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STOCHASTIC HOWIOGENIZATION
OF NONCONVEX INTEGRAL FUNCTIONALS (*)

K. MESSAOUDI O and G. MICHAILLE (*)

Communicated by A. BENSOUSSAN

Abstract. — Almost sure epiconvergenee of a séquence of random intégral functionals is
studied without convexity assumption. We give aproofby using an Ergodic theorem and recover
and make précise the result of S. Muller in the periodic case. Finally, we study the asymptotic
behaviour of corresponding random primai and dual problems in the convex case.

Resumé. — Le problème étudié dans cet article concerne Vépiconvergence presque sûre
d'une suite de fonctionnelles intégrales aléatoires non nécessairement convexes. On présente
une méthode directe utilisant un théorème ergodique, retrouvant ainsi et précisant un résultat
de S. Muller obtenu dans le cas périodique. Finallement, dans le cas de fonctionnelles
convexes, on étudie la convergence presque sûre des problèmes aléatoires primaux et duaux
associés.

1. INTRODUCTION

In this paper, we propose a method to establish the almost sure
convergence, in a sensé precised below, of a process (F n ) n e N with state
space (#", £$(#')) where £$(#") is a suitable a -field on the class
#" of the intégral functionals G of the following form

/(*, Vu(x))dx.

We dénote by A a bounded regular domain in Rrf, u : A -+ Rm is a vector
valued function defined in a Sobolev space, and g : Rd x Mm x d -• R runs in a
class of equicoercive and equibounded Carathéodory functions.

Given a probability space {S, "Ï5, P ) and a measurable map

(*) Manuscript received May 25, 1993, revised July 7, 1993.
(*) Laboratoire d'Analyse Convexe, Département de Mathématiques, Université Montpel-

lier II (France).
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330 K. MESSAOUDI, G. MICHAILLE

with

u,A)-.= f f(a>)(xJ
JA

F(co)(

if the law of F pos ses ses some ergodic and periodic properties, the proces s
(FB)BeN defined by

JA
dx

epiconverges almost surely, when en tends to 0, towards a constant
Fhom in J*\ More precisely, there exists a subset X' in TS with P (2') = 1
such that, for every a> in X', every bounded regular domain A

Fhom( . , A) = r - epi lim Fn(a> )( . , A )
n -> + oo

exists in Wll/7(A, Rm) equipped with its weak topology r or with the strong
topology of LP(A, Rm). The limit functional Fhom is given by

r
F hom O, A ) :- ƒhom (VM ) <ix ,

JA

where, for every matrix a of Mm x d

fhom(a) - inf x
neN*

x E

7 denoting the unit cube ]0, 1 [d and E(. ) the probability average operator.
For the relevant notations and définitions, see part 2.

Under standard hypothesis on the subspace V of Wl'p(A, Rm) and on the
map 0 from WlïP(A, Rm)intoR, the variational properties of epiconvergence
lead to the almost sure convergence of inf {Fn{a> )(u, A) + <P(u) ; u e V}
towards min {Fhom(w )(w, A) + 0{u)\ ue V},

In this way, we generalize the results obtained by G. Dal Maso &
L. Modica [11], [12], K. Sab [14] in the stochastic convex case and
A. Braides [7] and S. Muller [15] in the periodic non convex case. We give a
new proof, establishing the lower bound and the upper bound in the
epiconvergence process, by means of an ergodic theorem which seems to be
firstly used in the calculus of variation by G. Dal Maso & L. Modica [12] in
connection with compactness method. By showing that the infima with
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STOCHASTIC HOMOGENIZATION 331

respect to n in the above expression of /hom is actually a limit — which
follows from the Ackoglu & Krengel ergodic theorem — we slighty improve
the result of S. Muller in the determinist case.

This nonconvex approach finds its motivation in non linear elasticity
where ƒ (o> ) is the stored energy density of a composite material with random
inclusions. With additional assumptions upon the probability space
(X, 75, P ) in view to overcome the lack of coerciveness, the homogenization
of functionals related to an elastic material with holes and fissures distributed
at random could be treated with the same technique. Nevertheless, let us
point out that our method requires an equiboundedness property on
ƒ O ) and thus, the class !F is not a correct model to describe functionals
energy in non linear elasticity (see also S. Muller [15]). Homogenization of
functionals, even polyconvex, taking their values in R U {+ oo}, seems to
be an open problem.

In the convex case, we study the asymptotic behaviour of random Primal-
Dual optimization problems associated with (Fn)neN. More precisely, in
view to obtain the structural équation a e 3/hom(e(w)), where

e(u) := — {Vu + Vuf), which links the weaks limits a and u of the solutions

of primai and dual problems associated with Fn(a)\ we consider again an
almost sure epiconvergence process but now upon the séquence of classical
perturbation of F n{a> ), which pro vides the almost sure weak convergence of
corresponding saddle points séquence towards saddle point of the
homogenized Lagrangian problem.

Let us clarify the plan of this paper. In the next part, we give the définition
and main properties about epiconvergence. In theorem 2.3, we recall the
useful almost sure convergence resuit of M. Ackoglu & U. Krengel [1] about
superadditive set function processes. Part 3 is devoted to the définition and
properties of the homogenized density /hom. In part 4, we prove the almost
sure epiconvergence of the séquence (Fn)n e N by means of two lemmas : the
upper bound in lemma 4.2, the lower bound in lemma 4.4. In corollary 4.5,
we establish the almost sure convergence of optimization problems associat-
ed with (Fn)n£ N. Part 5 is devoted to the description of some examples of
non homegenous random functions ƒ (co ) which are a model of stored energy
density for material with random inclusions and for which our results can be
applied. Finally, in part 6, in a convex situation, we study the asymptotic
behaviour of random dual optimization problems.

