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AN ANALYSIS OF THE CELL VERTEX METHOD (*)

by K. W. MORTON C1) and M. STYNES (2)

Communieated by R TEMAM

Abstract — We present a new analysis ofthe cell vertexfimte volume method, based on the
construction ofa mappingfrom the trial space to the test space ofthe method For a convection-
diffuswn problem in one dimension, we obtain an error estimatefor our computed solution (in a
weighted discrete Hl norm) which dépends only on the gradient nodal interpolation errors For
pure convection in two dimensions, we use a new natural seminorm to prove local and global
error estimâtes for the cases of flow transverse to the gnd and flow parallel to the gnd

1. INTRODUCTION

The cell vertex finite volume method, together with its earlier form as the
box différence scheme, has been widely used to approximate first order
differential équations. In particular, its advantages for discretising the Euler
équations of inviscid gas dynamics are now well recognised. Recently, in
[4], [5] and [8], extensions have been proposed for the Navier-Stokes
équations of viscous gas dynamics and impressive results obtained for model
convection-diffusion problems. Some error analysis in one dimension was
carried out by Mackenzie and Morton [5], mainly using finite différence
techniques, and also by Morton and Süli [9] and Süli [12], [11] for the two-
dimensional pure convection problem. These demonstrate some of the key
features of the method, but it is clear from these papers that more gênerai and
more powerful methods of analysis are required.

C) Manuscript received May 15, 1992, revised July 19, 1993
The work reported here forms part of the research programme of the Oxford-Reading Institute

for Computational Fluid Dynamics
Partial financial support for the second author was provided by the Royal Society, London,

the Royal Insh Academy, Dublin, and Oxford Umversity Computing Laboratory
(!) Numencal Analysis Group, Umversity of Oxford
(2) Mathematics Department, Umversity College, Cork, Ireland

M2 AN Modélisation mathématique et Analyse numérique 0764-583X/94/06/$ 4 00
Mathematical Modelhng and Numencal Analysis © AFCET Gauthier-Villars



700 K W MORTON M STYNES

In the present paper we put forward an alternative analysis of the cell
vertex scheme which seems to hold considérable promise It is based on
mesh-dependent norms similar to those used by Suh [12], [11], within a
nonconforming Petrov-Galerkin framework, but the key idea is to introducé
a mapping between the trial and test spaces akin to the upwinded test
functions of finite element methods or the upwinded control volumes of finite
volume methods There is clearly a parallel with the approximate symmetn-
zation technique of Barrett and Morton [1] , but instead of enhancing the
symmetry of the bilinear form it aims merely to improve lts positive-
defmiteness

In the next section the genera! approach is outlmed and motivated Then in
section 3 a particular mapping is used to analyse the one-dimensional
convection-diffusion problem Section 4 shows how a similar mapping can
materially sharpen the results given in [9] and also highhghts the importance
of a particular semi-norm in the analysis Finally, in section 5 it is shown
how the need to choose a class of approximations for which this semi-norm
becomes a norm leads to a natural solution of the convection problem with
charactenstic boundaries

2. OUTLINE OF ERROR ANALYSIS

We give hère a brief sketch of the argument used in later sections to
provide error analyses for the convection and convection-diffusion problems

We assume that the domam f2 of our differential équation Lu = f is
suitably divided by a given mesh (intervals in one dimension, quadrilaterals
in two dimensions, etc ) Our computed solution U will he in the associated
trial space Sh, which consists of piecewise hnears m one dimension,
piecewise ïsoparametnc bihnears in two dimensions, etc This solution is
defmed by requinng U to satisfy

B(U,p)= (f,p) VpeT*, (2 1)

together with Dmchlet boundary conditions on £/, where B(., . )
Sh x 7* -• R is a bilinear form associated with the differential operator L,
( . , . ) is the L2(f2 ) inner product, and 7* is the space of piecewise constants
on the mesh

The key idea in the analysis is to construct a mapping M Sh -+Th such that

B(V,MV)^Cl\\V\\l VV eSh, (2 2)

where C x is some fixed positive constant (independent of the mesh and of the
diffusion coefficient in L), and || - ||A is some norm or semi-norm which is
sufficiently strong to guarantee stability of the numerical method Then,
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ANALYSIS OF THE CELL VERTEX METHOD 701

writing ul for the interpolant to u from Sh, one has to extend the définition of
B ( . , . ) to a suitably smooth class of solutions u so that one can carry out the
following argument :

C\\W - £ / | | ^B(w / - U, M{ul - £/))

= B(uI -u,M(ul - U)) + B(u-U9 M{ul - U))

= B(uI -u,M(ul - £/)), (2.3)

since B(u, p) = (ƒ, p) = B(U9 p) for all p e 7*.
Finally, the right-hand side of (2.3) can be expressed as a combination of

|| u1 - U || h and terms depending on u1 - u. The || u1 — U\\ terms can be

absorbed into the left-hand side of (2.3), leading to a bound on || u1 — U \\ in

terms of ul - u.
This is an extension of the approach used in Stynes and O'Riordan [10] to

analyse finite element methods for singularly perturbed two-point boundary
value problems.

