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FICTITIOUS DOMAIN/M1XED FINITE ELEMENT APPROACH FOR A CLASS
OF OPTIMAL SHAPE DESIGN PROBLEMS {*)

by Jaroslav HASLINGER (*) and Anders KLARBRING (2)

Communicated by R TEMAM

Abstract — A fictitious domain method is apphed to shape optimization problems and we use
a dualizalion of the Dirichlet boundary condition on the variable part of the boundary An
approximation by means of mixed finite éléments is presented and convergence results are
estabhshed

Key words shape optirmzation, fictitious dornain, mixed finite éléments

Résumé — On présente une méthode de domaines fictifs pour la résolution numérique de
problèmes d'optimisation de forme Cette approche est basée sur la dualization de la condition
de Dirichlet sur la partie de frontière On étudie l'approximation par la méthode des éléments
finis mixtes et on analyse la convergence de la méthode

1. INTRODUCTION

Fictitious domam methods or domain imbedding methods have recently
become a subject of mcreasing interest, see for instance [1] The obvious
reason is that they allow to obtam numencal solutions to problems of
complicated geometry by operatmg on a simple geometry domain containing
the complicated one The use of fictitious domain methods in shape optimi-
zation is particularly attractive because of the special features of the problem.
In the classical approach to shape optimization, ï.e. when a boundary variation
technique is used, one has to create a new triangulation, update all data
(stiffness matrix, load vector, etc) and solve the resultmg algebraic system to
get the solution of the state problem for each itérative design. As a resuit the
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436 J- HASLINGER, A. KLARBRING

whole computational proces s may be not to effective. We refer to the text
books [2, 3, 4] for a description of this classical approach to shape optimi-
zation. In [5] (see also [9]) a new approach based on a combination of the
fictitious domain approach and optimal control was proposed in the case when
the state is given by a homogeneous Dirichlet boundary value problem. The
original optimal shape design problem was formally rewritten as a new one
which uses as state problem again a homogeneous Dirichlet problem but posed
on a a fixed domain and with the control entering only in the right hand side.
The advantage of this method is obvious : the triangulation and consequently
the stiffness matrix is constant during itérations and can, thus, be factorized
once and for all. In order to treat the state constraint that arises as a means of
getting équivalence between the two formulations, the penalty method was
used in [5]. Here we describe an alternative approach. The main différence
being that instead of the distributed controls in [5] we use controls concen-
trated on curves only. These controls can be interpreted as Lagrangian mul-
tipliers by means of which we satisfy the state constraint. The same approach
for solution of the state problem (not the full shape optimization problem) was
reeently proposed in [6]. (We did not know of this work when obtaining the
results of the present paper.) The method presented in this paper has two
advantages as compared to the method described in [5] :

(i) for some cost functionals we avoid the évaluation of right hand sides
over non-standard éléments, created by cutting classical éléments (triangles,
e.g.) by segments ;

(ii) when the penalty method is used, the problem of finding a good strategy
between the penalty parameter e and the mesh size h > 0 is a delicate task
in général. Here the boundary conditions are satisfied in a weak finite
dimensional sense, namely by means of a mixed finite element method. In this
case, the corresponding state constraint (satisfied in this weak sense), can be
penalized without any problem. Consequently, we may let e —> 0 + even
when the mesh size h > 0 is fixed, which is impossible when we discretize
the penalized problem.

The paper is organized as follows : in Section 2 we give a classical
formulation, see [4], of the optimal shape design problem. In Section 3 the
fictitious domain formulation is given and shown to be equivalent to the
classical formulation. In Section 3 we give a mixed finite element approxi-
mation of the fictitious domain formulation and a convergence resuit is given
in Theorem 4.2 which may be considered a main resuit of the paper. In the
remaining Sections 5, 6 and 7 we, consecutively, give a matrix formulation,
suggest a solution method based on an augmented Lagrangian concept and,
finally, give some sensitivity formulas.
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OPTIMAL SHAPE DESIGN PROBLEMS 437

2. SETTING OF THE PROBLEM

Let Q(a) be a bounded domain in R , the shape of which is given by

Q(a) = {(xvx2)e R2\Xl e (0, a(jc2)), x2 e ( 0 , 1 ) } ,

where a is a non-negative function, describing the variable part F(a) of
) , with

r(a)={(x1>jc2)e R^jc^aC (0, 1)}

(seefig. 7).

