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THE PERTURBED TIKHONOV’S ALGORITHM
AND SOME OF ITS APPLICATIONS (*)

by P. TossINGS (1)

Communicated by R. GLOWINSKI

Abstract. — The proximal point algorithm has known these last years many developments
connected with the expansion of the variational convergence theory. Motivated by this fact and
inspired by the work of A. Tikhonov and V. Arsénine in the context of convex optimization, we
present a new algorithm for searching a zero of a maximal monotone operator on a real Hilbert
space. We study the perturbed version of this algorithm and establish a critical comparison with
the perturbed proximal point algorithm. We apply this new algorithm to convex optimization
and to variational inclusions or, more particularly, to variational inequalities.

Résumé. — Soient H un espace de Hilbert réel et T un opérateur maximal monotone de H.
Nous considérons le probléme

P) «Trouver xe H telque 0eTx».

R. T. Rockafellar a développé, en 1976, un algorithme de résolution de ce probléme :
I'algorithme du point proximal. Exploitant I’essor de la théorie de la convergence variation-
nelle, B. Lemaire a étudié, quelques années plus tard, la version perturbée de cet algorithme
pour T = 3f, opérateur sous-différentiel d’ une fonctionnelle convexe, propre, semi-continue
inférieurement. Nous avons, quant a nous, étudié plus récemment la version perturbée de
I'algorithme général développé par R. T. Rockafellar et quelques-unes de ses applications.

Inspirée par cette évolution et par les travaux de A. Tikhonov et V. Arsénine en optimisation
convexe, nous introduisons, dans ce papier, un nouvel algorithme de résolution du probléme
(P). Cet algorithme, appliqué a I’opérateur sous-différentiel d’une fonctionnelle convexe,
propre, semi-continue inférieurement, coincide avec I’ algorithme classique dit a A. Tikhonov ;
nous I’appelons encore, par extension, algorithme de Tikhonov.

Comme pour !'algorithme du point proximal, nous étudions la version perturbée de
I'algorithme de Tikhonov. Nous effectuons alors une comparaison critique de ces deux
algorithmes. Nous continuons avec I’application de I'algorithme de Tikhonov au contexte de
I’ optimisation convexe, d’une part, et a la théorie des inclusions et inéquations variationnelles,
d’autre part. Nous terminons par la présentation et I’analyse critique de quelques tests
numériques simples, que nous comparons a ceux effectués avec I’ algorithme du point proximal.

(*) Manuscript received May 25, 1993.

(1) Lecturer, Université de Liege, Service de Mathématiques Générales, Institut de Mathéma-
tiques, 15, avenue des Tilleuls, B-4000 Liege (Belgique).
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190 P. TOSSINGS

1. INTRODUCTION

Let H be a real Hilbert space and T be a maximal monotone operator on
H. We consider the problem

P) « To find X € Hsuchthat0 € Tx » .

R. T. Rockafellar [32] gave, in 1976, an algorithm for solving this
problem : the proximal point algorithm. Using the expansion of the
variational convergence theory, B. Lemaire [20] studied, a few years later,
the perturbed version of this algorithm, for T = 38f, subdifferential operator
of a proper closed convex function. We studied more recently (see [40]) the
perturbed version of the general proximal point algorithm of R. T.
Rockafellar and some of its applications.

Inspired by the work of A. Tikhonov and V. Arsénine [35] in convex
optimization, we introduce, in this paper, a new algorithm for solving
(P). This algorithm, applied to the subdifferential operator of a proper
closed convex function on H, coincides with the classical algorithm due to
A. Tikhonov ; we call it yet, by extension, Tikhonov’s algorithm.

Working as in the context of the proximal point algorithm, we study the
perturbed version of this new algorithm. Then, we establish a critical
comparison between the (perturbed) Tikhonov’s algorithm and the (pertur-
bed) proximal point algorithm. As for this last one, we go on with the
applications of the (perturbed) Tikhonov’s algorithm in the context of convex
optimization, on the one hand, and in the theory of variational inclusions or
inequalities, on the other hand. We conclude with the presentation and a
critical analysis of some simple numerical tests which we compare to those
obtained with the proximal point algorithm in [40].

Convention. In the following text, H will always denote a real Hilbert
space and T a maximal monotone operator on H.