An insight into how one might construct a mapping M satisfying (2.2)
above is provided by the following heuristic calculation. Consider the two-
point boundary value problem

- eu" + au' =f on (0, 1 ) , (2.4)

M(0) = w(l) = 0 , (2.5)

where e is a small positive parameter and a is a positive constant. Then the
bilinear form B ( . , . ) is essentially given by

B(v9w)= ( - evn(x) + av'(x))w(x)dx
Jo

Vv G WXcc(0, 1 ) , VweL^O, 1 ) . (2.6)

In practice we shall only work with functions w which vanish on the interval
(1 - h, 1 ], where h is some positive constant (h will be the mesh diameter in
our full analysis later). Suppose now that

y lO for 1 - fc < * * 1 ,

so that the mapping M has the effect of trans lating the function u to the left,
i.e. in the upwind direction since a > 0. Then we have

[ - h

B(u,Mu)= I (- eu"{x) + au'(x)) u{x + h) dx-1'
- h

u(h) + I [su'(x) u'(x + h) + au'(x) u{x + h)] dx

vol. 28, n° 6, 1994



702 K. W. MORTON, M. STYNES

i-h

J

Jo
[eu'(u'+ hu") + au'(u + hu')]dx

o
P ' (u'fdx + \ [eh(u'(l-h)f + a(u(l - ft))2]
o 2

(2.8)

For h > s, it turns out that the term

•î-ft

J
(u'Ydx (2.9)

o

guarantees stability (as is well-known in the analysis of the streamline
diffusion method, for example). This indicates that, if we choose Mv to be a
fonction which is essentially v upwinded, then we have grounds for
expecting a satisfactory bound as in (2.2) above. Note that if in (2.7) we had
used u (x) instead of u (x + h ) — that is, if we had not upwinded u — then the
lower bound obtained would have contained only

rx-h
e (u'fdx, (2.10)

and this would be insufficient for stability.
The above calculation pertains directly to our convection-diffusion prob-

lem. In the case of pure convection, replacing u(x + k) in (2.7) by
u'(x) leads more simply to a satisfactory result, as we shall see in section 4.
However, irrespective of whether diffusion is present we follow essentially
the same line of argument ; for further discussion on the use of upwinding in
some form as a means of obtaining stability in finite element and finite
volume methods, see also Morton [6], [7].

3. CONVECTION-DIFFUSION IN ONE DIMENSION

We shall in this section obtain an error bound for the solution obtained
when the cell vertex finite volume method is applied to a singularly perturbed
two-point boundary value problem. Our estimate is in a norm which is a
discrete analogue of (2.8) above.

Consider the problem

-eu"+(au)'=f o n ( 0 , 1 ) , (3.1a)

where e is a small positive parameter, and we assume that the function a is
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ANALYSIS OF THE CELL VERTEX METHOD 703

smooth and satisfies

a ( x ) > a > 0 , (3.2)
af(x)^{3 ^ 0 (3.3)

on [0, 1 ]. The condition (3.2) guarantees that the solution u of (3.1) can have
a layer only at the boundary x = 1. Condition (3.3) will be needed later to
ensure the stability of our numerical method ; it is the usual finite element
condition « b — a 72 s* 0 » that would be applied to an équation in the form
- eu" + au' + bu — ƒ, and we note that (cf. Stynes and O'Riordan [10]) it
can be deduced from (3.2) by making, if necessary, a change of dependent
variable.

Place an arbitrary mesh 0 = x0 <: x1 < • • • <= xN = 1 on [0, 1 ]. Set
hx = xt - xt _ j for each /, and H = max, hr For any function g e C [0, 1 ], we
write QX for g (xt ).

Our finite volume scheme is Method B of Mackenzie [4] : find the
piecewise linear function U such that

f dxy for i - 1, ..., N - 1 , (3.4)
• i

Uo = uL UN = uR, (3.5)

where for each piecewise linear V we set

VJ=7ïr~Lu ,(hJ^D~ yj+hjD- VJ + i) fory = 1 / / - 1 (3.6a)

and

_ Vx-V[. (3.6b)

Here D_ is the backward divided différence operator. We assume that each
f*'intégral ƒ dx is evaluated exactly.f

Let SQ dénote the (N — 1 )-dimensional space of continuous piecewise
linear functions on the mesh which vanish at x = 0 and x = 1 ; and let
$£ dénote the corresponding set of piecewise linear functions satisfying the
boundary conditions (3Ab). Let Th dénote the space, of the same dimension
as SQ, consisting of functions which are piecewise constants on [0, xN _ x ]
and which vanish on (xN _u 1 ]. Given W e r \ let Wt be the value of W on
each interval (xt_u xt). For each V G S | and each W e Th, set

B(V, W)i- J] WtBt(V). (3.7)
i = i

vol. 28, n° 6, 1994



704 K. W. MORTON, M. STYNES

Then (3.4) is equivalent to

B(U9W) = "%Wt f' fdx= ï'wfdx VWeTh. (3.8)

We also define B{., .) : C1 [0, 1 ] x 7* -> R by

B{v, W) = Y Wt {- e(v'(Xl )-v'(xl_l))+ (av\ - (av\ _ x} . (3.9)

Note that the two définitions (3.7) and (3.9) are consistent, being identical
for C1 [0, 1 ] n S g which consists of the linear function uL{\ - x) + uR x, so
there is no ambiguity in the définition of B, We thus have B ( . , . ) defined on
{Sh

E® Cx[0, l ] ) x 7* by B(V + v, W) = B(V, W) + B{v, W).
We deduce from (3.1), (3.9) and (3.8) that

Th. (3.10)

Also, using (3.7) and (3.9),

B(u -uI,W) = - s Y Wj h} D_ (u'(Xj) - (w7)/) (3.11)
j = i

since (au)j = (au1^ for each j .
We can now specify a suitable mapping M, as discussed in section 2.

