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ASYMPTOTICS OF SCATTERING FREQUENCIES
WITH SMALL IMAGINARY PARTS

FOR AN ACOUSTIC RESONATOR ( )

by Rustem R. GADYL'SHIN (})

Communicated by E SANCHEZ-PALENCIA

Abstract — In this papet we consider an acoustic resonator withfmite thickness of the shell
and with the Neumann boundaiy condition The extenor and the intenor of the resonator are
connected by a thin tube We construct asymptotics of scattering frequencies with small
imaginary parts in power series with respect to a small parameter (radius of the cross-section of
the Connecting tube) These asymptotics are apphed to the scattering problem

Résumé — Nous considérons un résonateur acoustique avec paroi d'épaisseur finie et
condition aux limites de Neumann L'extérieur et l'intérieur du résonateur sont reliés par un
tube étroit Nous construisons le développement asymptotique des fréquences de diffusion de
pai tie imaginair e petite en sér te de puissances par rapport a un petit paramètre (égal au rayon
de la section droite du tube de connexion) Ce comportement asymptotique est appliqué au
problème de diffusion

1. INTRODUCTION

The classical acoustic Helmholtz resonator is an idéal hard sphère with a
small hole [1], [2]. The corresponding mathematical model is the Neumann
boundary value problem for the Helmholtz équation outside this surface. In
1916 O. M. Rayleigh showed [1] (by non rigorous methods) that, for some
low frequencies, the field scattered by a resonator differs essentially from the
field scattered by a sphère without the hole. In 1971 J. W. Miles obtained [2]
by computational methods that the same situation takes place for some
frequencies near any eigenfrequency (a square root of an eigenvalue) of
- A in the corresponding bail. In [3], [4] it had been proven that the form of
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762 Rustem R. GADYL'SHIN

the resonator is not relevant for the resonant phenomena and only the poles of
the analytic continuation of Green function (scattering frequencies in terms
of the Lax-Phillips theory [5]) with small imaginary parts do matter for
résonances. These poles converge to a real valued set Xin of eigenfrequencies
of the Neumann boundary value problem in 12in (limit interior problem) as
s -• 0 (0 < e < 1 is the « radius » of the hole). Their asymptotics with
respect to e had been constructed in [6] by J. Sanchez-Hubert, E. Sanchez-
Palencia and in[7]-[ll]. These asymptotics were obtained by using the
method of matched asymptotic expansions [12]-[14].

In this paper we consider an analogue of the Helmholtz resonator with
finite thickness of the shell. This analogue O e has a bounded component
Oin and an unbounded component ftex which are connected by a thin tube
K g. J. T. Beale showed [15] that there exist complex scattering frequencies
r£ which converge to an additional real valued set Xtu = {± rrmlh}<^^x

where h is the length of K e. This set is the set of the Dirichlet eigenfrequen-
cies of the interval [0, h]. Namely the thin tube Ke générâtes these poles.
Beals's results show that O £ is not an exact analogue of the Helmholtz
resonator, but this problem is more interesting from the mathematical
viewpoint. The one-to-one correspondence (counting multiplicities) of the
scattering frequencies and the eigenfrequencies for the perturbed and limit
problems are proved in [16J by R. Brown, P. Hislop, A. Martinez and
in [17]. In addition, the authors of [16] obtained the following estimâtes on
the rate of convergence of the scattering frequencies with small imaginary
parts (we discuss only such scattering frequencies in R3). If nonzero
&0 e Xin &Xtu and re is the scattering frequency converging to kQ then
Ts = &0 + O(sm). In [17] the power series asymptotics of two vanishing
scattering frequencies r£ with respect to the radius of the cross-section of the
tube were constructed and the principal terms of r £ and lm re were obtained.
In the present paper we construct the power series asymptotics of scattering
frequencies rE converging (i) to k0 e X[n\Xtu, where X[n is the set of the
square roots of the simple eigenvalues in fllt\ and (ii) to k0 e Xtu\Xin. In
these cases we prove that (i) r£ = k0 + s2tl + O(e3), lm r£ = s412 +
O {e5) and (ii) re = k0 + et3 + O (e2), lm re = kQ + s2tA + O(s3\ where the
constants t} are expressible in terms of the limit problems. Note that the
results of the present paper and [17] are announced in [18]. Note also that
similar results for the Dumbbel shaped domain are obtained in [19] by
S. Jimbo and in [20].

The paper is organized as follows. In Sections 2, 3 we state the boundary
value problem, and the main results, respectively. The asymptotics of the
scattering frequencies converging to nonzero k0 e X["\Xtu are obtained in
Section 4. In Section 5 we consider re associated with the thin tube. Some
remarks on the problem in R" for n :> 3 are given in Section 6.
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ASYMPTOTICS OF SCATTERING FREQUENCIES 763

2. PRELEMINARIES

Let nin and O be bounded simply connected domains in R3, f2incz O,
nex=R\n, and their boundaries dOin>ex belong to C00. Assume that
nin coincides with the half-space x3 :> 0 at some neighborhood of the origin,
nex coincides with the half-space JC3 < -h at some neighborhood of
x0 - (0, 0, - h) where h r> 0 and the interval ( - h, 0) lies on the axis
Ox3 and does not intersect flin U ftex. The domains OlHi exare the interior and
exterior of the following acoustic resonator :

n e = n i n u n e x u Kg.

