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ON ABSORBING BOUNDARY CONDITIONS
FOR QUANTUM TRANSPORT EQUATIONS (*)

by A. ARNOLD C1)

Commumcated by C BARDOS

Abstract — In this paper we dérive a hierarchy of absorbing boundary conditions for the
Wigner équation of quantum mechanics and model extensions that have been used for
semiconductor device simulations For these pseudo-differential équations we analyze the well-
posedness of the resulting initial-boundary problems

Résumé. — Dans cet article, nous établissons une hiérarchie de conditions aux limites
absorbantes pour l'équation de Wigner de la mécanique quantique et des extensions de ce
modèle qui sont utilisées pour des simulations de composants électroniques Pour ces équations
pseudo-différentielles, nous analysons comment cela conduit à des problèmes aux limites bien
posés

1. INTRODUCTION

This paper is concerned with the construction and well-posedness analysis
of absorbing boundary conditions {ABC ) for kinetic quantum transport
équations arising in the simulation of semiconductor devices. Many no vel,
ultra-integrated devices (e.g., resonant tunneling diodes) require quantum
mechanical models for a correct description of their behavior. The most
successful and accurate, transient simulations of quantum devices ([3], [10])
were based on the Wigner function formalism ([20]).

The real-valued Wigner function w = w(x, v, t) describes the state of an
électron ensemble in the 2d-dimensional position-velocity (x, f)-phase
space. lts time évolution under the action of the electrostatic potential
V is governed by the Wigner équation, which reads in the collisionless,
effective-mass approximation :

wt + v . Vxw + 0[V] w = 0 ,

x9vsâtd
9 d = 1,2 or 3 , (1.1)

(*) Manuscript received November 3, 1993
C1) Technische Umversitat Berlin, FB Mathematik. StraBe des 17, Juni 136, D-10623 Berlin,
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854 A. ARNOLD

with the pseudo-differential operator (PDO)

0[V] w = i ÔV (x, ~VV, A w =

= —î— \ \ ôV(x, v,t)w(x,v',t)e^v'vt) ^du'dv,

( | ) ( - ^ , r ) . (1.2)

This équation is already stated in a scaled form, and we refer the reader to
[14] (and références therein) for a physical dérivation and the discussion of
many of its analytical properties. In order to account for electron-electron
interactions in a simple mean-field approximation (1.1) has to be coupled to
the Poisson équation

t) = n(x9t)-D(x), (1.3)

where D dénotes the doping profile of the semiconductor, and the partiële

density n is obtained by n = w dv.

For the simulations of quantum devices most authors ([3], [7])
supplemented the Wigner équation, posed on a finite x-domain f2 ̂  Md,
with inflow boundary conditions {BC ) :

w(x9v,t) = w D ( x , v 9 t ) 9 (x,v)eF_, r :> 0 . (1.4)

Hère we dénote by T+ , F_ the outflow and, respectively, inflow part of the
boundary 9/2 x 31* \

F ± := { ( x , v ) \ x s dfè , v ^ m \ u . r ( j c ) 5 O } , (1.5)

with r(x) denoting the outward unit normal vector of 8/2 at x. These
BC's yield a well-posed problem ([13]) and their validity has recently been
justified in the asymptotic analysis [15], when posed far enough away from
the « source of quantum effects » (potential barriers, heterojunctions).

In typical semiconductors simulations, quantum effects are usually
confined to small régions inside the device. Therefore, and due to the
numerical complexity of the Wigner équation, it would be désirable to
restrict the quantum model to rather small domains, introducing artificial
boundaries. Along this boundary the Wigner équation would then be coupled
to a numerically simpler model (e.g., hydrodynamics équation for semicon-
ductors, [14]). In this situation, however, the inflow BC's (1.4) cause
spurious numerical reflections of outgoing wave packets, which are due to
the (in v) nonlocal nature of the PDO 0[V ]. This behavior can be corrected
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ABSORBING BOUNDARY CONDITIONS 855

using ABC's for the Wigner équation, which were derived by Ringhofer et
al. in [16] and employed in a self-con sis tent simulation of a quantum device
in [10].

The outline of this paper is as follows : in § 2 we briefly motivate and
recall from [16] the ABC's for the linear ID- Wigner équation. These
BC's are then reformulated and put into an analytic framework, needed for
the well-posedness analysis of § 3. In § 4, we discuss the model extensions,
and their implications on the BC's, that are necessary for quantum device
simulations : relaxation-time approximation, and 2D-simulation.
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2. ABSORBING BOUNDARY CONDITIONS FOR THE 1/^WIGNER EQUATION

In this section we will first outline the construction of ABC's for the \D-
Wigner équation (as presented in detail in [16]), and then reformulate them
as to make them better tractable, both analytically and numerically.

