOQELLING AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 30, n° 1, 1996, p. 103 à 120)

DIRICHLET PROBLEM ASSOCIATED WITH A RANDOM QUASILINEAR
OPERATOR IN A RANDOM DOMAIN (*)

by Y. ABDDAIMI and G. MICHAILLE C1)

Abstract. — We study the rate of convergence of solutions relative to Dirichlet problems
associated with a random quasilinear operator in randomly perforated domains #ƒ R with holes
whose size tends to 0. Our direct method allows to extend the results already obtained by an
epi-convergence method in the case of symétrie operator with deterministic and constant
coefficients in a random domain.

Key words : Homogenization, Dirichlet problem, ergodic theory.
AMS subject classifications : 35B27, 35J25, 60FXX, 60G10, 73B27.

Résumé. — On étudie le comportement asymptotique des solutions des problèmes de Dirichlet
associés à un opérateur quasilinéaire aléatoire dans des domaines aléatoirement perforés lorsque
la taille des perforations tend vers zéro. La méthode directe utilisée permet d'étendre les résultats
déjà obtenus par une méthode d'épi-convergence dans le cas d'opérateurs symétriques à
coefficients constants et déterministes.

1. INTRODUCTION

Let Q be an open bounded subset in Rd , K( œ ) an union of randomly
distributed « holes » in Rd and e a positive rescaling parameter. We consider
the following random Dirichlet problem in the perforated domain Q\Ke(co),
Ke(co) :=eK(œ);

| - div ( A ( O , | ) Due(ojy. )+P(œ,uc(co,. ) ) + a( co, ue( o>,. ))

=ƒm Q\K€(co)) (1.1)

uE(œ>. ) = Q\ndKe(œ) u dQ

where A(œy x) is a random elliptic matrix (aé j(co, x) ). ., not necessarily
symétrie, y? is a vector valued function from Z x R into Rrf, a is a scalar
function from ZxR into R and where ƒ is a given function in L2(Q).

(*) Manuscript received May 16, 1995.
(]) Laboratoire d'Analyse Convexe, Université Montpellier II, Place E. Bataillon, 34095

Montpellier, France.
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104 Y. ABDDAIMI, G. MICHAILLE

Under some hypothesis of the distribution of « holes » and on the random
operator, one can show that the solution ue(œ, • ) of (1.1), more precisely its
extension by zero in Q n eK{m), strongly converges to zero in H]

0(Q) when
s tends to 0. A natural question to ask is : at what rate does we( cat. ) converge
to zero ? The aim of this paper is to answer the question. Among the physical
motivations of this problem, we mention the applications to heat conduction
or to electrostatic problems in wildly perturbed domains with a rapidly
oscillating nonlinear conductivity or nonlinear dielectric field in the neigh-
bourhood of random « holes ».

Let us give a more précise description of our probabilistic setting.
( E, ST, P ) is the product probability space defined as follows :

• T is a finite family of compact sets included in F := ]0» l[d>
m E = {co = ( coz)z e ja : coz - z e T) where coz are compact sets

included in Y + z,
• 9" is the er-field generated by the cylinders

EKz:={we E:coz~z = K},z£ 7? , # e 7\

• P is the probability product, construct from the probability présence of
every element of T.

In these conditions, we prove that, almost surely» u£(co,. )/e2 weakly
converges to Af in L (Q) where X is defined by X := sup E(Xk( » ) ) .

E( Xk( . ) ) dénotes the probability average of

Xk(co) := \lkd f wky(m,x)dx and wkY(w,. )
JkY

is the solution of the foliowing random Dirichlet problem in the cell kY and
relative to the adjoint operator ;

div(A*(a>1x)Dwky((oi. )) = 1 in kY\K(a>)

wkY(coi.) = 0 m K(co)nkY (1.2)

wkY(co^)e Hl(kY).

This result generalizes those of H. Attouch [2], A. Brillard [8] or J. L. Lions
[13] in the periodic case and the paper E. Chabi-G. Michaille [11] in the
stochastic case. In this last paper A is the identity, /? = a = 0 and an
epi-convergence method — also known as F-convergence — was used.