2. NOTATIONS AND PRELIMINARY RESULTS

For m, d in N*, Mmxd dénotes the space ofmxd matrices a = (aij)ij,
i = 1, ..., m ; j = 1, ..., d equipped with the euclidean Hubert Schmidt
product a : b = trace (a* b). In what follows, we shall dénote indifferently

vol. 28, n° 3, 1994



332 K. MESSAOUDI, G. MICHAILLE

the norms in Rm and Mmxd. & is the set of all open bounded subset of
Rd with Lipschitz boundary. Classically, for l < p < : + oo and A in
0, we define the two Banach spaces

LP(A, Rm):= [u :A -*Rm; u = {u()h ut eLP(A\ i = \, ..., m)

Whp(A, Rm):= \u e LP(A9 Rm); —GLP(A), i = 1, ..., ml ,

respectively equipped with the two norms

f p \ .

JA /

where Vu dénotes the matrix valued distribution

Wjf p (A, Rm) is the closed subspace of Wu p (A, Rm) of the functions with null
trace on the boundary à A of A. W^p (Rd, Rm) is the space of vector valued
functions u, measurable in Kd and satisfying the following condition : every
x e Kd possesses a neighborhood A such that the restriction of u in
A belongs to Whp(A, Rm).
a, p being two given positive constants, we define the subset SF of the

product R ]oc ' as follows : G belongs to !F iff there exists a function
g from R^ x Mm x rf into R, measurable with respect to its first variable, and a
positive constant L such that, for every a, b in Mm x rf and x a.e.

a \a\p^9(x,a)^p{\± \a\p) (2.1)

|g(x, a)~g(x,b)\ ^ L ( l + I f l l " " ^ |^ |^~ >̂ |« — & | , (2.2)

with, for every A in © and u in W\^p(Rd, Rm)

1JA

In the class ^ , for every z E Zd and every r e R*' + , we shall need to

consider the two following operators rz and pz :

r
^ V M ( X ) ) ^ X , (2.3)
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STOCHASTIC HOMOGENIZATION 333

dx,= J
where rz u(x) := u(x - z) and pru(x) -.= - w(rx).

For every a e Mm * d, la dénotes the linear vector valued function whose
gradient is a, and we set, for every A in & and G in J^

We shall use, in the sequel, the following elementary properties.

PROPOSITION 2.1 :

meas (A)
meas ( ~À

(ii) there exists a positive constant L' depending only on L, a,
P and p, such that, for every a and b in Mm x d

Mk(G,a) JfA(G.b)

meas (A) meas (A)

Proof : It is straightforward to check (i). We only prove (ii). For every
JfA(G,a)
meas (A)

Let 77 > 0 and wn G Wl
0
>p(A, Rm) such that

meas (A)

Using (2.2) and Hölder's inequality, we obtain

m(a) - m(b)
1

meas (A) 77)

——- \g(x9

s \^) JAmeas V / i ; _jA

V
meas (A)

7- 1

P
+

meas (A)
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334 K. MESSAOUDI, G. MICHAILLE

° meas (A)
(2.4)

where C is a constant depending only on p. On the other hand, by (2.1)

1 f 1
— \b + Vu v(x)\p dx^ —-G(u +lb,A)

meas (A) J ' ' a meas (A) '

a # meas (A)

Fr om (2.4) and af ter making 17 tends to 0, it folio w s

m(a) - m(b)^L' \b ~ a\ ( 1 + l^l77"1 + l ^ " 1 ) .

Where L' dépends only on p, a and /?, which ends the proof. •
The following notion of convergence has been studied in a more gênerai

setting, and, for overview, we refer to H. Attouch [2], G. Dal Maso &
L. Modica [11] and their bibliographies. In our case the définition is

DÉFINITION 2.2 : Let {(Gn)n, G, n -• + 00} be a séquence of functionals
mapping WltP(A, Rm) into R U {+00} and let r dénote the strong topology
of LP(A, Rm) on the space WUp(A, Rw)- ^ ^ say that Gn r-epiconverges to
G ai v in Whp(A, Rm) (or F converges, according to [10] iff the two
following sentences hold :

(i) there exists a séquence (vn)neN of WliP(A, Rm), r-converging to
v such, that

G(v)^ lim sup Gn(vn),
n -» + 00

(ii) for every séquence (uft)weN, r-converging to v in WUp(A, Rm),

When this property holds for every v in WliP(A, Rm), Gn is said to be
r-epic onver gent to G in WiiP(A, Rm). It is straightforward to show that
Gn r-epiconverges to G iff

r — epi lim sup Gn*z G =s r — epi lim inf Gn

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



STOCHASTIC HOMOGENIZATION 335

where

r - epi lim sup Gn(v) -.= min Jlim sup Gn(vn) ; v = r - lim vn\ ,
n ^ + oo l K-» 4- oo n J

T - epi lim inf Gn(v) := min | lim inf Gn(vn) ; u = r - limw t>n

Under appropriate technical assumptions, epiconvergence is stable by
continuous perturbation and implies the convergence of minimizers, pre-
cisely we have

PROPOSITION 2.3 : Assume that (G„) r-epiconverges to G and let <Pbe a T-
continuous functional from W[> p (A, Rm) into R. ThenGn + <P r-epiconver-
ges to G + &.

Moreover if {un,neN}, un e WliP(A, Rm) is r-relatively compact in
WUp(A, Rm) and satisfies

Gn{un)+ <P(MB)<inf {Gn{u)+ &(u);ueWl>P(A, Rm)} + en.

Then any r-cluster point u of {un, n e N} is a minimizer of (G + <f>) and

l i m I n f { G r t ( t ; ) + <f>(v)\ve WUp(A9 R m ) } = G ( w ) + ^ ( M ) .
n -> + oo

For a proof, see for instance, H. Attouch [2]. It is a classical result that every
T epilimit is r-lower semicontinuous (see also H. Attouch [2]) so that, if
Gn possesses an epilimit G which is an intégral functionals whose integrand
g satisfies the growth condition (2.1), g is necessary quasiconvex (see for
instance J. M. Bail & F. Murât [5] and C. B. Morrey Jr. [14]).

Let us give now few définitions and results abour Ergodic Theory. Let
(Z, 15, P ) be any probability space and (rz)zeZd a group of P-preserving
transformations on (Z, 75), that is to say

(i) TZ is TS-measurable,
(ii) P o TZ(E) = E, for every E in 75 and every z in Zd

9

( i i i ) rz o rt = rz + t, r_z= T ~ 1 , f o r e v e r y z a n d t i n Zd.