When considering the half-space problem (x e 12 = (0, oo ), v e M ) of
(1.1), zero « physical inflow » cannot be modeled by prescribing w = 0 on
F_ , as right and left-traveling modes of the Wigner équation are not confined
to t; :> 0 and v < 0, respectively. This parallels the situation in first order
hyperbolic Systems of the form

zt+Azx + Bz = 07 (2.1)

with the matrix A = diag (Aj, ..., A J ; A b ..., \k> 0 ; Ak+ l5 ..., \ n < 0,
and z = (z2, ..., zn)

T. Since the inflow-£C z}(x = 0, t) = 0, j = 1, ..., k
disregards the coupling of in- and outgoing modes, ABC's are more
appropriate for many numerical simulations ([6]).

The basic idea for obtaining an ABC for the Wigner équation is to
construct a transformation

u(x9vtt)= (Mw) (JC, i>, t) (2.2)

with the (in v and t) nonlocal operator M = M(x, v, a0, t, 9,), such that (1.1)
is transformed to :

vux+ <Pu = 0, x > 0 , ü e « , (2.3)
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856 A ARNOLD

with the PDO

(<Pu) (x, v, t) =

= (2 7TT 1 iï <p(x,v9 r,,v',t, dt)u(x,v\t)el7>(v-vl)dvfdV , (2.4)

<p(x, v, 7), v\ r, a,) = 0 for v > 0 and v' <: 0 .

This form of 0 assures that incoming waves (v > 0 ) are decoupled from
outgoing waves (v ' < 0 ), and hence a « perfectly ABC » at x = 0 is obtained
by

M(0, i>, t) = (Mw) (0, üf 0 = 0 , Ü > 0 . (2.5)

Since this BC is nonlocal in t, for practical reasons it has to be
approximated by « highly ABC's », which are local m t and asymptotically
correct for high wave frequencies. For this purpose, <P and M are constructed
using their asymptotic expansion with respect to dt in the sensé of PDO's (see
[18], e .g.) :

0 ~ a , o 0_x + 0 O + a-1 o 0X + . . . , (2.6)

with

(<£, M) (X, I?, f) =

= (2 T T ) - 1 iï ^ ( J C , v, v,v', t)u(x,v',t)el7}(v-v>)dv'dv , (2.7)

<Pj(x, v, 7], v\ t) = 0 for i? > 0 and u ' < 0 .

Similarly,

M ' v l + ô - 1 o M 1 + 8 /-
2oM2 + . . . , (2.8)

where the operators M} are local in x and t and (bounded — see § 3) Fourier
intégral operators in t;. They only map négative onto positive velocities,
satisfying

M}w = M} (iv- ) , (M, w)~ = 0 , (2.9)

with the notation

w±(v) = w(v)H(±v), v e 01 . (2.10)

therefore, M} oMk = 0, y, i te ^T, and

M " 1 ^ 1 - bJloMx - 3 " 2 oM 2 (2.11)

follows.
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ABSORBING BOUNDARY CONDITIONS 857

We point out that for (in t) smooth potentials V, the operators
<P and M are « standard » PDO's in t of order 1 and 0, respectively, what
justifies their asymptotic expansions. In velocity direction, however, their
symbols are not smooth, such that the composition formula for PDO's
cannot be applied. Therefore, M} (for y 2= 2) cannot be represented as a PDO,
but only as a Fourier intégral operator, again with non-smooth amplitude.

Using the expansions (2.6), (2.8), (2.11) in the Wigner équation, the
operators M} can be calculated iteratively (see [16]) :

(Af, w) (x, v, t) =

Z 7 r J < # J ~

0 ,

(M2w) (x, v, t) =

2

vv

v -v (2 12)
v 0

(V -V")2 , v'\ t)el7i(v-v")dv"dv -

- ( 2 T T ) - 2 f f ° 8 V ( x , r i , t ) 6 V ( x 9 v \ t ) h + ( v , v \ v " ) w - ( x , v \ t ) x
oo

xel7J'{v'~ü") + lviv~v>)dv"dvl dv' dr) , u > 0 ,

(Af2w) (JC, v, t) = 0 , i ? < 0 , (2.13)

with

v-v

v' > O ,
(2.14)