Now we shall describe the Connecting channel K e. It would be most natural
to define K£ as the narrow cylinder K£ = <o £ x [0, - h] where <o (e) =
{(xl9 x2) : (e" l xu e~ 1 x2)e <o} and o> is a two-dimensional simply connec-
ted domain with a boundary from C00. All propositions of the paper are true
in this case, too. But since, we use the results of [15], [17], the notations in
this paper are the same, i.e. the Connecting tube transits to the exterior and
interior of the resonator in a smooth way. Let y (t) be a positive function
satisfying the following conditions :

y(t)e C ( ( - oo, 0 ] )n C°°((- oo, 0 ) ) , y{n)(Q) = oo as n ^ 1 ,

77(0=1 as r=s s - l ,

K (JC, 0 = {x : x e (o (77 (x3)) x x 3 , / < x 3 ^ 0 } ,

The boundary value problem for the acoustic resonator O£ reads as
following

(A + k2)u£ = F , xef26, du£/dn = 0, x e 9 / 2 Ê , ( 1 )

dujdr - ikue = o(r~l), r -* 00 , (2)

where n is the outward normal, r = |x| , k is real valued. Let S(R) be the
open bail of radius /? around the origin, Ù <=S(R), F E L2(R3), supp F c
neR = S(R)nf2£. The solutions of (1), (2) (and their analytical continua-
tions) are considered in the class of functions belonging to W\(O£t 7O for any
T. Since the belonging of a solution to W\{fl£> r ) follows from the belonging
of it and F to ^ ( / ^ ^ r ) , and L2(R

3), respectively, then the boundary
conditions are understood in the usual sensé. Note that the boundary
condition for the resonator with edges (for example, K £ = K e) has the usual
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764 Rustem R GADYL SHIN

sense outside these edges, too But, ot course, the solution does not belong
to W? at their neighborhood

The outgoing condition tor the analytical continuation of u£ can be
expressed by writmg ut as superposition of the fundamental solution
e(x,y,k) = (4 ir\x-y\Y l exp{ik\x-y\} (see [5], [15]) Elsewhere
below we understand as the solution ot (1), (2) either the solution ot (1),(2)
for real valued k, or lts analytical continuation for complex k In such sense,
(1), (2) has a unique solution outside the discrete set Xe of the scattenng
frequencies having no finite limit points, lying below the real axis and
coinciding with a set of the poles of the Green function analytical
continuation of (1), (2) The residues of the solutions in the pole
TF satisfies the équation and the boundary condition in (1) with k = re and
F = 0 Such residues are defined as eigenfunctions Of course, they grow
exponentially at ïnfmity for fixed e It is known [15] that any complex
neighborhood K of kQ e X = Xin U Xex n Xl\ where Xex is a set of scattenng
frequencies of the Neumann boundary value problem (limit exterior problem)
in fl€A, lying below the real axis, includes at least one scattenng frequency of
(1), (2) for a sufficiently narrow tube On the other hand, if K n X = 0, then
there are no poles of the resonator in K for a sufficiently thin tube

Elsewhere below we shall consider all functions extended to be zero
outside the closures of their pnmary régions of définitions We define
solutions of the united limit problem for (1), (2) as the sum of solutions of the
interior, and exterior limit problems If kQ e X[f\Xn\ then we dénote by t^the
corresponding eigenfunction normahzed in L2(f2'n) If k0 e Xtu\Xin, then
assume that

*ft(x)= e \2ih)m \<Ü\ l/2 sin (kox3)

as x e IIe = o) e x [- h, 0 ]
Dénote by || . ||0 Q the norm in L2(Q) The following statement, which

will foundate our asymptotics, is proved in [17] (see Theorems 1, 3 in the
cited work)

PROPOSITION Let nonzero k0 e X{ = ((X[n\Xtu)U (Xtl\Xin)) Then there
is only one scattenng frequency re converging to k0 as s -• 0 and only one
eigenfunction (up to a scalar factor) corresponds to it

For any k sufficiently close to k0 and F such that supp F c S(R\ the
solution of (1), (2) has the following représentation

f
J

ue(x, k)= {k2-r]) ] Ye(x) f F(y)¥e(y)dy + Ue(x,k)t (3)
JR3

where \\Ue(x, k)\\Q S(R) *= C R\\F \\Q S{R) and the eigenfunction V£^> if/ in the

same norm as e -> 0 If in addition supp F Pi K £ = 0, then, for s -> 0, the
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functwn Ue converges to the regular part Uo = Uin © Uex of the united limit
problem in L2(S(R)) norm uniformly with respect to k.

Note that this statement can be obtained from [15], [16], too.