Because of the random distribution of holes, the classical method where an
oscillating test function is constructed from the only cell problem ( k = 1 )
with periodicity condition, breaks down. Nevertheless, in [11], we showed
how to recover X in the periodic case from above expression (Corollary 5.2).
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HOMOGENIZATION IN A RAMDOM DOMAIN 105

In the situation described in this paper, because of the non symmetry of A and
the présence of jS» we cannot use an epiconvergence process. Our method is
then based on a technic of oscillating random test functions. As in the previous
paper, the crucial point in our proof is to remark that the set function

.,x)dx

where wJ(a),. ) dénotes the solution of (1.2) in a cell /, is a discrete
superadditive process from the set of intervals ]a, b[, a, b in Zd into
L^Z, 2T, P). This property, when À is symmetrie» is a direct conséquence of
the energy formulation and of the subadditivity property of the minimum (see
G. Dal Maso-L. Modica [15], E. Chabi-G. Michaille [11]). In our case, this is
a conséquence of monotonicity properties of the solutions of problems (1.2).

We emphasize that our problem is a probabilistic version of a Dirichlet
problem in a perforated domain of the form Q\r( e ) K where r( e ) ~ E. For the
case r (e) < e and more precisely r(e)~e3 and with a Bernoulli distribution
of holes, we refer the reader to the thesis of E. Chabi [10]. The mathematical
treatment of this last modelling is very similar to that of the deterministic
vers ion and the same kind of problem in the only cell Y occurs because of the
boundary condition u = 1 on dF. This homogenization problem leads to a
scalar version of the Brinkman's law. For gênerai results concerning Dirichlet
problems in perforated domain, we refer the reader to G. Dal Maso-A. Garroni
[14] and their références. For other results related to Dirichlet problems in
random sets, see M. Balzano [4] and, for other aspects of theory of stochastic
homogenization, we refer the reader to A. Bensoussan [5], A. Bourgeat-S. M.
Kosiov-S. Wright [7], G. Dal Maso-L. Modica [15], S. M. Koslov [16], G. C.
Papanicolaou [18], K. Sab [19], and their bibliography.

The paper is organized as follows. The next section contains some notations
and a brief summary of some results related to Ergodic Theory and to the
measurability of set-valued map. In section 3, we shall be concerned with the
almost sure convergence of the séquence {Xk(œ) ; k —» + oo} toward X. Using
monotonicity properties with respect to the data satisfied by the solutions of
problems of the form (1.2), we prove that X! is a discrete superadditive process.
According to Ackoglu-KrengeFs ergodic theorem, we dérive the almost sure
convergence of Xk( co ) towards X.

Section 4 is devoted to our main resuit. Assuming O to be a cube, the basic
idea is to take as a test function in (1.1) the following oscillating random
function

4,
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106 Y. ABDDAIMI, G. MICHAILLE

where (^,) / e /(^) is a partition of unity associated to the partition
(Qi 7 ) (G/(I / ) °^ ® made of cubes with size rj and where <p belongs to
S/(Ù). Every cube Qt is contained in a e-homothetic of (kY + z() where

k = k(e) := J"aJ + 1 and zi e Zrf . At the limit when e tends to 0, tp. tendsJJ
to 1 and t} tends to 0, we obtain the require information on the behaviour of
u£( œ,. )/e2. The signification of this choice is the following : omitting the
functions <pi which localize the test function in the £-homothetic of
(kY+ zt) where an information (1.2) can be used, it is easily seen, using the
mean value theorem and the convergence resuit of section 3, that almost surely
(for a subsequence) the measure X wk¥+Zi(a>,. ) dx weakly converges

whenever e tends to 0 towards X 2 rneas ( Qi f ) 3a ai e Q{ . Going finally

to the limit on 7, this last measure weakly converges towards XlQ where lQ

dénotes the Lebesgue measure restricted to Q.

The Bernoulli probability space which describes the distribution of the
random « holes » in R with some periodic structure, might be replaced by
any complete probability space ( 27, 2T, P ) fitted with an Ergodic group
(z\,)ze zd of P preserving transformations such that the following conditions
hold for P almost every co in E :

(i) K(co) - z = K(zz(œ)), A(œ, x + z) =A(TZ œ, x) x a.e. (see the
proofs of Lemmas 3.1, 3.2),
(ii) meas (K(œ) n y) > 0 and Poincaré's constant for
{u G Hl(Y) : u = 0 on K(œ)} is bounded by a constant that does not
depend on co (see the proof of lemmas 3.1, 3.3),

(iii) For every interval / = ] a , b[ where a and h belong to 2?, the
set-valued maps 00 »-» C(w, I) := {u e H]

0(I) : u = 0 on K(co) n l} is
measurable (see Définition 2.2 and the proof of Lemma 3.2).