( v - 1 ? " ) ( v - v ' ) 9

Retaining a finite number of terms in the expansion (2.8) then yields a
hierarchy of ABC's which approximate (2.5). The first and second order
local-in-r BC's now read after differentiating with respect to t :

< + M 1 w - = 0 , x = 0 , v > 0 , (2.15)

w+ + 8,(Mj w-) + M 2 w " = 0 , x = 0 , i ; > 0 . (2.16)

Under the assumptions V, f . V e l 1 ^ ) , the operator Ml can be
represented as a convolution (JFx dénotes the Fourier transform with respect
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858 A. ARNOLD

to x). If w~ (0, ., t) lies in the weighted L2-space L2(M~, |i?|£) for some
s e (1, 3), then the intégral in (2.12) converges absolutely and

(M, w " ) (0, t\ r ) =

x w " ( 0 , i>', t)dv\ v>0 (2.17)

holds. If the initial Wigner function at t = 0 satisfies w1, uw/ G L2(/2 X MV\
then the boundary traces of the corresponding solution w will indeed satisfy
w ± (x , ., f ) e L 2 ( ^ , |i?| + | i ; |3) , JC G 3/2 (see §3). Thus (2.17) holds
rigorously in this case. Throughout most of § 3 and § 4, however, the
considered initial functions w1 will lie only in L2(f2 x â$v), implying
w± (x, ., t) e L2(&f, \v\\ x G df2. For this limiting situation (2.17) rep-
resents the bounded (see Lemma 3.1, below) extension of Mx to all of
L2{M~, |t>|). Therefore, and because of the anyhow somewhat formai
dérivation of the ABC's, we will from now on consider (2.17) as the
appropriate définition of Ml9 even for w~ only in L 2 ( ^ ~ , \v\ ).

By the same reasoning the operator M2 can be reformulated as

(M2w~) (0, v, t) =

, Ü", t)dV' ~

2 7 r J (0, !>'-», O ( ^ „ ôV) (0,

+(I?, t?', i7")w"(0, ü", t)dvndv\

if the additional assumptions V,, J% Vr, V,, ^ ^ Ê I 1 ^ ) hold. Inter-
changing the séquence of intégrations in the second term of the right hand
side gives

~ [A(i>, v") + A ( - r " , -v)]v"w- (0, v\ t)dv\ (2.19)
2 n Jm

J J - - ^ ( ^ , « V ) ( 0 , u ' - i ; f r ) — ^
J o

m
with

(0, i ; " - t? ' , r)

(2.20)
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ABSORBING BOUNDARY CONDITIONS 859

With an eye towards the numerical application we will now rewrite the
PDO M, using its right and left symbol, respectively, which then allows its
évaluation through FFTs :

{M, w- ) (0, v, t) =

, V, O] (v)elV7>dn =

-7^= [ J ( ^ , 0 [ ^ ' W ( 0 , ., f)] (v)e
lV7>dV + (»[V]w-)(0, », O,

V 2 TT J
i > > 0 , (2.21)

with

f 0= P
J -

, v',t)dV
t . (2.22)

When assuming r " 1 ^ ^ 5V) ( Ü ) G L 1 ( ^ U X these représentations can be
obtained easily from (2.17) or (2.12) (cp. formula 11-22 in [17], for PDO's
with smooth symbols).

Since the operator M2 cannot be written as a convolution, it is not clear yet
if the improvement from using the second order ABC can justify the
increased numerical effort, involved in the évaluation of Af2.

When numerically coupling the Wigner équation at x = 0 to some other
kinetic model for x < 0, an inhomogeneous BC, like

Jo
w + ( 0 , v, t) = f + ( v , O - f c ^ w - M O , t>, T ) d r , t ? > 0 ( 2 . 2 3 )

Jo

has to be imposed. Here, / + , v > 0 and w~, u < 0 represent, respectively,
the outflow and inflow-boundary data for the model on the left half-space.