In addition, if every set E in 7? satisfying for every z e Z, rz(E) = E, has a
probability 0 or 1, (Tz)zeZ

d is said to be Ergodic. A sufficient condition to
ensure Ergodicity of (Tz)zeZd is the following mixing property : for every
E and E in "6

lim P(rzEnF)=P(E)P(E).
| 2 | ^ + 00

We dénote by 3 the set of intervais [x, y[ where x and y belong to
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7jd and consider a set function £f from 3 into L1 (2, IS, P ) verifying the three
conditions :

(i) £f is superadditive, that is, for every A e 3 such that there exists a
finite family {Ai\^I of disjoint sets in 3 whose union A belongs to
3, then

(ii) y is covariant, that is, for every A e 3, every z e Zd,

(iii) sup J —- «9% dP, A e 3, meas (A) ̂  0 < + oo.
[ meas (A) J ̂  J

Following M. A. Ackoglu & U. Krengel [1], Sf is called a discrete
superadditive process. If - £f is superadditive, 5^ is said subadditive. The
following useful almost sure convergence resuit holds (see M. A. Ackoglu &
U. Krengel [1] theorem (2.4), Lemma (3.4) and Remark p. 59) :

THEOREM 2.4 : When n tends to + ce, —Sf [On[d converges almost surely.

Moreover, if {j1)z^kld is Ergodic, we have, almost surely :

l i m "5^[o,«[d(û>)= SUP -^

where E( . ) dénotes the probabiiity average operator.

3. DEFINITION OF THE PROCESS {Fn, F
hom ; n^ + co}

We dénote by &(^F) the trace on !F of the product er-field of
R^loc (R ' x , that is, the smallest fr-field on !F such that all the évaluation
maps

G ^>G(u,A\ u e Wlèf(Rd, Rm), A e (9

are {0t(&\ B(R)) measurable, * (R) denoting the Borel cr-field of R.
The following property is a direct conséquence of the définition of

PROPOSITION 3.1 : For every i in Z and r in R*' + , r2 and pr are
measurable from (3F, ̂ (^)) into itself.

We define now the process {Fn, n -> + oo }. (2, T>, P ) is a given
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STOCHASTIC HOMOGENIZATION 337

probability space and F a given measurable map

F : (2, "6)-> (J^,

o) »-> F (co)

where

Conditions on ƒ under which the map F is measurable are well known and
will be examined later in section 5.

We assume that (Tz)ze%
d defined in (2.3) is a group of JJL preserving

transformations on the probability space (#", ^ ( J ^ ) , JUL ) where /x is the
probability image P o F~ l of P in &* (or the law of F). Following G. Dal
Maso & L. Modica [12], we shall summarize these properties upon
F by saying that F is a random intégral functional, periodic in law and
ergodic.

Finally, { sm n -• + oo } being a given séquence in R **+ which tends to 0,
we define the process {F„, n-> + oo} as follows

F£n: (2, T5)-> ( ^

Û> »-» F „ ((o )

where

F8{a>)(u,A)= f / ( a i ) ( — , VM(X))

Note that the measurability of F e comes from proposition 3.1, In the next
part, we shall study, in the sense precised in introduction, the asymptotic
behaviour of {F m n -> 4- 00 }. The main tooi, to define the limit denoted by
Fhom, is the superadditive ergodic theorem 2.4 applied to the map
A i-> - JiA{., a) where A belongs to the set 3 of all open bounded intervals
]JC, y [ in Zd (or equivalently to the set 3). Let us give some properties of this
map.

PROPOSITION 3.2 ; For every a in Mmxd, the map M ( . , a ) defined by

., a)

is a discrete subadditive ergodic process in (#", M (IF ), M ). Moreover
JHA ( . , a ) satisfies the following equiboundedness property on

vol. 28, n° 3, 1994



338 K. MESSAOUDI, G. MICHAILLE

|fl|>)meas(A).

Proof : We begin to establish the {0tijF\ # ( R ) ) measurability of the
map G H-> JïA{G> a) for every A in 3. Noticing that u »-» G (u + la, A ) is a
continuous map from the separable space ^ ' ^ ( A , Rm) equipped with its
strong topology, into R, there exists a dense countable subset {uk, k e N} of
Whp(A, Rm) such that

^ A ( G , a) - inf {G(uk + /a, A)}
fee N

= inf

the mapswhere, from the définition of the cr-field
G i-> G(uk + la, A) are measurable.

The equiboundedness inequality is a straightforward conséquence of the
upper growth condition (2.1). So Jtk(., a) belongs to L 1 ^ , 0ê{^), /* ).

Let us prove the subadditivity. Let A e 3 such that there exists a finite
family (At)ieI of disjoint sets in 3 with A^^A, iel, and
meas (A\ U i e 7 At) - 0. For 77 :> 0, / e ƒ and G e J^, let

^ Rw) such that

and define ŵ  in ^ R m ) by setting uv on A{. We get

Card (/)

and subadditivity is obtained as 77 tends to 0. Covariance property has been
already proved in proposition 2.1 (i). •

We are now in position to define an intégral functional Fhom in
$F which will be the expected limit.

COROLLARY 3.3 : There exists a subset X' of X in IS with P(X')= 1 and a
function fhom : Mm x d -> R such that, for all co in X', all cube Q in
Rd and all a in Mm x d

fhom(a)~ lim

= inf \E(
n e N * { \

meas (tQ)

nï(F(.),a)

meas (nY)

where E( . ) dénotes the average operator with respect to the probability
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STOCHASTIC HOMOGENIZATION 339

measure P. Moreover fhom satisfies (2.1) and (2.2) with L' defined in
proposition 2.1.

Proof: First step. We assume that a belongs to the subset M'mxd of
matrices in Mmxd with rational entries.