For the relevant définitions, see the next section. The validity of our method
would not be affected by this more gênerai setting.

2. PRELIMINARIES

In this section (27, ST, P ) is any probability space and (TZ)Z€ %* a group of
P-preserving transformations on (27, 2T), that is

(i) rz is ST-measurable,

(ii) P o T / E ) = P ( £ ) , for every £ in 9" and every z m Zd ,

(iii) T 2 OT, = T2 + ,, r_ z = T~ \ for every z and r in Zd .

In addition, if every set E in 2T such that T 7 ( £ ) = E for ail z G Z has a
probability P(E) = 0 or 1, {TZ)ZGZ<I is said to be Ergodic.

M2 AN Modélisation mathématique et Analyse numérique
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HOMOGENIZATION IN A RAMDOM DOMAIN 107

A sufficient condition to ensure the ergodicity property of ( T„ ) zd is the
following mixing condition : for every E and F in 2T

lim P(zzEnF)=:P(E)P(F) .

which expresses an asymptotic indépendance.
When (27, 9", P ) is the probability space described in the introduction

( Tz \ G zrf w*^ ke t n e erg°dic group of P-preserving transformations defined by
(tof + zXe 7? f° r a ^ ze Zd and for all co in 27, that is the s/u/? group.

We dénote by $ the set of intervals [a, b[ where a and b belong to 7? and
consider a set function 5^ from 3 into Ll(Z,?T,P) satisfying the three
following conditions :

(i) Sf is superadditive, that is, for every / G $ such that there exists a finite
family {h)j&J of disjoint sets in 3 with I = KJ IjeJJ

(ii) «Ŝ  is covariant, that is, for every I e $y every

(iii) sup J 1 /meas (/) « , meas ( I ) ^ 0 L < +

Following M. A. Ackoglu-U. Krengel [1], Sf is called a discrete superad-
ditive process and the following useful almost sure convergence resuit holds
(see M. A. Ackoglu-U. Krengel [1] Theorem (2.4), Lemma (3.4) and U. Kren-
gel [16] Remark, p. 59) :

THEOREM 2.1 : When n tends to + «>, — £frQ n^i converges almost surely.

lMoreover, if ( zz )z e kZa is Ergodic, theny almost surely :

lim J
5 ^ [ 0 , n [ - ( œ ) = sup -d

where E( • ) dénotes the probability average operator.
To generalize our problem to the more gênerai probability setting invoked

at the end of the introduction, we shall use the following important définitions
and resuit about the measurability of set-valued maps (see, for instance, C.
Castaing-M. Valadier [9] or J. P. Aubin-H. Frankowska [3]).

vol. 30, n° 1, 1996



108 Y. ABDDAIMI, G. MICHAILLE

DÉFINITION 2.2 : Consider a measurable space (27, ST), a complete sepa-
rable metric space X and a set-valued map F : 27 —> X with closed images.

The map F is called measurable if for every open subset & of X, we have

{œs E;F(co) n& * 0} e ST.

A. measurable map s : 27 —» X satisfying

\/a> e 27, s(œ) e F(œ)

is called a measurable sélection of F

THEOREM 2.3 : Let (27, 2T, P) be a complete probability space and F a
set-valued map with closed images like in Définition 2.2. Then the two
following properties are equivalent :

(i) F is measurable
(ii) There exists a séquence of measurable sélections ( sn )n ^ ] of F such
that

We adopt the following standard notations. For every bounded open set
& in Rd , Hl(&) is the Sobolev space of all functions u in L2(&) such that
the gradient distribution Du belongs to L (0,R ), endowed with the norm :

jju(x)\2dx\m+ljjDu(x)\2dx i l /2

where we do not distinguish the notations of the norms in R and R
Hl

0(&) will dénote the closure in HX{G) of the set « £ ( 0 ) of all
^"-functions with compact supports in (9. For every topologie space E
0B(E) will dénote its Borel field.