2. THE VARIATIONAL CONVERGENCE THEORY

In this section are stated some basic results of the variational convergence
theory derived from H. Attouch [4], H. Attouch and R. J. B. Wets [5] and P.
Tossings [39].

Let T be a maximal monotone operator on H, f a proper closed convex
function defined on H with values in R and A a strictly positive real number.

We denote by J. the resolvant operator associated with T with parameter
A

Jr =@+ ATy,
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PERTURBED TIKHONOV’S ALGORITHM 191
by Al the Yosida approximation of T with parameter A

I -Jr

Al =
A A

and by f, the Moreau-Yosida approximation of f with parameter A

f1 ()= inf {f(y)+2%||y—x||2}, Vxe H.

yeH

These notions are useful to define two « variational metrics ». The first
one is defined on the set of maximal monotone operators on H by means of
the resolvant operator (). The second one is defined on the set of proper
closed convex functions by means of the Moreau-Yosida approximation.

DEFINITION 2.1 : Assume T' and T? are two maximal monotone operators
on H, A =0 and p = 0. The variational metric between T' and T* with
parameters A and p is the metric 6,\,p(T1, T?) defined by

8y, T = sup |JTx—JTx|.

Tl <

DEFINITION 2.2 : Assume f' and f? are two proper closed convex functions
on H, A =0 and p = 0. The variational metric between f' and f? with
parameters A and p is the metric d)"p(fl, f?) defined by

d, ,(f', )= sup |fi)—fi @] .

=1l <o

The two variational metrics are connected by the following proposition.

PROPOSITION 2.3 : ([5], theorem (2.33))

Assume f' and f? are two proper closed convex functions on H,
A =0 and p =0. Then we have

8y, 3f) = (L +A)2d, ,,(f1 FHI?,

for all py such that

1

po= (145 ) p+ 3 (¥ 0] + ¥ o1

The next result is fundamental to work with the variational metrics in the
study of convergence of algorithms.

() It gives back, for T' and T” subdifferential operators of proper closed convex functions,
the variational metric 5, ,(f', f*) defined by H. Attouch and R. J. B. Wets [5] in this context.
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192 P. TOSSINGS

PROPOSITION 2.4 : ([39], corollary (3.10))

Assume T"(n € N*) and T are maximal monotone operators on H and

(1) T admits at least one zero x*,
(i 0< A=A, VneN*
(i) lim A, 8, (I, T)=0

n— + oC

[resp. Z Ay 8, (T, T)<+oo], Yp=0.

neN*
Then we have

lim &, ,(I",T)=0 [resp. Z 5,\n,p(T",T)<+00}, Vp =0.
n— 4+

neN*
Moreover, the sequence (Aflx) is bounded, for all x € H, and

lim |pix*“:o.

n— + ©

We end this section with two results concerning the variational metric
« between sums of operators », on the one hand, and « between subsets of
H », on the other hand.

PROPOSITION 2.5 : ([39], corollary (4.5))
Let A be a Lipschitzian operator on H with modulus a« =0 and B,
B" (n € N*) be maximal monotone operators on H. Assume

(1)- (A + B) admits at least one zero,
(i) O< A <A, Ve N*, with A <l,

o
(iii) lim A,8, ,(B",B)=0

n— + 0

[resp. Z /\,,SA",(B",B)<+00], Vp =0.

neN*
Then we have

lim 6, ,(A+B"A+B)=0

n-—-+ o

[resp. Y Skﬂ,p(A+B",‘A+B)<+oo], Vp = 0.

neN*

PROPOSITION 2.6 : ([4], theorem (3.20), and [39], proposition (7.16))

Assume C, C" (n € N*) are nonempty closed convex subsets of H such
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PERTURBED TIKHONOV’S ALGORITHM 192
that

C"cC"*', VneN*, with UC“:C,

neN*
Then, for all A =0 and p =0, there is p* =0 such that

8, ,0%cn, 3¥c) < [p*haus,.(C", C)]", VneN*.