Co Ci y xi

Figure 1. — The domain Q{ a ) of the original problem and the fictitious domain 3( Oi ) .

Next we shall suppose that the function a belongs to the set Uad, where

Uad = {ae C ° ' 1 ( [ 0 î l ] ) | 0 < C 0 ^ a ( x 2 ) ^ C l î Vx2 e [0,1] ,

|a '(x2) | ^ C2 a.e. in (0, 1), measö(a) = C3} .

That is, î/ûrf contains ail lipschitz continuous functions, which are uniformly
bounded, uniformly lipschitz continuous and preserve the area of Q{ a). The
constants Co, Cv C2 and C3 are chosen in such a way that Uad ^ 0.

On each Q(a), a e Uad, we shall consider the homogeneous Dirichlet
boundary value problem

= / in
0 on

or in weak form

find u{ a ) e V( a ) such that

vol. 29, n° 4, 1995



438 J- HASLINGER, A. KLARBRING

where V(a) = H0(Q(a)) and the symbol ( . , . )0 Q,a) stands for the
L2(Q(OL)) scalar product. Let Q be a domain containing Q(a) for all
a G U^ and such that the shape of Q is simple
(Ô = ( 0 , 2 C 1 ) x ( 0 , l ) , e . g . ) and feL2(Ü).

Finally, let /:(a, y) —> R1, a G {7â , y e V(a), be a cost functional and
define the following optimal shape design problem

find <x* e C/â  such that
et*, w( et* ) ) ^ !(&•> W( et} ) Vet G f/ y

with w(a) e V(a) being the solution of
In order to guarantee the existence of at least one solution of (P), the

following lower continuity of / will hold

an =?a (uniformly ) in [0, 1 ], an, a e Uad"I

where i3n = Q{ an ).
Then it holds.

THEOREM 2.1 : Lef (A) be satisfied. Then (P) has at least one solution.
For the proof we refer to [4].

3. FICTITIOUS DOMAIN APPROACH

We start by giving some notations. Let ö = ( 0 , y ) x ( 0 , 1 ) , y>Cx be

a fixed domain, Obviously, Q zi Q(a)\/a e Uad. Dénote by

S(a)= Q\Q(a) and f={(xvx2) s R2\xx = y,x2 e (0, 1 )} (see fig. 1).
It holds that F(a) = ^^2(a) n S"(a). A superposed bar dénotes the closure
of a set.

Further, let

v, =
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OPTIMAL SHAPE DESIGN PROBLEMS 439

On F(a) and F we introducé the following spaces of traces :

Hm(F(a)) ={w: F(a) -ïR^Bv e Vx( a): v = w on F(a)}

{w: F^Rl\3v eV^.v =wonf}.

These spaces will be equipped with norms || w || 1/2 r ( a ) and || w || 1/2 defined as
follows :

|w|.
v -w on T( 'a )

and

where | . |j Q,s and | . \x ̂  dénote seminorms in corresponding spaces,
which are in fact norms because of Friedrich's inequality.

Let v G Vx ( a ) and define the function 0 a : F —» R by the relation

(3.1) va(y,x2)-v(a(x2),x2), x2<= ( 0 , 1 ) .

Then it holds.

L E M M A 3.1 : There exist constants cl,c2>0 which do not depend on
a e Uad and v G VX ( a ) such that

(3.2) c, || u | „|| m

where the relation between v e Vx(a) and v is given by (3.1).

Proof : Let F : Q(a) —> ̂ 2 be the mapping, defined by

With any u e ^ ( a ) we associate the function 77u e Vv where

nv(xvx2) = v(^a(x2)
X^x2J, (XVX2)G Ù.

vol. 29, n° 4, 1995



440 J. HASLINGER, A. KLARBRING

Jf2(FThen IIv\f=va and consequently, vœe HJf2(F). A direct calculation
shows that there exist constants cv c2 oot depending on a e Uad and
v e Vx(a) such that

From this and the définition of noms in Hm(F(a)) and Hm(F), the
assertion follows. •

By the symbol ( , } we dénote the duality paring between H~ (F) and
Hm(f). Let

V0(a)={veHl(Q)\v\na) = Q}.