Given V s Sg, define MV e Th by

(MV)(x) - Vt on (x( _ !, xt ) for each ƒ . (3.12)

The function MV may be regarded as the limiting case, as the cell Péclet
number tends to infinity, of the well-known Hemker test function [2], which
is the local Green's function.

Using this M, we now prove a coercivity inequality which is a discrete
analogue of (2.8) for our cell vertex method.

LEMMA 3.1 : Let V e SQ be arbitrary. Assume that the mesh is arbitrarily
graded, viz., h} s= h} + l for j = 1, ..., N - 1. Assume also that h2 s= hxIA,
Then

B(V,MV)^ (a/2) £ (VJ-VJ_lf+ (0/2) £ h} V) . (3.13)
j = i j = i

Pröö/7: By (3.7),

" - 1 2shlV1

B(V,MV) = e Y ( V ; - i - V ; ) V y - , ' (^ . V2 - £>_ Vj) +

M2 AN Modélisation mathématique et Analyse numérique
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We begin by analysing the terms which are multiplied by e. From
summation by parts and Vo = VN = 0,

= ft, V[ D_ Vt + £ A, + lVjD_VJ + l. (3.15)

Hence the « e-terms » consist of

-JTThD- VliD~ V*-D- v
"1 ' "2 _ i

and we show that on a graded mesh the définition of VJ renders this sum
positive. Substitution for VJ from (3.6a) yields a sum of the form

N N 1

where

ax = 2 ** + -1 2 , g. = , J - 1 ' for y = 2 , . . . , TV (3.17)
"1 + "2 "y - 1 + "/

and

«ƒ+«; + !

Using the mesh grading, we have for j = 1, ..., N - 1

(3.18)
' A,+A, + , 2 2 A,_, + A, '

and similarly

6,^fl i + i . (3.19)
Consequently

f «, (D_ V,)2 + Y 6, D_ VjD_VJ + 1*
J = 2 j 2

x

^ I a2(D_ V2)2 + I aN(D_ VN f , (3.20)

vol. 28, n* 6, 1994



706 K. W. MORTON, M. STYNES

by (3.18) and (3.19). Combining (3.16) and (3.20),

(3.21)

Now the first three ternis hère are a quadratic form in D_ Vx and
D_ V2, which will be non-negative if and only if b\ =s 4 al(a2/2\ that is,

I \ *1 + *2 /

Setting s -.= h2/hu this becomes

which clearly holds if s ̂  1/4, since 54 - 4 ̂ 2 < 0 from the mesh grading.
Thus (3.21) becomes

VJ + i ̂  | M*>- ^ N ) 2 , (3.22)

so the £-terms from (3.15) are non-negative.
Hence we obtain

B(V, MV)& f [(aV)7 - (aV), _ J Vj . (3.23)

Using V0 = VN= 0,

= (1/2) E [a^1(y7-V ;_1)2+(«y-^-1)^2l
; - 1

^ (a/2) £ (V; - V, _ j)2 + (i8/2) j ; Ay V,2 . (3.24)

The inequalities (3.23) and (3.24) together imply that

B(V,MV)^(a/2) £ (Yj-Vj.tf+ipn) ^ hj Vj , (3.25)

as desired. D
We next obtain an expression for B(uf - Uy M(u! - £/)).

M2 AN Modélisation mathématique et Analyse numérique
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ANALYSIS OF THE CELL VERTEX METHOD 707

LEMMA 3.2 : For R = ul - U,

B(R,MR) = s £ (/? ;-i? ;_1)((w /);_i-^(x /_1)) ) (3.26)
J = I

where (u!)J is given hy (3.6).

Proof : From (3.10) and (3.11), using the undivided backward différence
operator A_9

B(R, MR) = B(u! - «, MR )

= s £ rt,4_ («'(*,)- (u1);). (3.27)
j = i

Summing (3.27) by parts and noting that Ro = RN = 0, we obtain
(3.26). D

We can now obtain a convergence resuit in a discrete energy norm.

THEOREM 3.3 : Assume that hj^hJ + 1 for j = 1, ..., N - 1 and that
h2 s* hxIA. Then for R = u1 - U

a £ (i^-tfi_1)2 + /3 | ^ ^ ( 4 e
2 / a ) f (uf (x;) - (u1);)2, (3.28)

; = 1 i- 1 j =0

Proof : Take F = /? in Lemma 3.1 and invoke Lemma 3.2 to obtain
iV AT

a £ (RJ-RJ^^2* f3 £ hJRJ^

£ (^-^-O 2 ] [ ^ I (O'V- !-«'(^-i))2] (3-29)

by the Cauchy-Schwarz inequality. The first term on the right can be
cancelled against the left-hand side to give the required re suit. D

Remark : The assumptions made about the mesh in Theorem 3.3 are not
restrictive in practice, in essence requiring only that the mesh is not
coarsened in the boundary layer.

Moreover, provided that one has more information about the mesh, one

vol. 28, na 6, 1994



708 K. W. MORTON, M. STYNES

can replace the right hand side of (3.28) by a more explicit error bound. We
show below how this is done in certain cases.