We shall dénote by A * the adjoint matrix ( a. i ) of the matrix
A = ( a{ . ) where ai . : 27 x R —> R and we make following hypothesis :
almost surely

(2.1) a. j is 2T(g>^(Rrf ) - # ( R ) measurable and there exists a
2T - ^ ( R ) measurable function M from 27 into R+ , such that
\a.j(œ,x)\ ^M(œ).
Moreover Vz e Z , A(co, x -\- z) ~ A(xzœ, x) x a.e.
(2.2) a(œ,. ) and fi(co, * ) are continuous and there exists C p

C2 : Z1 -> R + such that V s e R

| a ( c o , j ) | ^ C l ( c w ) ( | 5 | + 1 ) , ^ ( a ; ^ ) ! ^ C 2 ( W ) ( | J | + 1 ) .

M2 AN Modélisation mathématique et Analyse numérique
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HOMOGENIZATION IN A RAMDOM DOMAIN 109

Moreover a( o>, 0 ) = /?( co, 0 ) = 0 and for t > 0 large enough

t\0(o),s)\ ^ \0(o>,ts)\ , Vse R.

(2.3) There exists a function a > 0 such that —e Ll(£,Zr,P) and

Remark 2.4 : For a proof of existence of a solution of problem (1.1), we
refer the reader to L. Boccardo-F. Murat-J. R Puel [7] or, for another method
and for unicity, to M. Chipot-G. Michaille [12].

Note that, if A does not depend on x, by (2.1) and ergodicity property of
( TZ )z G zd, A is almost surely constant.

In the sequel, {E, 2T, P) will be the probability space described in the
introduction and ( ^ ) z e Z ^ will be the shift group which obviously satisfies
K(CD) — z = K(T

Z
 œ)- In this case, the proof s of the various measurability

properties are evident. Nethertheless, we shall always give the proofs in the
more genera! setting invoked at the end of the introduction.

3. DEFINITION AND PROPERTIES OF THE COEFFICIENT X

Let us dénote by 3 the set of intervals ]a, b[, a, b e Zcl and, for every
/ e i , consider the adjoint problems

- div (A*(CO,X)DW!(CD,.))= 1 in I\K(co)

(œ) = Q'mK(œ) n / (3.1)

We define the following linear subspace of Hl
Q(I)

C(coJ) :={» e H[{I) : v = 0 in I n K(co)}

vol. 30, n° 1, 1996



110 Y. ABDDAIMI, G. MICHAILLE

so that (3.1) is equivalent to

w (œ, . ) e C(a>, ƒ )

A*(œ, x) Dw\œ, x) . Dv dx = Ü<ÉC, Vü e C(> , / ) .

LEMMA 3.1 : The solution of (3.1) fulfils the following a priori estimâtes

1 f ƒ p 1 f
/ rN W (OJ, x) dx ^ —7 r, T~rr • |£>w(o;, x ) | Jx

ts(/) Jj o:(a)) meas(I) J7
 l l

C \ 2

^ )
meas

where C is a positive constant depending only on Poincaré's constant for the
space {M e HX{Y) :u = 0inK(œ) n Y}.

Proof : By Hölder's inequality

f / / f / 2 V
W ( C Ü , X ) ^ X ^ w(cü,jc) <*x (meas(I))2.

Ji W/ /

According to meas(ï\ o»zG / n Z ^( F + z) ) = 0 and to Poincaré's inequality
in the space {we H t ( K ) : w = 0 i n a ; z - z } , there exists a constant
C(coz — z ) , depending only on a>z — z, such that

f 7 2

C(o> - z ) - f | D w 7 ( o ; , x + z ) | 2 ^

|Dw 7 (o ; ,x + z ) | 2 d x

z e ƒ n Z

< _ W M /
" a (u>)J /

W t t ö > J : ; X>

M2 AN Modélisation mathématique et Analyse numérique
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HOMOGENIZATION IN A RAMDOM DOMAIN 111

where Cp = Max {C(coz - z) : coz - z e T} and where we have used the
ellipticity assumption (2.3). It follows that

2 J_

x) dx \ meas n

This finishes the proof. O

LEMMA 3.2 : Let Hl
Q(I) be equipped with its Borel field. Then the map

co •-> v/( co, • ) from E into Ho( I ) is measurable.

Proof: It is easily seen that the inverse image of any Borel set of H\{I) is
a cylinder and so belongs to 9".