Then it holds.

LEMMA 3.2 : Let a E Uad and v e V be given, Then the function

(3-3) M . £ U V> <"'*•>

is the indicator function of the space VQ(a).

Proof: I fy E H\{Q), then the function v a^v (a(x2),x2) belongs to
H]/2(F). The function (3.3) equals to zero iff v | r ( a ) = 0, otherwise it takes
the infinité value. •

Let a e Uad be fixed and define the probiem

find û e V , l e FT m( F) such that

H~m(F).

LEMMA 3.3 : Let û G V be a solution of (§>(a)). Then u = u\Q(a)

the homogeneous Dirichlet boundary value problem on Q(a).

Proof: The function u = M|Q(Œ) belongs to Hl(Q( a) ) as follows from the
définition of ($>(a)) and Lemma 3.2. Resîricting ourselves to functions
tp G Vsuch that supp <p a Q(a) in ( ^ ( a ) ) , w e arrive at the assertion. •

LEMMA 3.4 : Problem ( ^ ( a ) ) /i<3S a solution for any a e t/arf.

Proof : Let ux and u2 be the solutions of the homogeneous Dirichlet
boundary value problem on Ü(a) and S(a)9 respectively :

- Aul ^finü(a) (- Au2 =finS(a)
ux =0 on 3Q(a) \ u2 =0ono^(a)
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and define the function

fa, in Q(a)
] — i

\u2 in £(OL) .

Û

Then by applying the Green's formula, one has

where ( , )a dénotes the duality paring between H~ (F(a)) and
Tl/2H"\ A a ) ). The mapping

defines the linear continuous functional on H (F) as follows from
Lemma 3.1. Hence there exists an element À e H~ m(F) such that

\ ' * CL f \ riyt * ' / \ r\yi *

Finally define the problem

find a* G Uad such that
Va

with w(a) being a part of the solution of
From Lemmas 3.3 and 3.4 we immediately obtain.

THEOREM 3.1 : The problems (P) and (P ) are equivalent.

4. MIXED FINITE ELEMENT APPROXIMATION OF ( P )

In this section we describe the approximation of problem (P) , which will
be based on the mixed variational formulation ( ^ ( a ) ) .

Let {<Jh } be a regular family of triangulations of Q. With any ?fh , the space
Vh of ail piecewise linear functions over £T;ï and vanishing on dÙ will be
associated :

Vh = {She C(Q)\vh\TG P^T) V T G Th , vh = 0 on dÙ} .

vol. 29, n° 4, 1995



442 J. HASLINGER, A. KLARBRING

Let DH : O = aö < ax < —- < am^H) = 1 be a partition of [0,1], the norm
of which will be denoted by H. With any Dw the following sets will be
associated :

£/ , = { a „ e C( ro , l l ) | a j e PAa. , û . b ' = l , . . . , m} n (7 ,

/l f f = { ^ e L2( (O, 1 ) ) M ^ - ^ 7 ^ P0(a ( ._,a. ), * = 1, -», m} .

The sets f/̂  and ylH will be the approximations of Uad and / /" 1 / 2(/"),
respectively.

For aH e UH
ad and JU^ e ylH we dénote

=

Let aH e Uad be given and define the problem

find ûh e Vk, XH G A H such that

Remark 4.1 : (Interprétation of ( ( # ( a H ) ) f t ) Dénote by

That is, V0A(aA) contains those functions from Vk, the intégral mean value of
which on each segment aH equals zero.

Let aH e UH
ad be given. Then it holds

LEMMA 4.1 : Let (uh, XH) e Vhx AH be a solution of (^(aH))h. Then
ûh G Vo/ï(a//)' ^ *5 uniquely determined and it solves the problem

Moreover, there exists a constant c> 0, which dépends solely on \\f\\ 0 & and
such that

(4.1) K l l l i ô s ï c .

Proof : We have

4ctH JO
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as jnH V 1 + (aH)2 e AH and consequently ûh e VOh(<*H). Restricting our-
selves to functions <pht VOh(<*H), the problem ( ^ ( a ^ ) ) ^ transforms into

aH))h* Finally the uniqueness of ûh as well as (4.1) follow from

(«»»*• •
Remark 4.2 : The function wft = ̂ | ^ a w ) is the approximation of the

homogeneous Dirichlet boundary value problem on Q( <xH) with the Dirichlet
boundary condition on F(aH) satisfied in a weak sensé.