Towards this end, we first observe that Taylor expansions yield

for j = 1, ..., N ~ 1, where x} _ l < r\x } <Xj < r\2 } <x} + 1; and

(u^-"'(*<>) = O (*?)• (3.30e)

We note also that Kellogg and Tsan [3] have shown, provided a e C2[0, 1 ]
and ƒ e C2[0, 1 ], that

|K ( I ) (* ) | « C [ l + s- 'exp ( - «(1 -*)/£)] (3.31)

for / = 0, 1, 2, 3 and 0 < x <: 1, where we use C to dénote a generic constant
which dépends only on a and/. Combining (3.30) and (3.31), we have

\(uJ); -u'(Xj)\ ^ChjhJ + ln + e ' 3 exp( - a (1 -*,)/*)] +

+ Chj+i[l + £"3exp(- a ( l -JCJ + J/e)] (3.32a)

for j — 1, ..., N - l and

| 7 | C^?. (3.32Ô)

We present two Corollaries of Theorem 3.3. The first Corollary deals with
a mesh which résolves the layer near x = 1, while the other assumes that the
mesh is coarse and does not résolve the layer. The cell vertex method
exhibits different convergence properties in these two regimes, as is
demonstrated numerically in Mackenzie and Morton [5].

COROLLARY 3.1 : Assume the same hypotheses as in Theorem 3.3, and
that aeC2[0, 1 ] and f e C2[0, 1 ]. Set J = max {ƒ : x} ̂  1 -
(3 e/a) In ( l /s)}, and assume that hJ+l ^ e. Then, if H -•= max {hj :j =
1, 2, ..., TV},

£ JJ I jJsï+Cihj^/s)3. (3.33)
y = l ; = 1

Proof : First, note that by (3.32) and the définition of / ,

! , ; | *ChjhJ + l (3.34)

for y < / . Thus from (3.32),

M2 AN Modélisation mathématique et Analyse numérique
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ANALYSIS OF THE CELL VERTEX METHOD 709

j = 0

hJ + l + C £
j = 0 j ^ J

3 + Ch}h2
J+l £ -

N ~ 1

Chjhj+l + Ch3
J+l e"6 £ ^ + 1 exp( -2a ( l -Xj)/e)9 (3.35)

; = J

using the définition of J and

exp(- 2 a(l -Xj + l)/s) = exp(- 2 a (1 -Xj)/s)exp(2 ahJ + l/s)

=sC e x p ( - 2 a ( l - x^f s) (3.36)

for y s* / , because hJ+l^ s and the mesh is graded. Regarded as a Riemann
sum, we have
N - 1

£ hj + 1 exp(- 2 a (1 - jc^/e) <

< exp( -2a( l - i ) / e ) ( ix<£/ (2a) . (3.37)
Jo

From (3.35) and (3.37), we obtain

" 4 . C / ï ] + 1 e " 5 , (3.38)

and now an appeal to Theorem 3.3 complètes the proof. •

COROLLARY 3.2 : Assume the same hypotheses as in Theorem 3.3, and
that a e C2[0, 1 ] and ƒ e C2 [0, 1 ]. A^wme a/so

Aw& (e/a) In (l/s). (3.39)

a Z (RJ-RJ-I)2+P YthJRj*C(e/hN¥. (3.40)

Proof: Note that Â  ̂  (s/a) In (l/e) and (3.31) together imply that

|K ' (X, ) | *sC Vy <Af . (3.41)

vol. 28, n° 6, 1994



7 1 0 K. W. MORTON, M. STYNES

Let / be defined as in Corollary 3.1. Then by the mesh grading,

xN . 3 ^ 1 - 3 ^ ^ 1 - 3 (s/a ) In (l/e) , (3.42)

so J^N - 3 .
As in the proof of Corollary 3.1,

j=J

J = J

C £ (1+/»;*!), (3.43)

from (3.41), \u(x)\ ^ C on [0, 1], and (3.6). But the last sum contains at
most three terms because J ^ N - 3, so

Y ~2 ̂  Ch-2
Y (ii'(x,) - O/),')2 ^ CH3 + Ch~N

2 ̂  Ch-N
2 . (3.44)

The result now follows immediately from Theorem 3.3. •

Remark : Corollary 3.2 essentially states that the error in the computed
solution, measured in a discrete energy norm, is O(s/hN) when the mesh is
coarse. Numerical results in Mackenzie and Morton [5] for the error in the
discrete L00 norm also exhibit O(e/hN) behaviour when (3.18) is satisfied.

4. CONVECTION IN TWO DIMENSIONS WITH NON-CHARACTERISTIC BOUNDARIES

In this section, we present convergence results for the cell vertex finite
volume method when applied to a scalar first-order hyperbolic équation in
two independent variables. Morton and Süli [9] have considered this problem
using a nonuniform tensor product mesh (see also Süli [11] for a fuller study
of the convection problem on more gênerai quadrilatéral meshes). Here we
obtain some new local and global results for the method on various
quadrilatéral meshes, and also strengthen the original Morton and Süli result,
by further exploiting the use of a mapping M : Sh -• Th.

For the most part, we shall use the same notation as Morton and Süli [9],
Let H be a nonempty open convex set in R2 with piecewise smooth boundary
a H. Let a = (ala2) : O -• R2 be a given smooth function with a\ + a\ > 0
on Ö. Set

d_ O = {x e dI2 : a(x). n(x) < 0} ,
d+ n = {xsbD :a(x).n(x)=*0} , (4.1)

where n(x) dénotes the unit outward normal to 8/2 at x e 3/2.