In the more gênerai case where (Z", 3 \ P ) is a P-complete probability
space, we assume that co >-> C(co,I) is a measurable closed set-valued map
from E into H\{I) (see (iii) in the introduction and définition 2.2). The basic
idea is to give a « measurable constructive » proof of existence of
w\co,. ).

It is well known that w{co,. ) is the unique fixed point of the strict
contraction S(to) of the Hilbert space Hl

0(I) defined by

S(co)v :=7i(co)(p(co) ( Î - A * ( < ü ) i > ) + t>) Vu e

where
a(co)

M (co)
• n(co) is the projection from Hl

0(I) onto its closed linear subspace
C ( û U ) ,

• A*(co) is the linear operator of Hl
0(I) defined by

((A*(co)u,v)) := \A*(co,x)Du.Dv dx, VM, inn t f

( ( , ) ) denoting the Standard inner product of Hl
Q(I),

9 ï is the element of Hl
0(I) defined by (( ï, v ) ) := \v dx for all v in

Let v0 be an arbitrary element of Hl
0(I) and consider the séquence

{vn(co,. ):«—> + °°} defined by

,̂I + i O , . ) = S(o>)!>„(«,. ) for n^O.

vol. 30, n° 1, 1996



112 Y. ABDDAIMI, G. MICHAILLE

Therefore v/(co,. ) = lim Vn(œ,. ) strongly in Hl
Q(I) and it remains to

n —» + <*>

prove the measurability of co •-> S( co ) v0. For this, let us consider the two
map s

S : 2 7 - J ; l

co »-» (7C(CÜ), p(co) (T - A*(cu) u0) + f0) (L,u) y-> Lu

where J?{Hl
0(I) ) dénotes the Banach space of continuous linear operator of

Hl
0(I) and where &(Hl

0(I)) x H]
0(I) and Hl

Q(I) are equipped with their
Borel field. According to the diagram

Û>I-> (n(co),p(co)(ï -A\œ)vo) + vo) ^ n(co)

x (1 - A\CD) v0) + v0)

and to the continuity of 6>, it suffices to establish the measurability of 0. The
measurability of p(co) ( î - A*(co) vQ) dérives from the measurability of
p(co), from the separability of H0(I) and the measurability of
co •-» ( (A*(co) v0, v ) ) for every v e Hl

Q(ï), which is a direct conséquence of
hypothesis (2.1).

Let us prove the measurability of co »-> 7r(co). It is equivalent to prove that
for every M, U in HQ(I), CO *-> ((TZ(CO) U, V)) is measurable. According to
Theorem 2.3, there exists a family (srt(co))rt5B ! of measurable sélections of
the set-valued map co ̂  C(co,I), such that C(co, I) = u n & , ^ I (

a ; ) - There-
fore, there exists a séquence {^(a>) : M—» + «>} of éléments of
(5H(a;))A l^1 with n(co) u = lim s"(co) strongly in Hl

Q(I). We thus get

M, u ) ) = l i m ( O " ( o 0 , 1 ? ) ) w i t h co •-» ( ( J " ( C O ) , ü ) ) m e a s u r a b l e .
n —> + 00

This complètes the proof of Lemma 3.1.
For every / e $ and co E 27, we now define

:= w'

The following lemma shows that X is a discrete superadditive process, more
precisely.

LEMMA 3.3 : For ail I in 3

M2 AN Modélisation mathématique et Analyse numérique
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(i) The map cv >-» A/a;) belongs to 1/(27, ST, P) and there exists a con-
stant Cp > 0 such that

Cp j-±-dP(a>) ,

(ii) the map I ' •-» Xj from 3 into L ( 27, 9\ P ) is superadditive,

(iii) X! is covariant, that is, for every z e Z ,

of (i) : By Lemma 3.2 and the continuity of u •-> \udx from

H]
Q(I) into R, the map co >—> Af(co ) is measurable. On the other hand,

Lemma 3.1 and assumption (2.3) gives the desired inequality.

Proof of (ii) : Let us consider the two Dirichlet problems

- div(A*(co,x)Dul(co,.)) = glml\K(co)

ut{co,. ) = 0 in K( co ) n I

ut( co,. ) = (p{ in dl / = 1, 2

where gp Z = l , 2 are two given functions in L 2 ( / ) and where <pt,
1= 1,2 are two given functions in L2(dl).