Combining proposition 3.2, theorem 2.4 with the probability space
(#", 3$(!F\ /x), for every a in M'mxd, we obtain the existence of a set
Ea in &(&) with t*(Ea)= 1 and a real fhom(a) such that, for all
G in Ea

f h o m (<2 ) := lim ———
n_+ + 00 meas (ni)

~ «TN* U ^ meas (wï0 '
Setting 5 ' = F' l l f^ Ea ), we obtain, from above

/hom(tf):= lim

= inf \E

meas

JtnY(F{. \a)

meas

for every a in Mtmxd and a> in ^ ' .
Let Q be any open cube in Rd with side r? and, for every t in

R*' + , set k~ = [tv] ~ 1, k+ = [tv ] + 1, and consider £T = fc~ (y + z),
ö + = k+ (Y + z') the two cubes such that z, z' e Zd, Q" <= tQ c ö + . Thanks
to the inequality

whenever 5 <= A in (9 and noticing that meas {tQ ) is equivalent to
meas (k+ Y) and meas (k~ Y) whenever t tends to + oo, we get, from (3.1)
and the covariance property,

f (a) = hm — ^ hm inf
m e a s ( r Ö ) *-> + «>

hm sup

t _ + oo m e a s ( r Ö ) *-> + «> m e a s

hm

meas (tQ)

^Y(F(T2, a)\ a)

r - + oo m e a S

for every a in M'mxü and w in ^ ' , which concludes this first step.
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Second step. We extend the result of previous step to every a in
Mm x d. In that follows, co will be a fixed element of X'. Using Proposition 2.1
and above step, it is clear that ƒhom satisfies the locally Lipschitz condition
(2.2) with the new constant L' for every a and b in Mtm x d. So, by a classical
argument, one can extend fhom to Mmxd by setting, for every r in
Mmxd, fhom(r) :- Hm fhom(an) where {an, n -• + oo} is any séquence in

n -> + oo

M'mxd converging towards r. It is straightforward to check that this
extension vérifies the same condition (2.2).

On the other hand, from

\fhom(r)-fhom(an)\
meas (tQ)

ƒ hora /
MtQ(F(a>\an)

meas (tQ)
JitQ(F (a>\ an) J(tQ(F(ü>\r)

meas (tQ) meas (tQ)

using proposition 2.1 (ii) for the last term and going to the limit in
an towards r, in t towards + oo, we get

fhom(r)= lim
^ + oo meas(?Q)

which concludes this step.
Third step. It remains to prove that /hom satisfies the growth condition

(2.1). The upper bound is just a conséquence of the proposition 3.2. For the
lower bound, using (2.1) and the convexity of r ^ Ir^, we get

J(tQ(F (a>\ r) ^
meas (tQ) """

f ï r
s= a inf -j \a + Vu(x)\p dx, u

= a \a\p

which gives our result after going to the limit in t. M
We can now define the intégral functional Fhom in the class !F by

Fhom(u, A) := /hom(Vw(x)) dx .
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STOCHASTIC HOMOGENIZATION 341

4. ALMOST SURE EPIC ON VERGENCE OF THE PROCESS {F„, Fhom ; n — + oo }

THEOREM 4.1 : Let X' be the subset of X with P(X') = 1 defined in the
previous section. For all co in X' and all A in (9, we have

Fh o r a( . , A) = T - epilimF„(<u)(., A)
n -+ + oo

in WliP(A, Rm) equipped with its weak topology r, or the strong topology of
Lp(A, Rml

We shall give the proof with r denoting the strong topology of
LP(A, Rm). From the lower growth condition (2.1) and the compact
embedding from Wl*p(A9 R

m) into LFÇA, Rm), we can easily conclude in the
other case.

The proof of theorem 4.1 will be established by means of two lemmas : the
upper bound in the définition of epiconvergence is proved in lemma 4.2, the
lower bound in lemma 4.4, lemma 4.3 being just a simple technical lemma.
In all what follows, o) dénotes a fixed element of X'.

LEMMA 4.2 : For every A in (9, every u in Whp(A, Rm)

Fh o m(«, A) =£ epi lim inf Fn{a> )(u, A ) ,
n - » -+• o o

that is to say, for every séquence {un, n -» + oo}, r — converging
towards u,

Fhom(u, A) *s lim inf F n(co )(un9 A).
n - • + co

Proof of lemma 4.2.

First step. A is an open cube Q and u is defined by u(x) = la(x),
a e Mm x d, It is convenient and involves no loss of generality, to assume that
un - la belongs to Wl'p(Q, Rm) (see for instance S. Muller [15] or G. Dal
Maso& L. Modica [10], [11]). In this case, by définition of Fhom, by
corollary 3.3 and proposition 2.1 (i), we get

Fhom(w, Ô) = meas (Q) fhom(a)
JIJ, Q(F{a>\a)

en

= meas (Q ) lim
meas ( —

- meas (Q) lim
meas

=s \iminfFn(ù))(uni Q)
n - • + oo

which ends the first step.
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342 K. MESSAOUDI, G. MICHAILLE

Second step. We assume that A e (9 and u = l a.
For 77 ;> 0, there exists a finite family (g/X G ƒ (77) of disjoint open cubes

include in A, such that meas ( A\ I^J Qh\ =s 77. Since /hom satisfies the

growth condition (2.1), we get

Fhom(u, A)*s £ Fhom(w, QJ +77/3(1 + |û |*) .
i 6 / ( 7 7 )

Using previous step, superadditivity and non decreasing properties of the set
function B H-> r — epi lim inf Fn{o) )( . , B) (see H. Attouch [2], pp. 156-

157), we obtain

Fhöm{u, A)=s £ ^ - e p i l i

as T - epi lim inf F„(w)(«, A) + 77^ (1 + |a |^)

and we conclude by letting 77 tends to 0.
Third step. A e (9 and u e Wl*p(A, Rm). We use the density of piecewise

affine continuous function in Whp(A, Rm) (see I. Ekeland & R. Temam [13])
and the previous step.