M2 AN Modélisation mathématique et Analyse numérique
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ANALYSIS OF THE CELL VERTEX METHOD 711

We consider the boundary value problem

V. (aw) - ƒ in f2 , (4.2a)
M = 0 on 3_ /2 , (

where f : f2 ̂  R lies in L2(/2 ).
To discretize (4.2), we assume that we have a partition K = {Kt : / e I} of

f2, where I is some index set. Each element Kx of the partition is a convex

quadrilatéral, and we dénote by F x the affine function which maps the

référence square K = (0, 1 )2 onto Kr We set /* = max, {diameter (Kt )} . We

write Qi(K) for the space of bilinear functions on K, and Q0(K) for the space

of constant functions on K. For f2 x ç /2, let / / i (/2 2) dénote the space of all

i; e Hl{Ox) whose trace on Öx O 6_ f2 is zero. Define

Jth= {peL2(n):p=poF;\peQ0(K),i el] .

Let P^ : L2(f2)^>J?h be the orthogonal projector from L2(/2) onto
Jt\ and let

ƒ * : (Hl_ (f2 ) n C (f2 ))2 ^ (** f (4.3)

be the interpolation projector onto (%^ )2.

Define the bilinear form B(., . ) : Hl_(f2) n C (f2) x Jih^R by

B(v,P)= (V.Ih(av\p), (4.4)

where ( . , . ) is the L2(f2 ) inner product. We assume for the present that a
finite volume approximation U to u exists such that U e <#* and

B(U,p)= C/,p) Vpe^f* . (4.5)

(Existence and uniqueness of U will be discussed later in this section.) From
(4.2a), (4.4) and (4.5), it follows that

(V. (BU-IH (aU)),p) = Q 1p<EJlh. (4.6)

Our convergence results will be expressed in terms of certain seminorms
which we now define.

For each Kt e K, let m(Kt) dénote the area of Kt. For I any nonempty

subset of/, let Ü - \^jKr Set
I E /

2] 1/2

I
Ueï

vol. 28, n° 6, 1994

i f „
in (Kt ) j K

dx (4.7)



712 K. W. MORTON, M. STYNES

We note that | . 11 ( n ) is a seminorm on L2(f2 ). It was first introduced by Süli
[11], who considered the error \u — U\l,Qy We shall instead consider
|V .Ih(a(u — U))\t , which turns out to be a stronger and more natural

seminorm for the analysis ofu — U (see Theorem 4.2 and Corollary 4.2
below). Note ho we ver that both | . \l {S2) and \V . Ih(a( . ))\ n are incap-
able of detecting chequerboard oscillations, in the computed solution U in
the first case and in the computed flux af/ in the second case.

Let u1 e %h_ be the interpolant to u from <̂ * . We begin with a projection
resuit for U.

THEOREM 4.1 : Let Ü = \^J Kt be arbitrary. Then

= |V.(/*(aiO-aiO|,2( i5 ) . (4.8)

Proof : Clearly Ih(miï ) = Ih (aw ), so the first equality of the theorem holds.
Next, for each p e Jih^ by (4.6) we have

B(u - U, p) = (V . (/*(aw) - aw), p) = 0 .

Fix i e 7. Take p to be the characteristic function of Kt. This yields

V./A(a(i*-C7))dx= V. (
JK, JK.

(4.9)

Since i e I is arbitrary, the second equality of the theorem now follows from
(4.9) and the définition of | . \t iny •

Theorem 4.1 expresses a local projection of the error u — U in terms of a
local truncation error. This can be made more spécifie in certain cases.

If the quadrilaterals Kt are sufficiently regular (in a précise sensé due to
Süli [11]), we can quantify the order of convergence, as follows. Let
h{ dénote the diameter of Kt, and let p ( dénote the maximum diameter of
circles contained in Kt. Dénote by P t and Ql the midpoints of the diagonals of
K,.

COROLLARY 4.1 : Let Û = I J Kx be arbitrary. Assume that a is constant
t 6/

on 12, Assume also that there exist two constants c0 5= 0 and cx > 0 such that

for all i e 7,

, (4.10a)
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and

ht*clPt. (4.10&)

Then

\V.^W-U))\l20)^Ch2\u\^(ù) (4.11)

and

Ch2\u\Hi0), (4.12)

where C = C (c0, cu a).

Proof : From the proof of Theorem 4 of Süli [11], we obtain

(4.13)

under the given hypotheses (4.10) on the Kt. Since a is constant, (4.11) and
(4.12) follow immediately from Theorem 4.1. •

Remark : If Kt is a rectangle with edges parallel to the coordinate axes,
then it is easy to see that

— f *•,Inzdx= (V.Ihz)(ql) VzeC(K.)9 (4.14)
m(K^

where qt dénotes the centroid of Kt, Thus on tensor product meshes,

| V. Ih(a(u — U))\ fi is the discrete L2 seminorm of the cell centre

divergence error, viz.,

1/2
. (4.15)

While |V . /^(a . )|z - is generally only a seminorm on L2{Û\ it may be

a norm on a smaller class of functions ; in particular, we need to ask under
what circun

proposition

what circumstances it will be a norm on %h__ | ~ ? That is, when will the

«V t%h_ and \V.ïh(jàV)\l 0 ) = 0 together imply y | ^ = 0 » (4.16)

be true ? What is needed is the ability to show that cell-by-cell V = 0,
starting from cells adjoining 3„ 12 and eventually encompassing all of

n.
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714 K. W. MORTON, JVL STYNES