3. WELL-POSEDNESS OF THE 1D INITIAL-BOUND AR Y VALUE PROBLEM

In the previous section, we derived a hierarchy of « highly ABC' s » for the
Wigner équation. It is well known that this kind of BC's for hyperbolic
systems may lead to ill-posed initial-boundary value problems (IBVP) (see
the example on the wave équation in [6]). In this section, and in § 4 we will
analyze the well-posedness of various ABC's for the Wigner équation and
related quantum transport models. Since we will also be interested in
discontinuous potentials V, thus leading to (in x) non-smooth coefficients of
the System, we cannot simply apply the normal mode analysis of
Kreiss ([11]). Also, the two boundary conditions cannot be separated for
short time intervals, as the Wigner équation includes infinité velocities.

vol. 28, n° 7, 1994
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It will not be within our scope to estimate the error introduced by the
ABC's, in companson with the original whole space problem This question
of « quality of the ABC's » is in the literature usually addressed by
considenng the reflection coefficients for outgoing waves ([6]) A ngorous
error estimate for the wave équation, e g , has been derived in [9] by
microlocal methods

First we will establish the well-posedness of the Wigner équation on the
interval — 1 < x < 1, v e $, supplemented with mhomogeneous ABC" s of
type (2 23) at x = ± 1 First we collect the model équations when using first
order ABC's

w, + vwx+ 0[V] w = 0 , |* | < 1 , v^m, r > 0 , (3 1a)

w(x9 v, t = 0 ) = w'(x, v),\x\ <= 1 , veâl, (3 \b)

- ( M ! w " ) ( - 1 , v , r ) û f r , f ? > 0 , t > 0 , ( 3 1 c )
Jo

w " ( 1 , v 9 t ) =f~ ( v , t ) -

~ \ ( M x w + ) ( 1 , Ü, r ) r f r , i > < 0 , r > 0 , ( 3 l d )
Jo

where the data Vy w\ f = ( / + , f~ ) are ail real-valued We recall that
M, is defined by (2 17), equally for w+ and w", and it maps outflow-data
(w (x = - 1 ), w+ (x = 1 )) onto inflow-data (w+ (x = - 1 ), w~ (x = 1 ))

One crucial ingrédient to prove well-posedness of (3 1) is the boundedness
of M!, which will first be obtained for smooth, decaying potentials

L E M M A 3 1 Let V, « f / e L 1 ^ ) Then Mx is bounded from

l}{m~, \v\) to L 2 ( ^ + , | i ; | ) (and equivalently from L 2 ( ^ + , \v\) to

L2(m~, \ v \ ) )

Proof Since the x - and t - dependence of Mx are irrelevant here, we
will suppress it We estimate (2 17) as

î

| o | 5 \M]U ( » ) | «

v)\ l p
t

p j ' | p ' | * | H ( I > ' ) 1 < fo ' , 0 2 )

1

where J-^J—- ^ - holds for t? > 0 and v' < 0 Then Young's înequality
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gives the result :

riU-JlM^K-dL. • (3-3)

To dérive this result, we have assumed f ^ e L 1 ^ ) , which implies
V E C {$) and lim V (x) = 0. In the simulation of quantum de vices it is,

X-+ ± 00

however, very important to include step potentials and to allow for a bias
between the device contacts ([10]). We are, therefore, led to also consider a
model potential of the form V (x) = sgn ( 2 ( X - J C 0 ) ) . The boundedness of
Mx for a very gênerai class of potentials can then be obtained by combining
the following result with Lemna3.1.

LEMMA 3.2: Let V = sgn (2(x - x0)). Then Mx is bounded from
L 2 ( ^ - , \v\)toL2(M\ \v\).

Proof : Since V, &x V $ Lx{0t\ the représentation (2.17) cannot be used
and we have to resort to the original définition (2.12) of Mx. Like in § 2 we
will first reformulate Mx for u~ e L 2 ( ^ ~ , \v\ + \v\e), e > 1, and then
extend Mx to L2 (01 ", | v \ ) by density. For fixed v > 0 we have to consider
the term

L sgn (v ± Vo)—, w~ (v')elv(v-vl) dv' dv =
o V — V

= - / lim — u~(v')e'l{v v )r}° x

(3.4)

where the two intégrations could be interchanged on bounded 77-intervals.
Since the last integrand is in Lx(0tv>\ the Riemann-Lebesgue lemma shows
that the a - and /3 - dependent terms both tend to zero as a -• - 00 and
/3 -• oo, respectively. Thus Mx can be represented as

2 f° v'
(MyW) (x, v) = — \ — 5 «"(!?') cos (v' -v)Vodvf ,

^ J_oo (V - ü)
» > 0 , (3.5)

with rj0 = 2(x0 — x).
1

In order to now prove the boundedness of | v \ 2 Mt u~ I in terms of

I
111 v I 2 M" I we will first consider this map from L1 (M~ ) to L l ( ^ + ) and
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from Lm(M~ ) to L°°(^+ ) : We estimate

||| I 2 " || < 2 f ° ° P \VV<\1 . , 2 - ,

Also, we obtain for v > 0

vl(MlU-)(v) ;— | | u ' | 2 u II ^^ I
77 M N o o J _ O 0 ( v ' - v ]?