Let M, un in WltP(A, Rm) such that u = r - lim un. For 77 ;> 0, there
n -» + 00

cxist a finite partition (A()t e 7 of A with A; e <P, and M^ in W l p (Aj , Rr") such
that I M - W ^ I J ^ ^ T ? and such that its restriction uVti is affine on

A,.
Set t?„T ̂  := w^ + un — i/ and dénote by vHt ^ ( its restriction to A(. By using

the second step, we get, for every i e I

u v J = r - l i m v n n i in L?(Ah R m )
AI - • + 00

hom(M7?,., At) *£ lim inf FB(« )(»„,,,,, A,).

After summation over i, with superadditivity of üm inf, we obtain

F h o m 0 v A) « lim inf F„(a> X»^ „ A) . (4.1)
rt -+ + oo

On the other hand, by (2.2)

f
J A

( 1 +
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and after using Holder inequality, we get, up to a further subsequence with
respect to n

(4.2)

where C will dénote any constant that does not dépends on rj and n. Note that
we have assumed lim inf Fn(co )(un, A) < + oo and so, thanks to the growth

n^> + oo

condition (2.1), up to a further subsequence with respect to n, un and
t?„ v bounded in Whp(A9 Rm).

Finally, by continuity property of ^hom
s

Fhom(uv,A) ^F h o m (w, A)-

- L ' | (1 + \VU{X)\P-1+ \Vuv(x)\p-l)\Vu(x)-Vuv(x)\ dx
JA

(4.3)

From (4.1), (4.2) and (4.3), after letting 17 tends to O, we get

Fhom(u, A) ^ lim inf F n(<o )(M|I, A)
n -» + e»

which ends the proof of lemma (4.2). •
Before proving the lower bound in the définition of epiconvergence, we

shall need the following estimation for any 17-approximate minimizer of

LEMMA 4.3 : Let -q > O, Q an open cube in Rd with side r\ of the lattice in
Rd spanned by ]0, v [, and v„ v(co ) in WQ-P(Q, Rm) such that

Fn(a>)(vniV(a>) + la, Q):sJ?Q(Fn(<o), a) + r, .

Then

where the constant C dépends only on a, p, and a.

Proof : In that follows, C will dénote different constants depending only
on a, y8, and a. By the growth condition (2.1), omitting the variable co, we get

^ — MQ(Fn(ju>\ a) H —
a a (4.4)

=s — (1 + | ö | p ) meas (Q) + —
a oc

^C meas ^ ^ • v
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On the other hand

where C is the Poincaré's constant in WQ>P(Y, Rm). Recalling (4.4), we
obtain

o,ö (Q) + v )

which closes the proof of lemma 4.3. •

LEMMA 4.4 : For every A in O and every u in WitP(A9 Rm), there exists a
séquence {un(w ) ; n -• + oo } in WliP{A, Rm) such thaï

u = r ~ Hm un(co ),
n -> + oo

Fhom(«, A) » lim sup Fn(a> )(!!„(« ), A).
n -> + oo

?. We prove the previous lemma when u = la, as Mmxd.
Let v >• 0 and (öiXe/^)» (Qj)jej(v) t w o finite family of open disjoint

cubes with side v of the lattice in R spanned by ]0, TJ [, such that

and meas ( [^J QA = 8(r)) with lim ô(rj ) = 0.
V - • 0

h o mFrom the définition of F h o m , corollary 3.3 and proposition 2.1, we get

= J] meas (Ô,)/hom(a) (4.5)
i e / (17 )

= lim £ JlQi{Fn{w), a) .

The suitable séquence {w„O ), n -> + 00} will be deduced from the
approximate minimizers of MQi {Fn{co ), a). Precisely, let u n 7 y i(a>) in

k , Rm) such that
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a n d d e f i n e v n 7 ) , u t h V i n W \ i f ( R d
9 R m ) b y v n v = v n 7 } i i n Q t a n d

un v = vfh v + u. Recalling (4.5), we get

Fhom(u, A) ^ lim sup F n{«>)(un^, ^J Qt\ - y

=s= l i m s u p Fn(o) )(w f t v, A) — p ( 1 + \a\p) 8 (77) - 2 t) .
« - • + 00

Therefore

Fhom(w, A) ^ lim sup lim sup F„(O>)(MW „, A) . (4.6)
17 -*• O n -» + 00

On the over hand

i \ p i \ p

and thanks to the lemma 4.3

^ C17 p(meas
(4.7)

where C is a constant that dépends only on p, a, f3, a, and B is any bounded
set containing A. From (4.6), (4.7) and using a diagonalization argument (see
H. Attouch [2], cororollary 1.16), there exists a map n •-» 77 (n) such that
r){n) tends to O when n tends to + 00 and such that

u = r - lim MB>17(B)

n - • + 00

hom(w, A ) s* lim sup Fn(co )(un v^, A)
n-> + 00

and it suffices to set M„ := un vinY

Second step. We prove lemma 4.4 for any u in Wl'p(A, R'").

By continuity of Fh o m in WUp(A, Rm), it suffices to prove lemma 4.4 when
u is assumed to be a piecewise affine continuous function by applying
previous step, and to conclude again by a diagonalization argument. More
precisely, there exists a finite partition (A; ) / e / of A, Ai e 0 such that
u = la. + &4- in Ah with a, e Mm x d, bt e Rm. Using the first step, there exists

vni in WltP(Ah Rm), possibly depending on o>, such that

u = ri — lim vHt i

n -*• + 00

Fhom(w, A(.) ^ lim sup Fn(co )(i?n -, At)

n -+ + 00
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where rf dénotes the strong topology of Lp{Ah Rm). By an argument proved
in G. Dal Maso & L. Modica [10], [11], modifying vn> t in a neighbourhood
of the boundary BAi of Ah we can construct a séquence of functions
unJ in WUp(Ai9 RmX such that

u = r- — lim unh unj = u on 3Af

F h o m ( « , yl;) ^ lim sup Fn(ü> )(«„, ;, A().
n -* 4- oo

The séquence Ort)„eiV of Whp(A, Rm) defined by un ••= un i in Af, satisfies,
after summing over i

u = T - lim un
n ~* + oo

Fhom(u, A) ^ lim sup Fn(<o )(wrt, A) .