For simplicity we shall consider only the case where f2 = (0, 1 )2,

a, ( . ) > 0 on â for i = 1, 2 , (4.17)

and we have a tensor product mesh on f2. Suppose that V e tft^ and

\V ,Ih(siV)\l {ù) = 0, where Û - [^J Kr By définition of | . \h{ùy we

consequently have

ting

= 0 Vf e 7 . (4.18)
K,

Evaluating V . Ih (aV ) dx in terms of the nodal values of a and V, one sees
Kt

easily that, if V is zero at the northwest, southwest and southeast corners of
Kn then (4.18) forces V to be zero at the northeast corner also. (This
observation relies on the property (4.17).)

Thus suppose that f2 has the following property :

3_ K^b_ /2 U I^JB+Kt\ VÏ e / , (4.19)
V E / '

where

a_ Kt= {xe BK, :a(x).n(x)<0} ,

a+ Kt= {x E ô ^ : a(x) . n(x) ̂  0} , (4.20)

and n(x) dénotes the unit outward normal to dKt at x e èKr (In particular, if
f2 = f2, then f2 has property (4.19).) Then it is clear that f2 must contain the
unique cell in K which has (0, 0 ) as its southwest corner. Furthermore, using
the observation of the previous paragraph one can then step cell by cell from
left to right and bottom to top, to conclude that V = 0 on all of

n.
In more gênerai situations (e.g., mesh not a tensor product, a not satisfying

(4.17), etc.) one attempts to mimic this argument to conclude that
V = 0 on f2. One still needs property (4.19), but the mesh geometry relative
to the direction of a must also be taken into account.

We have deferred up to now the questions of existence and uniqueness of
the cell vertex solution U. Assuming equality between the number of
équations and unknowns, we show that existence and uniqueness of U
depend precisely on whether | V . 7A(a . )| ^ is a norm.

THEOREM 4.2 : Let Ù = \^J Kt be arbitrary. Set

hL(f2)= [v e Hl(f2):v = i)oF;\ v e QX(K\ i G /} . (4.21)
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Write ( . , . )nfor the L2(Ü ) inner product and consider the linear System of
équations

(V . Ih{aU), p)à = (f, P)n Vp<EMh (4.22)

in the unknown function U s %h_ (O). Assume that the number of node s in

f2\d_ O, equals the cardinality of I. Then existence and uniqueness of

U e <%h (Ö ) satisfying (4.22) are guaranteed if and only if | V . I*(a . )| t à

is a norm on ^ih_ {O).

Proof : First, observe that the nodes in O\d_ O are precisely the nodes at
which the value of U is not known a priori, while the cardinality of
I equals the number of linearly independent équations in (4.22). Hence our
hypotheses guarantee that (4.22) can be expressed as a linear system of
équations with the number of équations equal to the number of unknowns.
Thus existence of U is guaranteed if and only if uniqueness of U is
guaranteed by (4.22).

To examine uniqueness of U, suppose that

(V./*(a£/),p)/j = 0 VpeJ?h. (4.23)

Take p = Ph(V . Ih(2JJ)) in (4.23). This yields

0 = y ( f V.Ih(*U)dx) I —5— f V.Ih(aU)dx) =

2 . (4.24)

Thus U = 0 if and only if | V . Ih(a. ) | c (fi) is a norm on <%th_ 0 ). D

Remark : In the next section we shall discuss a particular case where the
equality in the numbers of équations and unknowns assumed in Theorem 4.2
does not hold.

We now examine the relationship between Theorem 4.1 and the error
estimâtes obtained previously by Morton and Süli [9], by further characteris-
ing |V. /*(a . )| /2 ( / J ). Defining da+Kt = b+ Dn Klt set

m{Ba+Kl)
t s K, da + Kt * 0

1 f 21 m

vds \ . (4.25)
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716 K. W. MORTON, M. STYNES

In [9], Morton and Süli consider the problem
V . (aw) + bw = f in f2 (4.26a)

w = 0 on d_ D , (4.26b)

where O = (0, l)2 , a = (<21? a2) is constant with al^ö and a2 > 0 on
JÖ, & e C ( l 1 ) with b^O on i5, and feL2(f2), From the condition
& > 0, a simplified version of the discrete Gârding inequality given in Süli
[11] is used to prove stability of the cell vertex method, and show that on a
tensor product mesh

\w-w\i2ia)+ \w-w\ili9+O)^Ch2\w\^(a), (4.27)

where W is the computed solution to (4.26b) and C is a generic constant. We
use a mapping M : Sh -> Th to obtain the resuit for b = 0.

THEOREM 4.3 : Assume that O — (0, 1)2
} that we have a tensor product

mesh, and that a is constant with at^>0 and ö 2 > 0 o n Ö . Then (4.5) has a
unique solution U G % ̂  and

(4.28)

(4.29)

Proof : These are the same results as Theorems 3 and 4 of Morton and Süli
[9], except that here b == 0. To circumvent the requirement that b » 0
nécessitâtes only a certain change in the argument which led to Theorem 2 of
[9], giving instead the lemma proved below. D

LEMMA 4.4 : Under the hypotheses of Theorem 4.3, there is a mapping
M : mh_ -> Mh such that for VU e <Üh_

^ (alf a2) a e~"\U\2 +

± l ^ û ) (4.30)
for any a >̂ 0.