I » ' I 2 « " | | . 0.7), ' l 2 „ -
loo

and the Riesz-Thorin interpolation theorem gives the resuit in L2. M
Us ing the boundedness of Mx we will now dérive an a priori estimate for

(3.1). When considering a Wigner function w e L2(f2 x &i\ with bounded
/2, the appropriate norms on the boundary are (see [4])

||w||J. = | \v-r(x)\ w(x, vfdadv, (3.8)

(da dénotes the surface measure on a/2), and specifically for our situation :

\v\w{-l9vyldv+
O

HwIIJ = P v w ( - l 9 v ) 2 d v + f \ v \ w ( l , v f d v . (3.9)
Jo J-00

LEMMA 3.3 :LetV e L°°((0, 00) x 3tx\ such that 1^(011 ^ « holdsfor
almost ail t^O in the L 2 ( ^ ± , |t?|)-operator norm. Then the following a
priori estimate holdsfor a mild solution of (3.1) :

II ƒ ( T ) H?. _ d r V r ^ O , (3.10)

with C depending continuously on t and a.
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Proof : We first multiply (3.1a) by w9 and then integrate over x e ( - 1, 1 ),
v e M, and r e (0, t ), which immediately gives the inflow-outflow-balance

= \W\\\+ f' [ | k ( T ) | | 2
r - | | w ( r ) | | 2

r ]dr. ( 3 . 1 1 )
Jo +

Here we used the fact that, for V e L°°(^) , @[V] is skew-symmetrie, i.e.,

f u1(v)(B[V]u2)(v)dv = - f

for Mj, w2 e l}(ffl) (see [13]). Strictly speaking, (3.11) is first derived for a
classical solution, i.e., w, vwxe C( [0 , t], L 2 ( ( - 1, 1) x ^ ) ) , for which a
classical trace theorem ([4], Prop. 1) states that w ( r ) | r + e L 2 ( ^ ± , | i ; | ) iff

w(f) | r_ e L2(M±, \v\). The result for mild solutions of (3.1) then follows

from a density argument.
Using (3.1c, d), the inflow-data w\r can be bounded by the outflow-data

w I r . Fe* je = — 1 we estimate :

| W ( - l , . , T ) | 1 ( j | . d r .

(3.13)

Together with the analogous result for x = 1 this gives

\\w{t)\\2
r =s2 ||/(O||Ï. +2 ta2 T | |W(T)| |J . J r . (3.14)

Jo +

Now we will consider

z ( O - l k ( 0 | | 2 + f' [ | | W ( T ) | | Ï . + | | W ( T ) | | J . ] d r . (3.15)
Jo +

From (3.11), (3.14) we get

r|k(T)||2r
Jo
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+ 4 f ILAOHr dr+4a2!'r f' \\w(.s)\\2
r ds dr «

Jo " Jo Jo +

+ 4 f | | / ( T ) | | 5 , dr+Aa1 [ rz{r)dr, (3.16)
Jo ~ Jo

and the Gronwall inequality yields the resuit. •
We point out that, even for homogeneous BC's, ||w> ||2 may not be globally

bounded in r, which contrast s the (in x) periodic problem [2] and the whole
space case [19]. Moreover, no dissipative energy functional for (3.1) has yet
been derived (in [8] higher order énergies for the wave équation with ABC's
have been introduced). It is, therefore, not known yet if the nonlinear
Wigner-Poisson équation, supplemented with ABC's admits a globally
existing solution.

In order to show the existence of a mild solution of (3.1) we will analyze
the fixed point operator F, defined by : for u = (u+, u~ ) e
L2((0, T), L2(F_9 \v\)\ with some fixed, finite 7, solve the équation

yt + vyx+ 0[V]y = 0 , |JC| < 1 , v e M , f e ( 0 ,1 ) ,

y(t)\r =u(t), te (0, T). (3.17)

Then Fu = ((Fu)+, (Fu)~ ) is defined as

ï. ) (T 1, v, r)dr , vècO, t e (0, T) . (3.18)

LEMMA 3.4 : Let w1 e L2((- 1, 1 ) x 3t\ f- e L2((0, T\ L2(^?±, \v | )),
and let V sadsfy the assumptions of Lemma 3.3. Then, F maps
L2((0, T), L2(r_, \v\)) into itself.