Remark : Proposition shows that the first addendum in the right hand side
of (3) is the resonant term and that, for real valued k = k(e), maximal
perturbations are observed in the resonant sector :

k = Re r£ + O (lm re) . (4)

Of course from (3) we can infer that the resonant term is essential for the
radiation problem (i.e. supp F C\ üin # 0) in the interior f2 in. But even in the
resonant sector, (3) does not give any information on an essential influence
of the resonant term for the radiation problem outside O ir\ or for the
scattering problem (supp F <= ftex) any where. One sees that, for giving
conclusion in this problem, we must know the leading terms of asymptotics
of lm r£ and &e outside nin. U

3. MAIN RESULTS

In this section we state the main resuit of the present work. The
coefficients of the leading terms are expressed by some values described as
follows. Let Glfh ex(x, y, k) be the Green functions of the interior and exterior
limit problem s for (1), (2),

<r(k)= lim \Gex(x, xQ, k)\2 ds
R-*oo JdS(R)

be the scattering cross-section [2], [21], f = (f 1; £2, £3),

7œ = K(£, - oo)U {£ : £3 > 0} .

Below we shall show the existence of a function Y (g) such that this function
is harmonie in y(û9 belongs to W\(y<* C\S(R)) for any R, satisfies the
homogeneous Neumann condition on 9yw and has asymptotics as
p = | f | _• oo in the following form

where qw is some constant. Of course if 6yw is smooth then Y is smooth, too.
Dénote by Sex(R) the bail of radius R around xQ. Elsewhere below we assume
that if k0 e S[n then the corresponding eigenfunction does not equal to zero at
the origin. The main statement of our work reads as follows.

vol. 28, n° 6, 1994



766 Rustem R. GADYL'SHIN

THEOREM 1 : (i) The asymptotics of the scattering frequency re, converg-
ing to k0 e S{n\Xtu as € —• 0, and of the corresponding eigenfunction have
the form

CO

re = * o + I ^ T , , (5)
j = a

where a = 2,

r2 = — <A2(0) tan~ [ (k0 h)\ o> \ , lm r3 = 0 , (6)

lm r4 = - ~ (ko\ a> | t (0) sin- 1 (*o h)f a (kö) , (7)

1 (koh) sïn (ko(x3 + h)), xe K £\(S
ex(sm) U S (e1/2)) ,

- - «?*0 r̂ (0 ) s in - A (jfco A) F ( ( x - xö)/s), JC € SeJf(2 £ 1 / 2 ) ,
2 1 | G e x ( x , x ö , k 0 ) , J C e i 1 / 2

/« L2(S(R))for any R.
(ii) T/ie asymptotics of the scattering frequency re, converging to

k0 = 7rm//z e ^rw\^£Wa5 s -• 0, a«J of £/ze corresponding eigenfunction have
the form (5), where a = 1,

T1 = 2 ?„*(/*. (8)

Imr2 = - t g f t - 1 ^ ! cr(*o)f (9)

2 A - 1 | û > | ) 1 / 2 G m ( j c , 0 , * 0 ) , x G / l / 2

, x e 5 (2

!P,(JC) - s ( - 1 r ^o(2 *- LI ̂ > I )1/2
 G"(JC, x0, * 0 ) , x E O ex\Sex(s m)

in L2(S(R))for any R.
Due to Theorem 1 the resonant sector (4) in the cases (i), and (ii) has form

k = &0 + e2 r2 + e3 r3 + e4(t + o{\ )) ,

k = ^ 0 + £Tj + £2(r + o( l ) ) ,

respectively. Here f is any real valued number.
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Now, on account of Proposition, Theorem 1 gives

THEOREM 2 The solution of the scattering problem in the resonant sector
corresponding to nonzero k0 E X\n\Xtu has the following form

, XE nin\S(em), ue(x, k) ~ e~2 T& (0) ,
xe 5(2 em),

ue(x9 k)~ e'2 if,(O)sin"1 (koh)$m (kö(x3 + /?V>
xe K\(Sex(£1/2)U S(sl/2)),

us(x, k)~- e lTk0 <K0) sin- l (k0 h) Y((x - xö)/s), x e Sex(2 e112),

us(x9 Jk)-r*0^(O)sin l (köh)\<o\ Gex(x,x0, k) +
+ Uex{x, k\xE I2ex\Sex(em)

where T = (2(r4 - t))~ [ ^(0) sin" l (k0 h)\ a> \ Uex(xö> *0), Uex is the solu-
tion of the limit extenor problem

The solution of the scattering problem in the resonant sector correspond-
ing to k0 = TT ml h E X^Z1" has the following form

l\<o\)mGtn(x90,k), x e nlf\S(si/2),

ue(x,k)~e 1Tk0(^h(co)YmY(x, e), xeS(2em),

) , x e K £\{Sex{em) U S(em)) ,

U2Yax-x0)/s)7 x e Sex(2 em) ,

u£(x) ~ ( - 1 r Tko(2 h 11 m | )1/2 Gex(x, xö, k), x e O ex\Sex{em)

where T = (r2 ~ t) l ( - l)m ( | m |/2 h)m Uex(x0, k0)
Theorem 2 shows that the scattering frequencies with small imaginary

parts have a resonant nature One can obtain a similar statement for the
radiation problem