Proof : For a constant and on a tensor product mesh, and using the

averaging operators fil UtJ *= - (Ut _ hj + UtJ), ^2Uijï= j ^ ' . y - ! + ^ ' P

and backward différence operators A_ x UtJ •= UtJ — Ul_lj, A_2 UtJ *= Ul} -
UltJ_i and with x = (x1, x 2 ) , we have

B(U,V)=- ƒ .

= Sj + 5 2 , say . (4.31)
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Suppose now that V( = MU) •= mtj fxx fx2 UtJ on (x\_ 1? x\) x (x2^ 2, xf).
Then by summation by parts we obtain

= 5 al I (^ " ̂ 72- 1 ) X
) = 1

(4.32a)

(4.32b)

Also we have
M N

for which

2 1 2 2

or - [ O 2 ^ ) 2 + (/*2 ^i- i f j )
2] > (4.34)

and
M

t = 1

+ Z ( ^ - ^ 2 - i ) ( ^ 2 ^ ) 2 . (4.35)

Of the many possible choices for mip let us suppose ax ̂  a2 and set

mtJ = e 2 ' ' Then it is clear that

1 1 1 - < 7 f 1 1

^Ue-^xJ^-^i^), (4.36)

and
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Applying these bounds in (4.32), splitting the terms x\Jrl—x\_x =

(x) + i — x\ ) + (x\ - x) _ i ) and regrouping the sums gives

J = 1

x [ (M 2 f / y ) 2 +(^2^ - i , ; ) 2 ] (4.38a)

(lj)(U,N)\ (4.38e)
1 = 1

and hence

The required re suit folio w s for gênerai a. •

We can deduce an inequality of Poincaré-Friedrichs type for | . | / ,a) from

the above results.

COROLLARY 4.2 : Under the hypotheses of Theorem 4.3, there exists a
constant C such that

Wh_. (4.39)

Proof : Let ƒ = V. (a£/) in (4.2) and apply the resuit (i) of
Theorem 4.3. •

Remark : Corollary 4.2 shows that (4.11) is stronger than the inequality

obtained by Morton and Süli [9].

Remark : Consider the nonlinear problem

V.F(w) = / in O (4.41)

with suitable boundary conditions, where F : R -+R2 is a smooth function
and ƒ e L2(f2). The cell vertex solution U satisfies

(V .Ih¥(U\p)n = (f,p)n VpeJ2h, (4.42)

where Ù = \^_J Kt is some appropriate subset of ü. On inspection it is clear
i E/
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that the proof of Theorem 4.1 goes through as before, leading to the results

|V./ f c(F(« /)-F(£/)) | / 2 ( i J )= |V./ / l(F(M
/)-F(M)) | ; 2 (^ ) (4.43)

and
h /

( ^ ) . (4.44)

Remark : The arguments presented in this section do not rely in any
intrinsic way on the two-dimensional nature of the problem. Analogous
results will hold for analogous n-dimensional problems with n # 2 ; one
merely needs to alter the concepts of quadrilatéral and isoparametric bilinear
interpolant in the appropriate way.

5. CONVECTION IN TWO DIMENSIONS WITH CHARACTERISTIC BOUNDARIES

We now turn our attention to a particular situation in which the number of
équations provided by the basic cell vertex method is a priori less than the
number of unknowns. The requisite extra équations may, for example, be
obtained by a « cell-splitting » approach suggested by Morton [6]. We
analyse this problem and show that, if the method used to generate the extra
équations has a certain property, then this will ensure optimal order of
convergence of the computed nodal values. The cell-splitting method is
shown to possess this property.

Let O = (0, ifczR2. Let a = (0, a2) : O -+R 2 be a given smooth

function with a2 => 0 on f2. Then, in the notation of section 4,

3_ O = {(x\ OJrO^x1 < 1} . (5.1)

Consider the boundary value problem
V. (aw) = ƒ on Ü , (5.2a)

u = 0 on d_ D , (5.26)

where for simplicity we assume that ƒ e C3 {Ö ).
We assume that we have a uniform tensor product mesh on f2. Suppose

that M and Af are positive integers with x\ = i/M for i = 0, ..., M and
xf = j/N for j = 0, ..., N, and set

KtJ= (x}9xl+l)x ( x f 9 x } + i ) 9 f o r 0 S E Ï ' * £ M - 1 , 0**j **N -1 9

(5.3)

with Ax = l/M, Ay = l/N, htJ = diameter (K^X h = max, ̂  {^y}« Let
H\ (f2 ), <8f* , Mh and Ih be defined analogously to section 4. Note that each
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function u e ^ is now piecewise bilinear since each quadrilatéral
Kl} is a rectangle.

We require our computed solution U B^t to satisfy

(V . 7*(atfX p) = (f,p) VpeJeh, (5.4)

where ( . » . ) is the L2(f2 ) inner product and ƒ is the bilinear interpolant to ƒ
on the mesh. We shall write U[ for U{x], xj% for all i and j . However, (5.4)
by itself does not détermine U uniquely. For suppose that we have computed
U\ for i = 0, ..., M and j = 0, ..., n where n s* 0 is fixed. We wish, as in the
continuous problem (5.2), to proceed in the direction of the positive
x^axis and now compute £/f + 1 for 1 = 0 , ..., M. But to compute these
M 4- 1 unknowns, (5.4) provides only M linearly independent équations
(obtained by taking p to be the characteristic function of Km for
i = 0, ..., M — 1) which relate the (7f + 1 to the previously computed values
of £/. A further équation is needed here.