Proof : Our procedure to obtain the necessary regularity properties of the
solution to (3.17) will be similar to the proof of Lemma 2.1 in [5]. The
boundary data u - (M+ (V, t\ u~ (f, t)) can be extended to

uD{x, v9t) =

1
V

x- 1
(3.19)

0 , else,
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and uD e C ([0, T], L2{(- 1, 1 ) x 0t)) is a mild solution of ut + vux = 0
We now consider z = 3? - uD, satisfying

zt + vzx + ®[V] z = - 0[V] uD , (3 20)

where the inhomogeneity appears in L°°((0, T\ L2{{— 1) x ^2)), since
0[V] is bounded on L2{MV) for V Ê L ° ° ( ^ ) (3 20) has a unique mild
solution (see § 2 in [13]), which clearly satisfies z(t — 0) = w1 Also,
z has traces at F± x (0, T), with z | r = 0 and z | r e

L2((0, T), L2(F+, 11? I )), Like in Lemma 3 3, this follows by first applymg
the trace theorem Prop 1, [4] to the classical solution of (3 20) (see TH. 2 in
[13]) for smoother, approximating data, and a density argument.

Thus we conclude that (3.17) has a unique mild solution
y e C ([0, T], L 2 ( ( - 1, 1 ) x * ) ) , satisfying the înflow-outflow-balance
(3.11). The assertion of the lemma then follows from (3.18) and the
boundedness of Mx. •

The following lemma will yield the existence of a unique local-in-f mild
solution to (3 1)

LEMMA 3 5 Undei the assumptions of Lemma 3 4 F is tontiattne foi

a

Proof Given two inflow data uu u2 e L2((0, T)t L
2(F_, \v\)\ the

différence of the corresponding outflow data (as a resuit of solving (3.17))
can be estimated through (3 11)

P \\yi(r)-y2(r)\\2
r dr^ P || Ml(r ) - U2{r)fr dr . (3.21)

Jo + Jo

From (3 18) we then obtain

P |b1(r)-3;2(r)||2. ^r ̂
+

P
J

P
Jo

\\ux{T)-u2(T)\\l
r dr, O ^ r ^ T , (3.22)

o

and the result follows by an intégration with respect to t. •
Since the contraction interval of F dépends only on a, reflecting the

linearity of problem (3 1), the local solution can always be continued in
t. Thus we can formulate the main result of this section *

THEOREM 3 1. Let w7 e L 2 ( ( - 1, 1 ) x M\ f- e L2
OC((0, oo),

L 2 ( ^ ± , \v\ )), and let V satisfy the assumptions of Lemma 3.3. Then (3 1)
has a unique global mild solution w e C([0, oo), L 2 ( ( - 1, 1) x Si)) with
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boundary traces w I r+ E L2
O C((0, OO ), L2(F± , \ v \ )). The problem is strongly

well-posed {in the sensé of Kreiss, [12]), satisfying the estimate (3.10).
In the rest of this section, we will extend the above well-posedness resuit

to second order ABC's. The Wigner équation (3.1a, b) is then supplemented
with the BC's

P

- P K ^ w + X l , iï, T ) + I (Afï w + ) ( l , » , s)ds\ dr,

(M2
+ w-

p > 0 , r > 0 , (3.23a)

O ^ I ï

v < 0 , f > 0 , (3.236)

Hère M\ : L2(^?", | u | ) - > L 2 ( ^ + , | v | ) is given by (2.18), and M^ :
L 2 ( ^ + , | t ? | ) - L 2 ( < ^ - , 11?| > is defined by replacing in (2.18) h+ by
/ T , w i t h / Î " ( u , i ? ' , i ? " ) = Z*+ ( - i?, - v', - v").

Like before, the analysis relies crucially on the boundedness of
Mf, which is stated in

LEMMA 3.6 : Let V, ^x V, Vt, &x Vt9 Vx, &x Vx, and v(^x Vx)(v) s
LX(M). Then Aff are bounded operators.

Proof : We will only discuss the resuit for M\, and suppress the x- and r-
dependence of its kernel, as it is irrelevent hère. Also, since the situation
hère parallels the proof of Lemma 3.1 we only give the key estimâtes.