When w belongs to W l ïP(A, Rm), we conclude, like in the last step in the
proof of lemma 4.2, by a density and diagonalization argument (see also
S. Muller [15]), which ends the proof of lemma 4.4 and theorem 4.1. •

We give now the following conséquence of theorem 4,1.

COROLLARY 4.5 : Let fl he a set of O, F o a subset of the boundary
öi? of fl with strictly positive surface measure and V the subset

{u G WUp(O, Rm), u = u0 on r0}

where u0 is a given element of Wl'p{O, Rm). lf F is a random intégral
functiqnal, periodic in law and ergodic, <P a continuons mapfrom V into R,
V being equipped with the weak topology ofWhp{Ü, Rm% then F h o m ( . , <o )
is lower semi continuous for the weak topology of W l j p(/2, Rm), /h o m is
quasiconvex, and

inf {F(ù>)(u, I2)+ <P(uX ueV}

converges almost surely towards

min {Fh o mO, 12) + #(i*), ueV} .

Proof : (o is a fixed element of X'. Every r-epilimit being r-lower semi
continuous, it follows, from theorem 4.1 that F h o m ( . , ca ) is lower semi
continuous for the weak topology of Whp(ü, Rm) and that/hom is quasicon-
vex (see J. M. Bail & F. Murat [5], C. B. Morrey Jr. [14]).

For the last statement, using variational properties of epiconvergence
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recalled in the second section, it remains to prove that

F h o m ( . , 12) + 0 = T - epilimF„(u>)(., ^ ) + <*>
n - • + oo

in V equipped with the weak topology of Wl'p(I2, Rm). But <P being a r-
continuous perturbation of Fn(ü ) ( . , 12 ), it suffices to prove that :

F h o m ( . , Z2) = r - e p i l i m F n ( « ) ( . , O)
n -> + oo

takes place in V, and thus, that, for every u in V, there exists a séquence
{un(co ) ;#_> + oo } in V satisfying

w = T - lim w f tO),
n -*• + oo

Fhom(w, /2 ) s* lim sup F „ O )(«„(« ) . a ) .

For this, it suffices to modify, in a neighbourhood of 9/2, the séquence of
functions un(o>) obtained in lemma 4.4, in such a way to preserve above
condition, with, in addition, u = un(<o) in dfi (see again G. Dal Maso &
L. Modica [10], [11]). •

5. SOME EXAMPLES OF RANDOM INTEGRAL FUNCTIONALS

We would like to give in this section, some examples of non homogeneous
random functions f(co) which will be a model of stored energy density for
material with inclusions distributed at random and for which, the correspond-
ing intégral functional is a random intégral functional, periodic in law and
ergodic.

Let us dénote by si the set of functions g defined in part 2, equipped with
the trace cr-field <r(jtf) of the product cr-field of RRdxMmxd and Hefine the
group of transformation (rz)zeZ

d m <*$, DV

rzg(x, a) = g(x + z, a).

Consider a map ƒ from XxRd xMmxd into R, which is (T5 ® ai (Rd) ®
@(Mmxd\ ^ (R)) measurable and such that, for every <o in X9 f O , . , . )
belongs to sé'. It is clear that the maps r2f from X into sé are
(TS, a (si)) measurable.

Following G. Dal Maso & L. Modica, we say that ƒ is periodic in law if,
for every z in Zd, P o ƒ ~ 1 = P o (rz ƒ )" \ and that ƒ is ergodic, if, for every
E in a (si) such that, for every z in Zd rz(E) = E, we have P of~l(E)e
{0,1}.
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With some slight modifications of the proof of G. Dal Maso & L. Modica
[12], one can easily show that corresponding random intégral functional
co H-» F (co) from X into SF defined by

r(co)(x, Vu(x))dx

is periodic in law and ergodic in the sense of the part 3. (Note that no
convexity asumption is required to obtain this result in the proof of [12].)

So, we have, by définition of the cr-field &($$), the two following
sufficient conditions to obtain the periodicity in law and ergodicity of F,

PROPOSITION 5.1 : If, for all finite family (xh at)ieI ofRd xMmxd, the
random vectors (f (., xh at))iBl and (f (., xi + z, at))is! have the same
law for every z in Zd, then F is periodic in law.

If for all finite family (xh ah rt)ieIand (y7, bp Sj)JeJofRdxMmxdxR

lim ƒ>([ƒ( . , * , . + z, a,-) > r j O [ƒ ( . , y,, &.) > Sj]) =
\ Z \ - . + 0 0 , Z € Z d

= P'([ƒ ( . , xh a}) => ri])P([f(., y,-, fe;)> Sj])

then F is ergodic.

Example 1 : Let D = {gi ; / 6 / } be a given finite set of homogeneous
stored energy density gt from Mm x d into R which satisfies the conditions
(2.1) and (2.2) of part 2. Define the set X by X ••= {co = (<yz)zeZ<*;
cozeD} equipped with the cr-fieid generated by the cylinders Ezi--=
{co ; coz = gt) , i e / , z e Zd

7 and let P be the probability product, construct
from the probability présence of g, in D. We define a non homogeneous
random stored energy density ƒ by :

f ( c o , x , a ) •.= co z ( a ) i f x e Y + z .

f is then a model for a stored energy density of a composite material in
Rd with a random présence of inclusions in a rescaled periodic structure.

It is straightforward to check that ƒ satisfies the hypothesis of proposi-
tion 5.1 and so defines a random intégral functional F, periodic in law and
ergodic.

Example 2 : Let g, h be two homogeneous stored energy density which
satisfy the conditions (2.1) and (2.2). On the other hand, consider a ponctuai
Poisson process co !-• Jf (co, . ) from a probability space (X, 15, P ) into
N^ (R } which satisfies (see for instance N. Bouleau [6]) :

(i) For every bounded Borel set A in R ,̂

yeD(<»)
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where Sy(A) dénotes the Dirac measure with support {y} and D(co) is a
given countable subset of R^ without cluster point,

(ii) for every finite family (A,- ), e / of bounded Borel sets in Rd» two by two
disjoint, {JV{ . ,-Af))(-€/ are independent random variables,

(iii) for every bounded Borel set A and every k s N

(Note that JT(a>, A) = card (A n D O ) ) and that £ ( / ( . 5 A ) ) =
/u, meas (A).)