Remark 4.3: An alternative construction of AH is possible: let ai+l/2

dénote the mid-point of the segment aiai+l . Then we set

2(Au = {vH e L2((0, 1 ) ) | A I « | ^ T ^ 7 e />„(«,-1/2 */+>/2 ), i = 1, .... m}.

The problem (^"(otH))h is defined in the same way as before. Then

vhdx2 = 0, V i = l m - l l ,

That is, VQfc( aH) contains those functions from VhJ the intégral mean value of

vh on any cti_l/2ai+m is equal to zero.
In order to guarantee the existence and uniqueness of a solution of

(<3>(aH))h we assume that the implication

(4.2) ^ E AH&(vH,vhJ = 0 V i A e V ^ ^ S O

holds.

Remark 4.4 : If condition (4.2) holds, then there exists a constant
/? > 0, depending generally on h, H and such that

(4-3)

Let us point out that we do not need to satisfy the Babuska-Brezzi condition,
i.e. the case when the constant /?, appearing in (4.3) is independent on h, H and
the norm || . | | o r ( a ) is replaced by || . ||_ m,r(ay

Using classical results from mixed finite element methods one has.

LEMMA 4.2 : Let (4.2) be satisfied. Then ($>( aH))h has a unique solution.

Remark 4.5 : The condition (4.2) is satisfied, if the ratio h/H is sufficiently
small, i.e. the triangulation ST̂ , used for the construction of Vh is finer than the
partition DH, characterizing AH.

vol. 29, n° 4, 1995



444 J. HASLINGER, A. KLARBRING

The approximation of problem ( P ) now reads as follows

Using classical compactness arguments, one can easily prove.

THEOREM 4.1 : Let the condition (4.2) be satisfied. Then the problem
(P)h has at least one solution for any h > 0.

Proof : The mapping aH ^> ûh(aH), aH e UH
ad (h, H fixed) is continuous

(see also Lemma 4.3). •
Next we shall analyze the mutual relation between ( P ) and (P)h when

h —> 0 + . To this end we assume that fc—»O + i f f / f - » O + . First we prove
an auxiliary result.

LEMMA 4 . 3 : Let OLH e UH
ad be such that aH=ta in [0,1] and let

üh(aH) be solutions of (^(aH))h. Then

(4.4) ûh{aH)^û in V,

where u = u\Q^ solves

Proof: The séquence { jj /?/i( Ö ^ ) jj 1 ô } is bounded as follows from (4.1).
Thus there exists a subsequence of {uh(aH)} (still denoted by the same
symbol) such that

(4.5) Ûh(aH)-Ûe V.

Let <p e C°°(Q ) be such that supp q> a Q{ a) u S( a). As aH = ïa in [0, 1],
supp (p cz Q(aH) <u S(aH) for all H sufficiently small. Let rh<p dénote the
Vh -interpolation of tp. Then rh(p e VOh(aH) and

(4.6) rh(p —> <p i n V.

Inserting rh(p into ( ̂ 0 (&H))h we obtain

Passing to the limit with h, H —> 0 + we arrive at

(4-7) ( V £ £
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making use of (4.5) and (4.6). It remains to show that û\r(a) = 0 or

(x2),x2)dx2^0 VA/E L2((0, 1 ) ) .

Let / / e I ( ( 0 , l ) ) b e given and {/JH} a séquence of éléments from AH such
that

(4.8) vH^ii in L 2((0, 1 ) ) .

From the définition of (£?(aH))h it follows that

(4.9) jdHûh(aH{x2),x2) dx2 = 0 .
Jo

It is easy to show, see [4], that (4.5), (4.8) and the fact that aH =ta in [0, 1]
yield

f f1
HHûh(aH(x2),x2)dx2 -^ \ juû(a

Jo Jo

because of (4.9). Consequently ûe V0(a) and it solves (4.7) for any
(p e VQ(a). AS such û is unique, the whole séquence {ûh(<%)} tends weakly
to û. On the other hand

from which (4.4) follows.
In order to prove the relation between ( P ) and (P )h, we shall suppose that

the cost functional / is continuons in the following sensé :

in

where Qn^Q(an).
The main resuit of this section is

vol. 29, n° 4, 1995



446 J- HASLINGER, A. KLARBRING

THEOREM 4.2 : Let (4.2) and (B) be satisfied. Let aH e UH
ad be a solution

of (P)h and ûh(ot*H) ^ Vh the solution of (^(a^))^ Then there exist
subsequences {a* } e {aH), {M^(aH. )} a {ûh{aH)} and éléments
a * G Uad and û e V such that

(4.10) a*Hj^a* in [ 0 .1 ] .