3. THE TIKHONOV’S ALGORITHM

The Tikhonov’s algorithm generates a sequence (y,) in H by the
nonrecursive rule
(TR) Yo=J3 0, VneN*,

(A,) denoting a sequence of strictly positive real numbers having to go to
infinity ; Jf" (n € N*) denoting the resolvant operator associated with

T, with parameter A .
A preliminar result is necessary to establish the convergence of the
Tikhonov’s algorithm.

LEMMA 3.1: The set S of solutions of (P), i.e.
S={xeH:0eTx},

is a closed convex subset of H.

Proof : Tt is immediate because T is maximal monotone and the graph of
T is closed in H,, x H, (see H. Attouch [4], proposition (3.59)). |

THEOREM 3.2 : Assume problem (P) has at least one solution and

O<A,, VneN*, lim A,=+o00.

n— + o

Then the sequence (y,) generated by (TR) strongly converges to the solution
of (P) which is of minimal norm.

Proof : Under the hypothesis of theorem (2.2), the set S of solutions of (P)
is a nonempty closed convex subset of H. So, there is a unique element
X € S such that

[ X[l = min |lx| .
x€eS§

Therefore, we have, on the one hand,
0eTx,
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194 P. TOSSINGS
which implies
Xx=J;, %, VneN*, 3.1
and, on the other hand,
0OeTx and |x| =|X||] = x=%. (3.2)

From this, we will divide the proof into four parts.

The sequence (y,) is bounded.
We have, using (TR) and (3.1),

Iy, — %] = |75, 0-7% x|, VneN*.
As an(n e N*) is a contraction, this equality implies
||y,l —)_c” = |x||, VreN*,
and thus the announced result.

Every weak cluster point of (y,) (and from , there is at least one) is a
solution of (P).

Let ye H be a weak cluster point of (y,). There is a subsequence
(¥n,) of (¥,) which weakly converges to y :

Yo, = Yy Wwhen k- + o0,

and the conditions imposed on (A,) imply the strong convergence of the

Y,

corresponding subsequence to zero :

3

Y,
5 0 when k- +o0.

g

The rule (TR) implying

€ Ty, Vke N*, (3.3)

and the graph of T being closed in H,, x H;, we deduce thence
0eTy.
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PERTURBED TIKHONOV’'S ALGORITHM 195

The sequence (y,) weakly converges to X.

Let y € H be a weak cluster point of (y,) and (y, ) be a subsequence of

(y,) which weakly converges to y.
Using relation (3.3), the definition of X and the monotonicity of
T allow us to write

Yn
<)_c—ynk,)\—k>>0, Vke N,

"k
which implies, from the positivity of A, (k€ N),
<J_C, y,,k> = ”y,,knz, VkeN,

or
1%l = |yl . VkeN,

and thus

limsup |y, || < IZ]| -
k> +cc

By another way, the weak lower semi-continuity of the norm implies

||| < lim inf ”y,,k“ .

k— + o0

We deduce thence
Iy1 = 1=
and thus, using and (3.2),
y=3X.

Finally, the sequence (y,) is bounded and admits a unique weak cluster
point X ; it thus weakly converges to X.

The sequence (y,) strongly converges to X.
Working as here above, but on the whole sequence (y,), we obtain

IX[| < lim inf |y, || < limsup |y, | < [[x]| -
n—+ o n— + o0

Therefore, we have

im ly,|l = [1%] -

n— + o0

vol. 28, n° 2, 1994



196 P. TOSSINGS

This property, combined with the weak convergence of the sequence
(,) to x, allows us to conclude.

Remark 3.3 : Under hypothesis

O<A, VreN* Ilim A,=4+ 0,

n-—+

the proof here above brings out that the following assertions are equivalent :

a) problem (P) has at least one solution ;
b) the sequence (y,) generated by (TR) is bounded.

4. THE PERTURBED TIKHONOV’S ALGORITHM

Let us introduce a perturbation and an error term in the Tikhonov’s rule
(TR). We are led to consider a sequence (x,) defined by the nonrecursive
rule

(PTR) x,=J5 O+e,, VneN*,

(T") denoting a sequence of maximal monotone operators on H having to
converge to T in an appropriate sense, (e,) a sequence of elements of
H approaching 0, taking into account (in theory) the errors due (in
applications) to numerical computation; (A,) denoting, as previously, a
sequence of strictly positive real numbers tending to infinity and JT;

(n e N*) the resolvant operator associated with 7", with parameter
A

n
THEOREM 4.1 : Assume

D O0<A,VreN* lim A,=+ 0;

n—- + o

n?