One resolution of this difficulty is the cell-splitting idea of Morton [6]. In
the present case, this approach divides the cell KQn into two halves by the line
xl = x\,2 — (XQ+X})/2, applies the cell vertex method on each half» and
finally requires that the values of a2 U at (x\/2, xf) be linear interpolants of the
values of a2 U at (XQ, xf) and (xj, xf) for j ~ n andj = n + 1 respectively.
Written out explicitly, the above cell-splitting équations are

^[VVl + Vitl - Vn
0 - Vll2] = [ "+ ' f""2 ƒ chc1 dx2 , (5.5a)

fdx1^, (5.5b)

= Vg + VÎ , (5.5c)

where for notational convenience we have set V-{ == (a2 U)(x}, xf} for all i
and j .

The équations (5.5) can easily be solved, yielding

f(xl
0,t)dt, (5.6a)
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1 f f4+i P*!/2 ~ , , fLi f! - , ,
/tc'd^ + S fdxldx2

*Li f*! - ,
fdxl

f " + l / ( l O * (5.66)

where we have used the bilinearity of ƒ to simplify the expressions.
On the other hand, integrating (5.2a), we obtain

(a2 u)(xl x2
n + 1) = (a2 u)(xl x2

n) + ƒ (xj,

Subtracting (5.6a) from (5.7), we have

, (5.8)

where we set the nodal error

e>, = (a2 IIKJC,1, X)) - V\ Vi, j . (5.9)

Similarly

eï + 1 = ^Ï + O((A3;)3). (5.10)

Clearly (5.8) and (5.10), together with e\ = e\ = 0, imply that

for j = 0 , 1 and n = 0, ..., Af , (5.11)

where C is a generic constant which is independent of the mesh.
We can now return to the issue raised earlier, namely how to compute

Un
t
 +1 (or equivalently Vn

t
 + l) for i = 0 , ..., M from the Un

t. Cell-splitting, as
described above, yields Vg + 1 and Vï + X. Now taking p in (5.4) to be the
characteristic function of Kin yields

vi + i + vïil-vï-vui-r- \ fdxldx2>

for ï = 1, . . . , M - 1 . (5.12)

We can compute in order Vn
2
+\ V? + 1, ..., Vn

M
+l from (5.12).
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Since ƒ is bilinear on Kin,

f f fdxUx2 = ̂ \f(xl,x2
n) + f(x}+ux

2
n) +

+ f(x\,x2
n \)+f(xl+1,xl j ) ] . (5.13)

We also have

(a2u)(xlx2
n + 1) +

+ (a2 I O C ^ + I , x2
n + l)- (a2u)(x), x2

n)~ (a2u)(x}+u x2
n)

*ï + i

[(«2 U)y (x}> t) + («2 w)y (^?+ 1' O] *

I 1 1
- J ^ X,, t X, + 1,

— ~2~ U ^xi » x n ^ + ƒ ^ i + 1» xtt ) + / vxi ' xn + \) + V ^A* + 1' A« + 1 / J

+ P " + 1 [ ƒ ( * ' , t)-f(x), t) + f{x)+l, t)-f(xl
l + l, t)]dt. (5.14)

Combining (5.12), (5.13) and (5.14), we obtain

„n +1 , „n +1 „n „n _

f,1. O - ƒ(*,', 0 + A*,1* i. 0 - ƒ(*? +1. 01 *

(5.15)

for i = 1, ..., M - 1, on using Taylor expansions, where ƒ*,„ dénotes the
centroid of Kllt. Now for k = 2, ..., Af,

= (-U*+1 S' (-D'[- f„(P,m) + 0«Ax + Ay)4)l (5.16)
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from (5.15). By combining terms in pairs, one sees that

k-1

^ (-1)1 fyy(Pin) =sC foreach k. (5.17)

i = i

Hence (5.16) yields

(5.18)
Ax

for k = 2, ..., M, on assuming that —=sC. Recalling (5.10), we deduce

from (5.18) and e\ = 0 that

\en
k
 + l\ ^C(Ax + Ayf for k = 2, ..., M and n = 0, ..., N - 1 , (5.19)

Av
on assuming that -f- ^ C. Since a2 => 0, this shows that we have second

Ax
order nodal convergence of U to w, which is best possible for the scheme
(5.12).

Note that when proving convergence of (5.12), the only properties of the
cell-splitting approach which we needed were (5.8) and (5.10). We formally
state the results of this section below.

THEOREM 5.1 : Assume thaï — =s= C and — ^ C. Suppose that the cell
Av Ax

vertex scheme (5.12) is used to solve (5.2), with (aC/)3 eind (aUJl computed
for each n by some method which yields

| e g + i -en
Q\ + |e ï + 1 - < ? ï | ^ C ( A v ) 3 for n = 0, . . . , N - 1 . (5.20)

Then

\u(x}9x})- U[\ ^ C ( A J C + A v ) 2 V / , 7 . (5.21)

COROLLARY 5.1 : Assume the hypotheses of Theorem 5.1, and suppose
that cell-splitting is used to compute each UQ and Un

{. Then

\u(x}9xJ)-UJ
t\ ^ C ( A x + Av)2 V / , y . (5.22)
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