The boundedness of the first term in (2.18) is obtained by using the two
estimâtes

H 2 |t?"|2

(I? ~V")2

3

1

v>0 and t > " < 0 , (3.24)

| I ? " - I ? | . \(&XVX) (v" -v)\ , ( 3 . 2 5 )

>0 a n d i ? " < 0 .
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For the second term of (2.18) one uses

i

v \ h + ( v , v \ v " ) \ ^ c o n s t , Ü > 0 , V e M , u " < 0 , ( 3 . 2 6 )

and the boundedness then follows by applying the Young inequality twice. •
With this boundedness, the Lemmata 3.3-3.5 carry over to the second

order ABC's (in the proofs a just has to be replaced by (1 + t) a), and yield
the strong well-posedness for this problem :

THEOREM 3.2 : Let W e L2((- 1, 1 ) x i#), ƒ* e L?oc((0, oo),
L 2 (^ ± , | Ü | ) ) , and let V e L°°((0, oo) x Mx\ such that IJM^OH +
||^2 (O IJ + || Mj (f) || ^ a holds for almost all t^O in the L 2 ( ^ ± , |ü | )-
operator norm. Then (3.1a, b), (3.23) has a unique global mild solution
w e C ( [0, oo ], L2((- 1, 1 ) x M )), and its boundary traces

\ e L 2
O C ( (0 , o o ) , L2(r±J \v\)) satisfy ( 3 . 1 0 ) .

4. MODEL EXTENSIONS

For realistic device simulations at least a simple approximation for the
electron-phonon scattering has to be included into the Wigner équation
model ([10]). In this section we will analyze the ABC's for the 2 D-Wigner
équation and for the relaxation-time model. Since the proofs of the well-
posedness results are based on the fixed point itération of § 3, we will only
sketch them, mainly focusing on the a priori estimâtes.

4.1. 2D Wigner Equation

Hère we consider (1.1) on the slab - 1 < je, < 1, ^ € ^ , v e 0t2, and we
will now discuss appropriate ABC's at x = ± 1. For the Wigner équation in
two (spatial) dimensions the asymptotic construction of <P and M from § 2 is
generalized by requiring that the summands 3f; o <Py and d~ * o M} now be
homogeneous of degree — j in (ôr, 3^) (see [16]). This procedure yields as
the first order approximation

(Mxw)(x9 v, t) =

r v ' L v 1 v 2 v [ ^ " 2 i j - 1

x SV(x, v, t)w-(x, V, t)eiv ("-"">dv[dvld2
V , v1^0, (4.1)

0 , »! < 0,
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which generalizes M{, (2 12) to 2D However, (4 1) is also a PDO with
respect to t and x2, thus not yet useful for numencal computations In order to
obtam a local approximation, Mx is expanded in powers of (d~ l 6^), which

corresponds to an expansion of the wave directions at the boundary about
normal incidence (see [6], [16])

From the zero-order approximation one obtams the BC

wf
+ + M l 0 w - = 0 , Ü ! > 0 , (4 2)

with

f f° vi
(2 Trf

x8V(x,r),t)w-(x,v'9t)e
lv{v v}d2 v' d2 v , (4 3)

and the well-posedness analysis of § 3 immediately carries over to
2D

Including the first order term in (9, l d^) leads to the ABC

wft + àt(M{ 0 w ) + Mx { w~ = 0 , v x > 0 , (4 4)

with

(Mt i w~ )(xt v, t) =

(2TT) 2 J^3 J v\ - v} v[ -

, 77, r )w; 2 ( j c , v\ t)e'v {l l } d2 v' d2 v , ( 4 5 )

which was first denved in [16] Using this type of BC at x = ± 1 for the
Wigner équation (11) yields a very delicate IBVP, and ït is not known yet if
ît is well- or îll-posed The difficultés hère stem from the unboundedness of
Mx i in the trace space L 2 (#* x Ml2 „2, \vx\) We will not pursue this
question any further hère, but instead improve the BC (4 2) as to mclude
2 D effects at the boundary

When the given potential V is independent of x2, (1 1) découplés on the
hyperplanes v2 = const Then the operator Mx is local in v2 and ît
corresponds, without further approximations, to the BC

(9,+ u 2 ^ 2 ) w + +A*! ow~ = 0 , i?!>0 (4 6)

This resuit motivâtes the following procedure for x2-dependent potentials
When first applying the operator (1 + v2 6r"

1 a^) to the first order
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ABC wf + Ml w~ = 0, and then taking the zero-order approximation with
respect to d~l 6^, one again obtains the BC (4.6).

We will now formulate the well-posedness result for the Wigner équation
on (— 1, 1) x M3, supplemented with the inhomogeneous BC 's

w± ( + 1, x2, v, t) = ƒ * (x2, Ü, t) - z± (x2, v,t), vx s 0 , ( 4 . 7 )

where z± solve the transport problems

= (W l ( O w T ) (+ l f JC2, i>, O , »i ^ 0 , i?2f X 2 G ^ , t>0, (4.8)

z±(? = 0) = 0 .