Classicaly, the solutions u{{co,. ) fulfil the following monotonicity proper-
ties with respect to the data gp q>{\

gx ^ g2 a.e. in I and (pv ^ <p2 a.e. on dl => ux{co, . ) ^ u2( co,. ) a.e. in I.

Therefore, taking gf,=O, ^j = 0 and g2
=l> <p2~Q-> w e obtain

0 =S w7( co,. ) a.e. in I.
On the other hand, let /, Iv I2 be three sets of $ such that

meas ( Nx u 72) = 0. By the previous result, the restrictions w7(o>,. )|_ Ix and
w7(a>,. ), L I2 of w7(co,. ) to /j and /2 satisfy, in the trace sensé

w{co,. )L/j ^ a.e. on dlv

w7( a>,. )L /2 ^ a.e. on a/2

vol. 30, n° 1, 1996



114 Y. ABDDAIMI, G. MICHAILLE

s o t h a t , u s i n g a g a i n t h e m o n o t o n i c i t y p r o p e r t i e s w i th gt= 1, / = 1 ,2

M/1 ( a> , . ) =£ vt/( O>, . )L Ix a.e. in ƒ] ,

w 2( a ) , . ) ^ vt> ( co, . )|_ / 2 a.e. in 72 .

I t f o l l o w s

/ co ) = v/(a;, JC) dx + w/(co,x)dx
J/, J/2

which complètes the proof of (ii).

Proof of (iii) : By (2.1), the property A^(TZ CL>) = K(co) + ̂  (see also
hypothesis (i) in the introduction) and the unicity of the solutions of prob-
lem 3.1, it is straightforward to check that

wI(rz œ,. ) = wz + I(œ,. + z) a.e. in / .

Thus

À( . ) O T ( C O ) = W ( T CÜ,-ƒ/<

J z + I

which ends the proof of Lemma 3.2. O
We are now in a position to state the main theorem of this section.

THEOREM 3.4: There exists E' e 2T, ^(2") = 1, SMC/I that for every
e Z'

XkY(co)
lim

dénote this last limit by X.

M2 AN Modélisation mathématique et Analyse numérique
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Proof : It is a direct conséquence of Lemma 3.3 and Theorem 2.L

Remark 3.5 : Note that, thanks to the covariance property, for every fixed
z in Z , we also have, almost surely

==iim?L + z(co, x) dx .

ue( co,.
4. LIMIT BEHAVIOUR OF ^

In the sequel, the extension by 0 in Q n £^( a> ) of the solution of problem
(1.1) will be still denoted by uE(a>,. ).

We begin with a proposition which states that the séquence u£(co,. )/e2 is
bounded in L (Q). More precisely

PROPOSITION 4.1 : ue( co,. ) strongly converges to 0 m Hl
Q( Q )

exists a positive constant Cp such that

Proof: To shorten notation, we ignore the dependance on co. Extending
uE by 0 in R \Q, we obtain

u]dy= X I <dx.

and a change of scale, x = e(y + z) , yields

vol. 30, n° 1, 1996



116 Y. ABDDAIMI, G. MICHAILLE

where ûe( y) = ue(e(y + z) ). Applying, for every ^ in Zrf, the Poincaré
inequality in the space {u e Hl( Y) : u = 0 in K(rzœ)}t like in the proof of
Lemma 3.1, we obtain the existence of a constant C > 0 such that

f û2(y)dy^C\ \Düc(y)\2dy.

Noticing that Du£(y) = s(DuE) (£(y + z ) ) , we get, after summing over z
and rescaling,

f
JQ\EK(

On the other hand, according to ellipticity assumption (2.3)

it follows

and

which complètes the proof of Proposition 4.1.
We construct now the random test function invoked in introduction. There

is no loss of generality in assuming Q to be a cube Q and we consider the
partition ( Qi ) j e /(^) of Q made of cubes with size r\ (actually rj is a séquence
converging to 0). Every Q{ n is contained in a cube s(kY+ z-t) where
k = k(e) := 1^1 + 1 and zi G 7?. Finally, we consider the family
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Of ) / e f(jJ) of functions tp* in C~(Rd ), 0 ^ pf *£ 1 with support in g . ^ and
where (5 is a positive parametter such that lim (pi = 1 strongly in

<5->0

^2(Qi n)' With the notations of section 3, we define the random measure

The following lemma is the key point of the main resuit of this paper.