For a given r :> 0, we defüie the random non homogeneous stored energy
density by

ƒ (ai, x, a).« 0(a) + (A(a) - 0<a)) min (1, ^ ( . , B(x9 r)))

that is f (CÛ, x, a) = y ei)(»)

ifnot.

ƒ is then a model for a stored energy density of a composite material iiî
R ,̂ (ö(y, O)yejD(£ü) being the rescaled random inclusions with a probability
expectation M meas (A) in every bounded Borel set A. One can see that ƒ
satisfies the hypothesis of proposition 5.1 and so defines a random intégral
functional F, periodic in law and ergodic.

6. STOCHASTIC HOMOGENIZATION AND DUALITY IN THE CONVEX CASE

In this section, we study the asymptotic behaviour of the classical
perturbed optimization problem when ƒ {<a, x9 . ) is convex, leading to the
limit of its dual formulation. We get in this way, the structural équation

a e 9/hom(e(w)) where e(u) := , which links the weak limits u and

er of the solutions of Primai and Dual problems corresponding to
Fn(o)). We adopt again an epiconvergence process on the séquence of the
perturbed functionals, which provides the almost sure weak convergence of
the saddle points séquence towards the saddle point of the Lagrangian of the
homogenized problem.

The situation and notations are those of section 2 but hère d — m and more
specifically, we study the asymptotic behaviour of the dual formulation of
the problem

( ^ J : inf {FB(a,)(M, O) + #(M), u € V}
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and the asymptotic behaviour of corresponding saddle points, in linearized
elasticity, with

F(<w)(«,A)« \ f(a>)(x9e(u))dx,
JA

where ƒ (a>) is measurable on x, convex with respect to the matrix variable
and satisfies almost surely the following condition, for every a in the
subspace Md x d of symétrie éléments of Md x d :

a\a\p**f(<o)(x9 a) ** p (1 + \a\p) . (6.1)

It is easy to see that (2.2) of section 2 is automatically satisfied. Indeed,
every a which belongs to the subdifferential df(<o)(x,a)f satisfies
\cr\ ^ C ( l + l a p " 1 ) where C is a constant depending only on fi (see
KL Attouch [2], p. 52 for p = 2 or B. Dacorogna [9] in a more genera!
setting) and with this bound, the convexity inequality leads to (2.2).

V will be the space WQ'P(O, Rd) and #, the following functional

<ff(x). u(x)dx,
a

where <f> is any element of Lp'{ü, Rd), p' :=
P- 1

Thanks to Korn's inequality,

\u{x)\pdx+ f \e{u){x)\p dxY
A JA I

defines an equivalent norm in Wl'p(A, Rd) still denoted by \u\x A.
With these new hypothesis, one could obtain similar results of previous

sections for functionals of the form

f(a>)(x,e(u))dx,
A

and infiirmm become minimum.
A classical way to perturb our optimization problem, is to define, for every

A in (P, the following bivariate functional ¥»(<» ) ( . , A ) from Wh p(A, Rd) x
2(A) intoR

- f /(*>)( ~,e(u)+a(x)) dx + j 4>(x) . u{x) dx 9
JA \ en / JA

where

X(A) - {<r:A^Mdxd
f c =
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The primai (&n) and dual ( ^„ )* problems take the form :

(0>n) m i n { ! P B ( Û > ) ( ( K , 0 ) , n \ u e Wl
Q-*>(/}, Rd)} ,

«?„)* sup {- ^*(*,)((0, <r), /2), er e X(fl)} =

= min j j ƒ*(<»)ƒ 21, a(x)\ dx, dïv a = <f>, <r e

where #"„* (a> ) ( . , ƒ2 ) and ƒ * (o> ) dénote respectively the Fenchel conjugates
of ! P n ( « ) ( . , ƒ2) and ƒ ( « ) •

Similarly the following perturbation of the homogenized limit problem
defined in section 4

f f
^hom((w, er), A):= / h o m O O ) + o-(jc))dic+ <f>(x).u(x)dx,

JA JA

leads to the primai (^>hom) and dual (^>hom)* problems

(^h o m) min {^hom((w, 0), ƒ2), u G W ^ rf}

(^ h o m )* sup {- ^ h o m*((0, o-), ƒ2), a e

= min I f fhom\a(x))dx, div er = 0, o- e £ (ƒ2f fhom\
J/3

M„(<Ü) and crn(w) being respectively a solution of (^ B ) and (^ B )* ,
(Mrt(&> ), o-„(o> )) is a saddle point of the associated Lagrangian defined from
Whp(f2, Rd) x X(Ï2) into R by

*

Ln(ai)((K, ^)):= - ^„'(«)((M, o"), /2) =

= I < r ( x ) : e ( M ) ( j c ) d r - f ^ (JC) . M (x)dbc - f ƒ * ( « ) ( — , <r(x)\ dx
Jn Jn Jn \ £n /

where * " / ( « ) ( . , ƒ2) dénotes the Frenchel conjugate of ^ r t ( w ) ( . , ƒ2)

with respect to its second variable.
Finally, if u and o- are respectively solution of (^>hom) and (^>hom)*,

(w, er ) is a saddle point of the associated Lagrangian

Lhom(w, o-) =

= f cr(x):e(M)(jc)A- f ^(x). i*( jc)dx- f /hom*(
J o Ja Ja

For further details about these notions, we refer to I. Ekeland &
R. Temam [12].

Let (o be a fixed element of X, we have the following re suit.
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PROPOSITION 6.1 : Every saddle point ( (w nO), an{w))) of the Lagran-
gian Ln((o\ is bounded in Wl

0>
p(n, Rd) x 2{Q). Therefore, there exists

{u{(o\ o-(co)) in WQ'p(f2, Rd) x 2(12) such that, up to a further sub-
sequence, (un(<o), <Tn(<o)) tends towards (u(co), <r(a))) in WQ*P({2, Rd) x
X(f2 ) equipped with the product of the weak topology of Wl'p(ft, Rd) and

ir\n, Md
s
xd).