THEOREM 4.1 : Let w1 e L 2 ( ( - 1, 1 ) x 0 t \ ƒ* e L?oc((0, oo )r,
2 (* j j x m\ |»! | )), and let V e L°°((0, oo), x * ^ ) , 5WC/Ï rtaf

M1)0(?)|| ^ a toWj /ör almost all r > 0 m r/ze L2{0t^x. St\ | Ï ? I | ) -

operator norm. Then (1.1), WÏÏ/Z f/î  initial condition w{t = 0 ) = w7 and ^ e
5 C s (4.7), (4.8), /ias a unique global mild solution
w e C ([0, oo ], L 2 ( ( - 1, 1 ) x ^ 3 ) ) wif/i boundary traces
w\reLic((0,oo\L2(r±, \vx\)).

Proof : The solution of (4.8) reads

= f (^ i o w " ) ( - l , x 2 - ( f - T ) » 2 , v, T ) d r (4.9)
o

and a straight forward estimate gives

fa f l k - C - L r ) ! ! ^ - , , . , , „rfr. (4.10)
J 0

Hence, the results of § 3 can be applied. •

4.2. Relaxation-Time model

Most of the performed quantum device simulations in the Wigner
formulation have used a relaxation-time approximation ([10], [3]), as no
numerically tractable quantum scattering operator is available yet. We will
here analyze ABC's for the équation

wt + vwx+ &[V]w = w°~w ^ | J C | < 1 , i ? 6 « , r > 0 , (4.11)
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where w0 = wo(x, v) dénotes a quantum steady state ([1]) and
T = r (x, v ) => 0 the relaxation time. Since the relaxation term is local in
v, the asymptotic construction of the « boundary operator » M in § 2 yields
the same first order ABC as for the collision-free Wigner équation (3.1a).
Only for the second order ABC, M2 in (2.21) has to be modified by an
additional term, which is again bounded in the trace-space.

Extending Lemma 3.3, we will now dérive an a priori estimate for the
IBVP of (4.11).

LEMMA 4.1 : Let V and Mx satisfy the assumptions of Lemma 3.3. Also
assume that r~ l e L°°((- 1, 1 ) x 0$) with r(x, v) === r0 > 0, and
w0 e L2({- 1, 1 ) x M\ Then, a mild solution of (4.11), (3.16, c, d) satisfies

r
Jo

\ 2
r _ d s \ ,\\f(s)\\2

r_ds\ , r ^ O , (4.12)

where C dépends continuously on t, a , r 0 and | |wo | |2 .

Proof : We first multiply (4.11) by w and then integrate over x e (- 1, 1 ),
v e M and r e (0, t\ which gives the estimate

IMOH1- M 2 + f'
Jo

7"IK||2 Ï'To Jo
\\w(s)\\2ds . (4.13)

Next we will consider z(t\ as defined in (3.15). Using (4.13), (3.14) and the
estimate A =s 1 + A 2 gives

Jo

f'
Jo

ro

* + - K | | 2 ï
~o

z(s)ds, (4.14)

and the Gronwall inequality yields the resuit. •
To show the existence of a mild solution, one uses a fixed point itération in

L2((0, T\ L2(F_, \v\)X like in the analysis of § 3. Hère, only (3.17) has to
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be replacée by the équation

yt + vyx+®[viy + l = —, ^ ( O J ) , (4.15)
T T

which admits a unique mild solution of the IBVP. This follows from the fact
that r~\ just like the operator &[V], is a bounded perturbation of the
generator vdx (see [13] for the detailed reasoning), and the inhomogeneity

- e L 2 ( ( - l , l ) x # ) .
T

The strong well-posedness of the relaxation-time Wigner équation with
ABC s is now formulated in

THEOREM 4.2 : Let M/, w0 e L2((- 1, 1 ) x M\ / * e L?oc((0, oo),
L2(ât±, | f | ) ) , T(JC, u) ̂  T0 > 0, a/«/ tef V satisfy the assumptions of
Lemma 3.3. 7%ew (4.1), (3.16, c, <f) has a unique global mild solution
w e C([0, oo], L 2 ( ( - 1, 1) x ^ ) ) wiïA boundary traces
w\r+ GL2

oc((0, cx>),L2(r± , | i?|)).
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