4. ASYMPTOTICS OF SCATTERING FREQUENCIES ASSOCIATED WITH THE
INTERIOR OF THE RESONATOR

In this section we construct the asymptotics of the scattering frequency
converging to k0 E Xlin\Xtu by using the method of matched asymptotic
expansions However, some auxüiary statements will be proved for the case
&0 E Xtu\Xir\ too So, for the sake of brevity, we shall use the following
double-valued constants (see also (5), and (n) in Theorem 1)

vol 28, n° 6, 1994



768 Rustem R GADYL'SHIN

(i) If k0 e X\!\Xtli then a = 2, P = O, aJrt = £„x = 1, aex = j8I#I = O,

(*)= (^g-*2).
(ii) If kö G 2"\2in then a = 1, 0 = 1, * lfl = <*„ = j3ifl = 0 , t = O,

In the same way a double index « in, ex » in représentations means that
there are two formulae there. For instance, the following notations

ipln*ex(x9k)= £ eJ + /3b(k ) / ? ; « ' e x (Py) G I B ' " (x, < ' "v, i k ) ,

where and a\n
q'

 tn'-/ are some constants, to be read for « in », and for « ex »
separately. Hereafter, xl£ = 0, x^x = x0, x'" = x, xc' = JC0 - x, rin% ex =
\x - X1Q' ex\, S!n(t) = S(t\ Zjn' ex{è) are homogeneous harmonie polinomials
of order j such that dZ'/1* ex/dg3 = 0 as f 3 = 0. On the other hand, we shall
omit index sometimes (for example, Pj(Dy\ or Zy(f)). By définition we
have :

LEMMA 1 : Let kQ G XX. Then the coefficients of t/f1/1' ex(x, k) have analytic
continuations to some neighborhood of k0, satisfying the homogeneous
Neumann boundary condition on 9i3'"' " \ jx^'e x} and are solutions of the
Helmholtz équation in Ï2in-ex. The coefficients of *Af(x, k) satisfy the
outgoing condition at infinity.

LEMMA 2 : For k close to k0 G X\n\Sn\ the Green functwns and their
derivatives have the following form

+ ( - ! ) ' P, ( D J ( ( 2 7rrult exT
 1 cos (krtfh ex)) + g\** "-'(x, k),

where thefunctions g\n> ex> > are analitic in k, belong to Cm(Sin> ex(t) n Ü in>ex)
for any m and satisfy the homogeneous Neumann boundary condition on
dï2in'ex at some neighborhood of x1^ e\

If k and coefficients of P t are real valued then g\n'} is real valued, too.
We shall construct asymptotics of the eigenfunction corresponding to

r f as follows

^F(x) = W\x, r j , xenin<e\S'n'<x(em)9

$F(x)= ̂  e ' ^ - V ^ ) , Jcertt(2el/2), (10)
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ASYMPTOTICS OF SCATTERING FREQUENCIES 769

*, (*)= £ ^w/xa) , x e K f \ ^ ( e 1 / 2 ) U S ( £
1 / 2 ) ) , (11)

) = - P

Note that ^ f equals to We up to a multiplier l + o ( l ) a s e - > 0 .
The reasons, allowing to détermine the orders of the leading terms for

these asymptotics are the same as in [6], [7], [22] and that is why they are not
explicitly given here. The boundary value problems for the coefficients of
series (10) are obtained as follows [7], [14], [22]. In (1) we assume
F = 0, substitute series (5), (10) in place of k and ue and pass to the variable
f = xin'ex e~l. Then we extract out equalities with the same degree of e and
take the tormal limit as e -> 0. Finally, we obtain the following system of
récurrent boundary value problems :

(12)

where Â  are the coefficients of the series \f = r2 - k^.
Substituting series (5), (11) into (1), we obtain the ordinary differential

équations for w} :

Obviously, the functions

Wj(x3)=-kö
l Y A, 3 s in (ko(x3- t))wt_t(t) dt +

Jo
+ ÜJ sin (^0 x3) + bj sin (kö x3), (14)

where ap and bj are any constants, are the solutions of (13).
Suppose Tj(i) are homogeneous functions of order j being either

homogeneous polynomials, or homogeneous polynomials multiplied by
p-2q-i f0T s o m e integer q ^ 0, and satisfying the boundary condition
37,(f )/3f3 = 0 as g3 = 0, g ¥= 0. Dénote by ji r

/ a set of series T(g) =

Let us define the operator Kl**ex on the sums U(x, e) with the form
i^/7>ev(,Y, rF) , and (11) as follows [7], [14]. Expand coefficients of
U(x, e) in series as rlw ê  -> 0 and pass to the variables g = x,R ex e~ l. In the
double series obtained in such way we extract a sum of the terms
£J <P(g) forj ^q and dénote this sum by Kl^hex(U(x, e)).

vol. 28, n° 6, 1994



770 Rustem R. GADYL'SHIN

Dénote ^ = dfi/dXj for x = 0. The définition of Kl*>ex and Lemmas 1, 2
give :

LEMMA 3 : Let k0 e X[n\Stu
t r£ be any function having asymptotic (5)

with arbitrary coefficients, 4f"hex(x, k) have arbitrary coefficients al^>ex'J,
and we(x) have farm (11), (14) with arbitrary ap and by