LEMMA 4.2 : For every a> in the set E''of Theorem 3A, we have the
following a(C'0(Q), C0(Q) convergence, for a subsequence on t: and S

where Co( Q ) dénotes the set of all continuons functions with compact support
in Q and l^Q the Lebesgue measure restricted to Q.

Proof: Let 0 e C0(g),

W < » ) , 0 > = S f <!></; wkY+z{c»ï

(4.1)

kY

where we have used the mean value theorem, a change of scale and where
ai ô e e ö, „• On the other hand, according to Theorem 3.4, Remark 3.5 and
Lemma 3.1, it is easily seen that, for every w in the set 27'of Theorem 3.4

lim \ \ (P
ô
i(8x)wkY+Zi(œix)dx = l. (4.2)

<5->0,£->0^ JkY+Z;

By (4.1) and (4.2), for every co fixed in E', there exist a subsequence on E and
<5 independant on r\ and af. G gr. such that
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<?(C'0(Q), C 0 ( f i ) ) (note that (ke)d ~meas (QitJ) when e tends to 0). We
obtain the desired resuit by making n tend to 0.

We are now in a position to prove our main theorem.

THEOREM 4.3 : Let u£(wy • ) be the solution of problem (1.1). There exists
£' in 2T with P(£') = 1, such that, for every co e E\ UC(CÛ, . )/e2 weakly
converges to Af in L (Q) where À is defined by

= sup
ke N*

Âk(œ):=l/kd wkY(a)ix)dx,
hr

and where, for every k e N*, wkY( coy. ) is the solution of the random
Dirichlet problem (1.2).

Proof : One may assume ƒ to be continuous in Q. An easy density argument
allows to extend the result in the gênerai case. From now on, &? is a fixed
element in the subset Ef of Theorem 3.4.

Let us take, as a test function in (1.1)

v •-& y mâwkY+Zi(w -
ij, o, 8 ^^ ' i V * p

where 0 is any element of C^(O), We get (to shorten notation, we ignore
again the dependance onco)

^)Du,:.Dvnótdx + jji(co,uE)vtl0£dx

By lemma 4.2, the right hand side converges to X 0fdx whenever e tends

to 0, S tends to 0 and rj tends to 0. We estimate now the left hand side.
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f f
• I öf u } v s dx -\- I 8( M ) • J

I ^ e ' tf,o, e \ ~K e '
v Q v Q

U

f f

= 2

(4.4)

f a(ue)vn,ô,edx+ \ P(u£).Dv dx+O(s)

Q-,n

where O(e) dénotes various expressions which tend to 0 whenever a tends to
0. Indeed, this is a straightforward calculation, using (2.1), Hölder's inequality,
Lemma 3.1 and Proposition 4.1.

Going to the limit in £, ô (for a further subsequence), by proposition 4.1, we
get the existence of u G L2( Q ) such that

dx=\ uî im 2 " ^ T " 0 ^ dx=\ u<Pdx. (4.5)

Let us estimate the two last intégrais of (4.4). By Lemma 3.1 and a straight-
forward calculation, it is easily seen that v ô £ is bounded in L (Q) by a
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constant C independant on e. On the other hand, by (2.2), a(co,. ) is a strongly
continuous operator from L2( Q ) into itself. Therefore, according to Propo-
sition 4.1, a(u£) strongly converges to 0 in L2(Q) and

For the last intégral, with the same arguments, we have

But, like above, by Lemma 3.1

is bounded in L {Q) by a constant C so that, according to (2.2) for e large
enough

Finally, by (2.2) and Proposition 4.1, fi{-uc) strongly converges to 0 in
L2(Q, Rd ) and

\ f1(uc).Dv dx=O(c).

Recalling (4.3), (4.4), (4.5) and previous estimâtes, going to the limit on c,
S and rj, we obtain

u0 dx - A '<Pfdx

which ends the proof. O

Remark 4.4 : If a( co,. 0 ) ^ 0, with the same computations, we obtain thaï
almost surely ur(œ, . )h? weakly converges to Â(f-a(œ,0)) in L2(Q),
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