(4.11) Û^a^^ÛCa*), j^oo.

Moreover, a* w a solution of (P) anJ u* = w(a* )|^(a*) solves
(^(a*)).

Proof : The set f/â  is compact in C( [0, 1] ) norm. As £/^ c= f/ad for any
H > 0, the existence of a subsequence such that (4.10) holds, follows. At the
same time the séquence {ûh{ ot*H)} tends to a function w(a* ) e V such that
M* = w(a*)|Q^*) solves ( ^ ( a * ) ) by virtue of Lemma 4.3. From the
définition of (P)^ now follows :

(4.12) l{aHj, « , / « ; ) | f l ( ^ ) ) < I(aHj, Üh^aHj)\a(aHj))

holds for any aH e i/^. Let a e t/^ be given. Then there exists a séquence
{aH}, a f fe C/^ such that

(4.13) « f f ^ â in [0,1]

(see [4]) and at the same time

(4.14) ûh(âH)^û('â) in V.

Then «(a) |^(â) solves (éP(a)) as follows from Lemma 4.3 again. Now
passing to the limit with h-, H- —> 0 + in (4.12) and taking into account (4.10),
(4.11), (4.13) and (4.14) as well as (B) we arrive at

A s a e £/ûd is arbitrary we conclude that a* e t/ad solves (P).

5. MATRIX FORMULATION

We will present a matrix formulation of problem ( P )h for fixed h > 0 and
H> 0. The state problem (&>(aH))h reads as follows in matrix forrn :

(5.1) Au(a)=F

(5.2) G(a)u(a)=0.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



OPTIMAL SHAPE DESIGN PROBLEMS 447

Here, u (a ) is a vector of nodal values of the approximate displacement field
ûh e Vh and X(a) e Rm(//) is a vector containing the constant values of the
field A G AH. Both of these vectors are considered as functions of
a e Rm(H) + 1

} t n e vector of nodal values of aH e U^d, since for given such
a the system (5.1) and (5.2) is uniquely solvable for u ( a ) and X(a).
Furthermore, the éléments of the symmetrie positive definite stiffness matrix
A, the force matrix F and the kinematic transformation matrix G( a ) are given
by

(F);=(/>^)o,ô

( G ( a ) ) k i = <p(( aH(x2), x2 ) dx2

Jak
H

where (pi is the Courant base function of node /.
The matrix form of /((%, ûh{aH)\Q^aH)) is i ( a , u ( a ) ) and problem

(P)ft now reads

find a* G ^ such that
*,u(a*)) ^ i ( a , u ( a ) ) Va G m

where u(a ) is part of the solution of (5.1) and (5.2) and % is a subset of
Rm(H) + 1 isometrically isomorphic with UH

ad.

6. SOLUTION METHODS

Problem (P) contains two state équations, (5.1) and (5.2). In our treatment
so far these have been treated as defining the function a i-> u (a ) . Another
possibility is to regard one or both of these équations as explicit constraints.
Here we will use the possibility of regarding (5.2) as a constraint which is then
added to the objective function as a penalty term. It will then be natural to
regard the multiplier vector X( a ) as a control variable and u( a ) as a function
of both the « old » control variable a and this new one. Consequently, we write
in the sequel X and u(a, X) for these vectors. A penalty approach to the
solution of (P) is to solve the following problem

x Rm(//) such that
(P) e

vol. 29, n° 4, 1995



448 J. HASUNGER, A. KLARBRING

where

<f£(a, X) = J>(a, u (a , X)) + ^ - u ( a , X ) r G ( a ) r G ( a ) u (a , Ji)

and u (a , A,) is a solution of

(6.1) An(a.X)=F T

The solution of ( P ) is approached by the solution of ( P )£ as e —> «>.
The penalty approach is sensitive to the choice of e. A means of avoiding

(or diminish) this difficulty is to use an augmented Lagrangian method. The
functional to be used in such a method is

* M ( o , X, Ç) = <fe(a, X) + f G(a) u(a, X)

where £, is a multiplier vector. Step k of the augmented Lagrangian method
consists of solving for flxed ^k

find (afe, X* ) e * x Rm(/° such that

.*,<ï*)«/ I(o>X,Ç*) V ( a , M € * x R ^

and then updating the multipliers by

The séquence produced by these two steps approaches the solution of ( P ) for
a finite e.