(a) Then, for any integer N ^ 0, the following equalities hold

(15)

series yl^ex belong to &fJ9 are formai asymptotic solutions of (12) as
p -> oo, a t ó f 3 ^ 0 , where the functions vt are replaced by v\n*ex\
W\n* ex are polynomials of order i, having the form

W%(ï) = bö , W%X(Ç) = fe0 cos (fco fc) - a0 sin ( ^ A),

We
n
x(ï) = We

n
x(£) + bn cos (*0 A) - an sin (*0 /z) , n * 1 ,

W\n ( f ) = fl0 *o ^3 , Wf (f ) - - *0(a0 cos (*0 /i) + &0 sin (!c0 h)) Ç3 ,

where W£*ex are independent of rq, aq, and bq as q^n\ WJn> ex, and

yyin, ex are forma[ asymptotic solutions of (12) as p -> oo, and £3 < 0, where

the functions vt are replaced by W\n'ex(t; ).

(b) /ƒ *w addition, Pl^q = 0 as q^\ then

1+ £ (-ly/T'^'
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ASYMPTOTICS OF SCATTERING FREQUENCIES 771

where V^VfCf) e j / r t + 1 are independent of rq + 2, and ƒ>;«»«*.'+* as
q^n and are formai asymptotic solutions of (12) as p -» oo, a«öf
f 3 > 0 , where functions vt are replaced by V\niex{i;).

(c) ƒƒ in addition, r2, r3, ƒ>;*' «• ', ƒ>;«• «• ' + *, % , a l5 ft0, dx are rea/ va/wed
then

lm F ^ ' « - lm Vl
2
n = lm V^n = 0 ,

lm Vf » - 2 t 0 r2tff lm G^(x0, *0, * 0 ) ,

lm Wp** = lm Wi11-" - 0 , ImW'2
n = lm Z?2 ,

lm Wf = lm &2 cos (kQ h) - lm a2 sin (i^ A),

lm W'z = *0 lm a2 ^3 + lm 6 3 .

Remark: Note that, if r£ has a power series asymptotics of the form
T£ = k0 4- erl + O (e2) then (a) hold, too, but with a = 1, and f$ex = 0 in
(12), and (15). Namely because of this reason we distinguish (a). •

Lemma 3 shows that the problem of tf/l
e
n' ex(x, re% and (10), (11) matching

in power orders has been reduced to the existence of the solutions
vl

f
n*ex(jj) of (12) such that their asymptotics coïncide with Vl^ex(^) as

p -^ oo, £^ 25 0, and with W1"* ex(é; ) as p ~^> oo, ^3 <= 0 up to exponentially
small terms. Suppose that 0 = / u - 0 ^ / u - 1 ^ / ^ 2 ^ - - * are the eigenfrequencies
of the Neumann problem for - A in the domain a> on the plane
i' = (fi» f2)' ^qii') a r e t n e corresponding eigenfunctions normalized in
L2(Û>). Dénote by ^ m a set of series

where Qy (f 3) are arbitrary polynomials of order m. Dénote by s/g> m a set of
functions v(£) belonging to C°°(rw n S(R)) for any /?, satisfying the
homogeneous Neumann condition on 9rw , and having differentiable asymp-
totics from si^ and Êm at infinity for £3 ^ 0, and £3 < 0, respectively.

LEMMA 4 : Lef the function f (éj) G J / ^ m, /Ae senes F ( ^ ) e ^q + 2, and
the polynomials W(g3) of order m + 1 be formai asymptotic solutions of the
équation AU = F «s p -> oo, £3 se 0, a«6? £3 < 0, respectively, M/? fo
exponentially small terms. Then there exists a function v e j ^ + 2t m + j being
the solution of the boundary value problem
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772 Rustem R GADYL'SHIN

and having the following asymptotics as p -> oo

t>(f) = V ( f ) + £ z ; ( f ) p - 2 ^ - 1 , f 3 ^ 0 , (16)
; o

t>(f ) = W{€3) + <?0 + 0 { ^ + l e x p { M , f 3 } ) > f 3 < 0 . ( 1 7 >

w/z£?e <7o IS some constant IfV, and W are real valued then v is ieal valued
too

Proof Let u + e C ° ° ( { f £3 ^ 0} ), Ü„ eC°°(û> x ( - 1 , o o ) ) n

C ( w x [ - 1, oo)) be solutions of the boundary value problems

Ai? = ƒ , f 6 û » x ( - l , o o ) , at? /3n = 0 , f e 3 w x ( - 1 , oo) ,

u_ = 0 , i3 = - 1 ,

which have differentiable asymptotics from j / ? + 2 and ^ m + i at infinity of
the form (16), (17), respectively The existence of the such functions is
obvious On the other hand, if ƒ e C°°(yw) has a bounded support then the
boundary value problem

A « = / , f e r . , ÔM/9n = 0 , f e a 7 w (18)

has a solution in C c o (y w ) with differentiable asymptotics (16), (17) where
V(€) = 09 W(i) = 0 Let A'(O e C c o ( ( - oo, oo)) be a cut-off function such
that x = 0 for r ^ 1, and AT = 1 for ^ ̂  2 Then t; = x (P )(v+ + ^_ ) - M,
where M IS the solution of (18) with ƒ = ^ ( ^ (p )(u+ + u )) - ƒ satisfies all
statements of the lemma D

COROLLARY There are harmonie functions X,, X2 e sé x 0, 7 G J / 0 O

f/zezr asymptotics at infinity have the following form

y 1 ƒ ]

where cB = - (2 TT)" 1 | <U |

Lemma 4 and intégration by parts of

as /? —> oo, prove this statement D
Our construction will require the following obvious statement
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L E M M A 5 : For any Z} there is P y such that Z}(£) p~2j ~l = P 3 (D€) p ~ '.