Proof : It is easy to show, thanks to the growth condition (6.1), that
un(a>) is bounded in W}jp(O, Rd). On the other hand, again by (6.1) and
convexity asumption, one can prove that every element a that belongs to

df(a>)( j - , e(un(a>))\ satisfies

\cr\ *C(1 + \e(un(a>))\p~l)

which, with the property

<rn(a>) G df(co)( - , e(un(a>))) ,

leads to the conclusion. •
In the sequel, we show that almost surely, every cluster point

(w(<w), <r{(o)) of a saddle point (un(w), crn(oj)) is a saddle point of the
Lagrangian Lhom and so does not dépends on co and satisfies :
o- e bfhom(e(u))9 u and er are respectively solution of (^hom) and (^h o m)*.
For this, the main tooi is the following proposition, direct conséquence of
theorems 2.4 and 3.2 of H. Attouch, D. Aze & R. Wets [3].

PROPOSITION 6.2 : If (o is a fixed element of X such that

tfrhom(., H ) := r x s - epi lim Vn(w ) ( . , Ü )
n -* + oo

where r x s dénotes the product topology of the weak topology of
WQp(f2, Rd) and the strong topology of £(fl), then every cluster point
(u(a>\ er {o})) of proposition 6.1 is a saddle point of Lhom.

We are now in position to prove the main resuit of this section. Let
2' the subset of probability one defined in section 3. We have

THEOREM 6.3 : For every <o in X\

^ h o m ( . , a ) := T x s - epi lim Vn(<o ) ( . , ü ) .
n - • + oo

Moreover every cluster point (u(o> ) , a(<o)), in the sense of proposition 6.1,
of a séquence of saddle point {un{co ), (rn(a> )) of Ln(a> ), is a saddle point of
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Lhom and so does not dépends on a>. er is then a solution of the dual problem
(^h o m)* where

/ h o m *( ö )= sup —A
nEN* n

f f f
epi min

J2 [Jn

1 \
ƒ *(«OO, o- + • ) dx, a e K(nY)\ dP (a>) ( a ) ,

J /
f

where epi dénotes the continuous infimal convolution defined by
J x

lepi g(o>)(. )dP(co)Ua):=

f f f
:=inf g(a>)(a((o)) dP (a>\ a(a>) dP O ) = a

[J x J s
and where

y = 0, div a = 0 \ .K(nY):= la e V(nY) ;

Proof : Above expression of /hom* is a straightforward conséquence of the
définition of the Fenchel conjugate, permutation of two sup, property of the
continuous infimal convolution which is, in our case, the Fenchel conjugate
of

f f f )
min / O ) ( x , e(w)(jt) + . )dx, ue Wl

0>
p(nY, Rd)\ dP (<o),

Jx {JnY J

and finally, classical expression of the Fenchel conjugate of

Imin ff f(*>Kx,e(uKx) + .)dx, u e W^p (nY, Rd)\ ,

which is

^ m i n f(a>)* (x, <r(x) + . )dx9 a eK(nY)
n {JnY

We refer to H. Attouch [2] for this last result and to C. Castaing & Valadier
f8] for more about continuous infimal convolution.

It remains to prove that y h o m ( . , n ) == r x s - epi lim &n(<o ) ( . , O ).
ft -*• + 00

Noticing that for every A in 0, u >-» <£ (x). u(x) dx is a r - s continuous
JA
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perturbation of ^n(co )( . , f2 ), we can neglect the présence of this term in
the expression of Vn{a> ) ( . , A) and ^ h o m ( . , A) (see section 2).

On the other hand, with this convention, we get, when a is constant

, <r\ A) = Fn(a> ){u + / a , A)

and

^h o m((w, o-), A) = Fhom(u + Za, A ) .

These remarks lead to the two following steps :

First step : We prove !Ph o m( . , f2 ) := r x s - epi lim Vn(<o )( . , O ) in
« - • + oo

Wo)/7(/2, Rrf) x ê(O) where ^ ( / 2 ) dénotes the subspace of piècewise
constant functions of 2(f2).

(i) Upper bound. Let u = r — lim wn and cr = s — lim <T„ with
rt-*-f-00 rt^ + OO

(«„, o-„) e Wl
0-

p(fl, Rd) xS'(n). We have o- = £ a; ^ where (/3,), e / is

a finite partition of f2, f2i e (9, and u -f Za. = r - lim wn + /fl.. So, by
/Î ->• + 00

theorem 4.1,

that is
h
 IB, o-), f2,). (6.2)

But, by convexity

L : (crB - a)(jc)dr (6.3)

where x ^ ^ ( w ) ( i , e (un)(x) + o- (x)) is an integrable sélection of the closed
set multivalued function x ^ bf (<o )(x,e(un)(x) + a (x)) (for more about
intégral of set valued maps and existence of integrable sélections, we refer to
J. P. Aubin & H. Frankovska [4] or C. Castaing & M. Valadier [8]).

So, (6.2) and (6.3), after summing over /, lead to

^hom((w, ar), f2 ) ^ lim infVn(a> )((Mflf an\ f2)
n -» + oo
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where we have use Hölder's inequality and the estimation

\q(<o)(x,e(un)(x)+a(x))\ ^ C (1 + \e(un)(x) + <r(x)\p~ l)

in the last term of (6.3).
Lower bound. Let (M, o-) in W^p(f2, Rd) x ê (f2). By theorem 4.1, there

exists V; n(a>) e WUp(f2h Rd) such that u + la. - r - lim vt n(co ) and
n - • + oo

U / , «O) = ^ o n 9 / 2 /- Setting un(a>)'.= v( n(co)- /a. in every /2., we get

and, after summing over /

lim sup Fn(
n -*• + oo

u = T — lim w„(ct>) and er = er
n -* + co

«, o-)), /2 ) & l imsup Vn(co)((un(co), o-J,

Second step : We end the proof by using the s-density of S (f2 ) in
S (f2), a continuity and a diagonalization argument like in the proof of
theorem 4.1. •
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