7. SENSITIVITY ANALYSIS

A distinct difficulty in solving (P)f numerically is a lack of différendability
of G ( a ) which results in a nondifferentiability of u(a, X), We illustrate this
by a small example. Let <3'h consist of 8 finite éléments and the partition
DH of two segments of equal length according to figure 2. The design variable
a is shown in the figure. Then a simple calculation shows that

al2 if 0 < a < l

which shows the non-smoothness at a= 1.
The non-smoothness will require use of nondifferentiable optimization

methods. In fact, some preliminary numerical experiments using smooth
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I

0

a

i ^ ^

1 2

Figure 2. — A simple example showing non-smoothness.

algorithms generally did not give satisfactory results. Nondifferentiable meth-
ods require computation of at least one subgradient of <f M (or ( ês ) at eaeh
point (a , X)? see [7, 8]. At smooth points the subgradient coincide with the
standard gradient and below we dérive this gradient assuming smoothness. At
non-smooth points this calculation can be modified following the présentation
in [5]. We calculate the derivatives of # M (a 5 X, ^ ) with respect to a and
Ji. The derivatives of <fe( a, X ) will be a special case of these derivatives
obtained by setting £, = 0. Omitting the arguments the chain rule gives

, ~ da.. V=
da, da

du
du
da.

(7.1) i
da

Next we use the équation obtained by taking the derivative of (6.1) :

da. [daj

Putting this into (7.1) and identifying the solution p of the adjoint équation

du

vol. 29, n° 4, 1995



450 J. HASLINGER, A. KLARBRING

we obtain

(7.2) d4^=¥-+pT(%L)T*+±-uT
7ï-(G

TG
K / da da r \ ^ a ) 2 e da^

dat da. \^ai) 2 e

Similarly to this dérivation we obtain

where G, is the ih row of G.

REFERENCES

[1] C. ATAMIAN, G. V. DINH, R. GLOWINSKI, HE JIWEN and J. PÉRI AUX, 1991, On

some imbedding methods applied to fluid dynamics and electro-magnetics, Com-
puter Methods in Applied Méchantes and Engineering, 91, pp. 1271-1299.

[2] E. J. HAUG, K. K. CHOI and V. KOMKOV, 1986, Design sensitivity analysis of
structural Systems, Academie Press, Orlando.

[3] O, PlRONNEAU, 1984, Optimal shape design for eliptic Systems, Springer-Verlag,
New York.

[4] J. HASLINGER and P. NEITTAANMÀKI, 1988, Finite element approximation for
optimal shape design : theory and applications, John Wiley, Chichester.

[5] J. HASLINGER, K.-H. HOFFMANN and NL KOCVARA, 1993, Control/fictitious do-

main method for solving optimal design problems, M2AN 27(2), pp. 157-182.

[6] R. GLOWINSKI, T.-W. PAN and J. PERIAUX, 1994, A fictitious domain method for

Dirichlet problem and applications, Computer Methods in Applied Mechanics and
Engineering, 111, pp. 283-303.

[7] J.-B. HIRIART-URRUTY and C. LEMARÉCHAL, 1993, Convex analysis and minimi-
zation algorithms II, Springer-Verlag, New York.

[8] H. SCHRAMM and J. ZOWE, 1992, A version of the bundie idea for minimizing a
nonsmooth function : conceptual idea, convergence analysis, numerical results,
SIAM / . Optimization, 2(1), pp. 121-152.

[9] R. GLOWINSKI, A. J. KEARSLEY, T. W. PAN and J. PERIAUX, 1995, Numerical

simulation and optimal shape for viscous flow by a fictitious domain method, to
appear.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numericaî Analysis