If Zj is real valued then the coefficients of P} are real valued, too.
Now we can prove the main statement of the method of matched

asymptotic expansions. Dénote by vl
e
n^x(£) the partial sum of (10).

THEOREM 3 : Let k0 G X\n\Xn\ Then there exist a function re having an
asymptotics of the form (5), a series i//l/hex(x, k), (10), (11) such that
P'^J=O as y 3*1, the v1^ ex(g) e sé}J are solutions of (12), and
Wj have form (14),

Pl
o
n = ^ ( O ) , vl

o
n^bö = Rl

o
n &2(0), aö = bQ tan ' 1 (k0 h) ,

v? = ~ ko(bo s i n (*o h) + ao c o s (̂ o *)) Y '

T2 = - 7ra0 CviRgy l , /?ox - ^^2" k&o s i n (feo h) + ao c o s (

lm r 4 = - 2 k\ r2 TT-1 c„ sin" 1 (*0 h) Re
0* (RlJ)~ l a (kö) , (19)

and for any integer N ^ 1 and p -> 00, the following dijferentiable equalities
hold

W W ' ^ x , r f ) ) = ü ^ " ( f ) . f s ^ O , (20)

^ ' e J ( w , ( x ) ) = ü ^ ' C f ) + O ( ^ e x p { M l ^3} ) , ^3 < 0 , (21)

Proof : Let rf be any function with the asymptotics (5) where r} are
arbitrary coefficients. Then due to Lemma 2 if/l/l(x, rF) -> Rl$ i[/(0) i//(\\
and RQX ipe

e
x{x, r e) -• 0 as £—>0 formally. On the other hand, due to

Proposition, ^£^^ as e -* 0. So, we put PQ" = «/^(O). Note that our
construction given below is independent of the concrete value of Pl$ and this
value is choosen only because of the above mentioned reason.

Putting PÖ1, a& a n d bo by 09)> due to Lemma 3 we obtain (20), (21) for
N - 0. Obviously, i;̂ " satisfies (12).

Choose ve* by (19) and define

where P\n'] is not determined. Then due to Lemma 3 and Corollary we have
at infinity :

»i"«) - V\"(€) = (a0 *o a- + ^ " ' *o ^2^0") P " ' +

vol. 28, nü 6, 1994



774 Rustem R GADYL'SHIN

( - * 0 ( & o s i n (k0h) + a0cos (koh))Z,(£)P"2"
i = 1

( - i y * r " * * 0 r 2 P f - ' ( £ > * ) p " 1 ) , £ 3 ^ 0 , ( 2 2 )

- bY cos (&0/z)

(f ) - W?{£) = - ko(bo sin (k0 h) + a0 cos (k0 h)) q„ -

i ^ 3 } ) , £3 < 0 . (23)

Putting the right hand sides of (22) to be zero, we obtain (19) for
r2, and RQX, due to Lemma 5 détermine P\n*ex'l (hence, v[n) and obtain (20)
for Af = 1. Now we consider r E as any function with the asymptotics (5)
where r 2 is above defined and the other coefficients are arbitrary. Note that
lmP\nexl = 0.

Putting the right hand sides of (23) to be zero up to exponentially small
terms, we détermine bx, ax and obtain (21) for N = 1, Note that lm bx =
lm ax = 0.

The proof is then obtained by induction using Lemmas 3-5 and Corollary.
At the n-th step we détermine the solution v1^€x e s/n> n of (12) such that at

infinity vl
n
n'ex = Vl^ex + O(p~ l) as f 3 ^ 0 and vlfex - Wl^ex + 0 ( 1 ) as

f 3 < 0. Equating V™>ex ~ a m ex $ (0 ) P \n' " (Dx) $ (0 ) and the asymptotics of
$in, ex w e o b t a i n rn + ln and P;n;f • " + ' . Then putting vl

n
n = D̂ n +

^(0)F I
1

n 'n(D jC) ^ ( 0 ) , and üf = 5J* we get (20) for N = n. Now equating
Wln'ex and the asymptotics of v1™'ex up to exponential terms we obtain
bm an and (21) for N = /?. Of course, after this step we consider
T£ as any function with asymptotics (5) where, forj ^ n + 1, the coefficients
Tj are above determined and other coefficients are arbitrary.

In this way we see that the condition of (c) of Lemma 3 holds true. Then
the boundary value problems for lm vf and lm vlf'ex read as foliows

Using the equality kQ <r(kQ)~ lm Gex(x0, JC0, k0) (see, for instance, [7]) we
obtain the following chains for the imaginary parts :

lm Vl
2
a = lm Wl

2
n = 0 , => lm Wl{1 = 0 =^ lm b2 = 0 => lm V^f =

= - a 2 sm (koh);
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lm V?(€)=- 2 k0 T2R
e
0

x lm G€X(x0, xQ, k0),

lm Wf = — lm a2 sin (kQ h) =>

lm vf = - 2 &o T2 ^o* ^ (*o) = ~ a2 s i n (koh)=> lm a2 =

=>lmWl
3

n(£) = 2 kl T2 sin"1 (k0 h)Re
Q

x a(k0) £3 + lm b3 ;

lm W3
l(g) = 2 k$ T2 sin" l (k0 h)RQX er (kö) g3 + lm b3 ,

lm V^n(£) = O => lm vl
3(f; ) = 2 ^Q r2 sin" * (£0 h) RQX er (k0) Y(g) =>

=> 2 ^ r 2 sin" A (*0 h) Re
o
x er (k0) ca = -lm r 4 k0 7rRl

o
n .

The latter equality gives (19) for lm T4. The theorem is proved. D
Let us dénote by ^l

£"'^x(x, k) the partial sums of the series if/l
£

n' ex(x, k) and
by w£yN(x) the partial sums of expansion (11). Theorem 3 implies (see, for
instance [4], [7]).

LEMMA 6 : Let kQ G 2\n\2tu, r f , and the series 0^ ' " ( 1 0) . C11) satisfy the
statements of Theorem 3. Then, for any k sufficiently close to kö, the function

+ ( 1 - ^ ( 1 - ^ - ^ 0 1 e ))V
£,N\X)

belongs to W2(O£nS(R)\ for any R, converges to if/ in L2(S(R)) as
k^k0 and satisfies (1), (2) for F (x) = FeN(x, k) e L2(R3) such that
suppF£jA, c AC£ U 5(2 e1/2) U 5ex(2 e1/2) anc/

11/7 ( n- \\\ r C
NI1

IK e,N\ ' ' r ^ l l 0 , R3 ^ C N

The functions tf/EN(JC, /:), an<iFeN(x, k) are analytical at some neighbor-
hood of kQ,

Now we can justify the expansions constructed in Theorem 3.

Proof of statement (i) of Theorem 1 : Let us dénote rE from Theorem by
rÊ. Let r£ be the scattering frequency converging to k0. Suppose that there
exists such a d that | r e - re\ > Csd where c > 0. Then due to Proposition,
and Lemma 6 | | 0 e / v ( . , r e ) | | < C I e ^ ' ^ a n d , hence, forN>2d

11 ' " 0, (5(A))

we have fteN(x, r£) -> 0 as e -• 0 in L2(5(/?)). On the other hand, due to
Lemma 6 i//£ N(x, k) ^> ft for any k -• Jfe0 in the same norm. This contradic-
tion proves that | r£ — r£\ = 0{em) for any m.
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Using (3) for ^e%N{x9 k), and k close to rt and taking the limit as
k -• r f , we obtain that

Due to Lemma 6, and Proposition || \jj^ N \\Q s < CR N eNn and then

c(e, N) = 1 + o ( l ) as e -• 0 for any fixed iV. The equalities (19) give (5)-
(7), and the principal terms of #% outside ün\ Thus, statement (i) of
Theorem 1 is proved. •

5. ASYMPTOTICS OF THE SCATTERING FREQUENCIES ASSOCIATED WITH TUBE

In this section we construct the asymptotics of a scattering frequency
converging to k0 e 2tl\2n\ We use the following conséquence of Lemmas 1,
2 (the analogue of Lemma 3).

LEMMA 7 : Let k0 = irmih e 2tu\2in, re be any function having the
asymptotics (5) with arbitrary coefficients, if/'Jh ex(x, k) have arbitrary
coefficients a\n

q'
eXtJ, we(x) have form (11), (14) where b_ i = a} = 0 for

j ^ 0 and a_ l9 and the other b} are arbitrary.

(a) Then (15) holds for any integer N ^ 0, the series V1"'ex e <sé} __ ls and

the polynomials WT
} of order j + 1 have the following form

where the series Vl/h ex e stf t _ 1? aw f̂ r/ze polynomials Wl/hex of order

i + 1 a re independent of rq+l, bq, p>»>e*>J+« fOr q^i. V\n'e\ and

y m, e\ are jormai asymptotic solutions of (12) as p -^ oo, and ^ 3 3= 0, where

functions vt are replaced by V[n'ex ; W]n> " , anö? Wjrt'ex are formai asymptotic

solutions of (12) as p ->• oo, öwd ^ 3 < 0, where the functions vt are replaced

by W\n>ex.

(b) / / ' m addition, rl9 b0, and Rl
Q

n'ex are real valued then

lm V\n = lm W\n>ex = 0 , lm Vf = /?^A ik0 o- (it0).

The following statement is an analogue of Theorem 3.
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THEOREM 4 : Let k0 = -rrmlh e 2n\2in. Then there exist a function
r£ having an asymptotics of the form (5), the series i//lJhex(x, k) (10), (11)
such that vljfh ex(£) e s^j_Uj are solutions of"(12), coj have form (14) where
b_x = a} = 0 for j =2= 0,

b o = a _ l k 0 q O J 7 Ti = k ö h ~ l q „ + ( a _ x h ) ~ l b 0 , R l
o

n = 2 a _ x 7rkö c w ,

Rf* = ( - i r + 1 2 û . , 77/:ocw, I m r 2 , ( - i y » + 1 (a_, Ar^^ i too -C i to )

(24)
(20), (21) hold for any integer N 3= 0.

Proo/ :Since !? f - £-1(2//z)1/2 | o ; | - 1 / 2 s in ( ^ O x 3 ) ^ 0 a s e -» 0 in L2(/<f)
then a_ L is choosen by (24).

Putting vlQh ex by (24), due to Lemma 7 we obtain that at infinity

/i, f3} ) ,

- Wotf) = (- 1 r (- a_ 1 *o ̂  - ^0 + a- 1 ^1 A) , f 3 < 0 ,

- V(,B(f ) = (a_ ! Ao cw - (2 TT )- 1 /?-) p ~ l +

+ jr ( ^ 1 ^ o z / ( ^ ) p - 2 ( - 1 - ( 2 T T ) - 1 ( - ï y p ^ ' C D ^ p - 1 ) , (25)

+ £ ( ( - i r + 1 a - i * 0 z ( ( f ) p - 2 1 - 1 - (2TT)-1 {~\ype^i{D^p-1),

^ 3 ^ 0 . (26)

Equating the right hand sides of (25) to zero up to exponentially small
terms, we détermine bö, and rx in the form (24) and obtain (21) for
/V = 0. Putting the right sides of (26) to be zero, we get (24) for
ƒ>;»•"•' and obtain (20) for N = 0.

In the same way, using Lemmas 4, 5, 7 one can construct all
rr bj, and /?"ïj ex. The imaginary part of re is determined by the following
short chain (see (b) in Lemma 7)

lm V\x = Re
o

x k0 <r(k0), lm V[n = 0 ^Im ve
{
x ^ Re

o
x k0 o- (k0),

lm v\n = 0 ^>lmW\x = Re
o

x k0 <r(Jk0),

lm Wi" ^ 0 => ( - 1 )m ( lm bl-lmr2a^lh) = Re
ö

x k0 a (k0) ,

lm fcj = 0 => (- 1 )ffl ̂ I m ^ ö ^ ^ tfg* jko o- (*0) .

The latter equality gives (24) for lm r2. The theorem is proved. D
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The justification of the constructed expansions follows in the same way as
in the previous section. Equalities (24) give (8), (9), and the principal terms
of & e. Thus, the statement (ii) of Theorem 1 is proved, too.

6. REMARKS

The asymptotics for a resonator in R'2, n > 3 can be constructed in the
same way. We consider that /2" l i £ ZcR'1 coincide with the half-spaces
xn => 0, and xn <c - h at some neighborhood of the origin, and (0, ..., 0,
— /z), respectively, that <o is some (n - 1 )-dimensional domain in the
hyperplane xn = 0, in the définition of K e the variable x3 must be replaced by
xn, and etc.

Note, that in this case the main term of Gin'ex(x, xl
ö
n'ex, k) by x has the form

2 ( | £„ | rtn, exT ly where Sn is the unité sphère in R", and the analogue of Y has
the following asymptotics at infinity

where cw = - 2 \Sn\~
 l | <o |.

Taking into considération these remarks, assuming the scattering fre-
quency in the form k0 4- en ~ l rn _ 1 + o(sn ~ l) as ^0 G X[n\Xtu and following
our construction one obtains that

lm r . = 2(*o r 2 ) 2 (a0 sin (£0 A))- ! /?? <r(kQ) e2n~2 + o(e»-2) ,

the leading terms of &£ coincide with leading terms of ipl
e
n'ex(x, rE) (10),

and (11) and (19) holds.
In the case r£ -• k0 e ^ ^ ^ " o n l y the orders of lm r f and W£ are changed.

Namely,

re — k0 + er 1 , lm r £ - e;ï " l lm r2 ,

¥e(x)~ e<tt-inRpex G'^^Oc, xp**, TB), xe ain

y^ e(x)^ £(3-ny2vl^ex(xlfhex/e), xeSin'ex(2 £1/2),

^ f f U) ^ e- <"- ^ a_ ! sin (fc0 xn) , x e K \{Sex{sm) U 5(e1/2)) ,

where the coefficients satisfy (24).
In the considered cases our results define more precisely the estimâtes

| r, - kQ | = O (e{n ' 2}/2) for nonzero k0 e Xin\Stu and | rE - ^01 = O (e m) as
ik0 G z ; ' " ^ " 1 obtained in [16]. Note that, the estimate | rE - jko| = O(£(fl "2 ))
holds for k0 e Xin\Stu without our restrictions on the simplicity of nonzero
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k0 and ^ (0 ) ^ 0. Similar results were obtained [8], [9] for the Helmholtz
resonator with an infinitely thin shell. Note also, that in R3 the vanishing
re has the asymptotic re~ et [17], [18].
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