G)Y T S T®;
(i11) the sequence (x,) is generated by (PTR) and is bounded ;
@iv) lim |e,|| =0.

n-— + 0o

Then every weak cluster point of (x,) is a solution of (P).
Proof : Set
u,=J5 0, VneN*. 4.1

(®) Symbol & denotes the graph-convergence (see, for example, H. Attouch [4]).
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PERTURBED TIKHONOV’S ALGORITHM 197

We have
X, =u,+e,, VneN*,

and it follows from hypothesis (iv) that every weak cluster point of
(x,) (and, from hypothesis (iii), there is at least one) is a weak cluster point
of (u,) and conversely.
Now, proceeding as in the second part of the proof of theorem (3.2), we
can easily show that every weak cluster point of (u,) is a solution of (P).
The announced result is therefore immediate. |

To end this section, we try to obtain, for the perturbed Tikhonov’s
algorithm, a result of strong convergence similar to this established in
theorem (3.2) for the nonperturbed one.

We first calculate the distance between the corresponding iterates of the
two algorithms.

PROPOSITION 4.2 : Let (y,) be the sequence generated by (TR) and
(x,) be the one generated by (PTR). We have

1% — Yull < 84, 0T T)+ |le,]| , YneN*.

Proof : It results immediately from the definitions of the sequences
(x,) and (y,) and of the variational metric 8, ,(A=0,p=0). ]

Proposition (4.2), combined with theorem (3.2), remark (3.3), and
proposition (2.4), allows us to write the following results.

THEOREM 4.3 : Assume problem (P) has at least one solution and

i) O0<A,, VneN* Ilim A,=+00;
n— + O
(ii) there is A = 0 such that, Vp =0, lim A, 8, ,(I", Ty=0;
n-—- + oo
(iii) lim |e,|| =0.
n-— + o
Then the sequence (x,) generated by (PTR) strongly converges to the
solution of (P) which is of minimal norm.

Remark 4.4 : Under hypothesis (i) to (iii) in theorem (4.3), the following
assertions are equivalent :

a) problem (P) has at least one solution ;
b) the sequence (x,) generated by (PTR) is bounded.

5. COMPARISON BETWEEN THE PROXIMAL POINT ALGORITHM AND THE
TIKHONOV’S ALGORITHM

The fundamental advantage of the Tikhonov’s algorithm is the strong
convergence of the generated sequence to the solution of (P) which is of
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198 P. TOSSINGS

minimal norm. It has nevertheless a nonnegligible disadvantage : its bad
conditioning (the sequence of parameters (A,) which appears in this
algorithm having to tend to infinity). The proximal point algorithm (%) allows
to avoid this conditioning problem (the sequence (A,) being, in general,
bounded) but the solution which it furnishes is not characterized.

These important differences between the behaviours of the proximal point
algorithm and of the Tikhonov’s algorithm are probably closely connected
with a fundamental difference in their conception : the first one is recursive
when the second one is not. (It is therefore we obtained results concerning
the rate of convergence for the proximal point algorithm but not for the
Tikhonov’s algorithm.)

6. APPLICATION TO CONVEX OPTIMIZATION
6.1. Fundamental problem

Let f:H—->Rbea proper closed convex function.
We consider the convex optimization problem

(OH) « To find X € H such that f (X) = inf f(x)».

xeH

Remark 6.1 : In practice, problems of the following type often occur :
(0OC) « To find x € C such that g (x) = inf g(x)»,

xeC
C denoting a nonempty closed convex subset of H and g a real-valued
convex function defined on H (one could also consider a proper closed
convex function g : H — R, provided (dom g N C) # 0).
It is well known that problem (OC) is equivalent to problem (OH) for
f =9+ ¥, ¥, denoting the indicator function of C.

6.2. Basic principle

It follows from the definition of the subdifferential of a proper closed
convex function that x solves (OH) if and only if it satisifies the inclusion

0eaf(x).

Problem (OH) is thus equivalent to problem (P) related to the maximal
monotone operator df.

(®) A detailed study of the perturbed version of the proximal point algorithm and its
applications in convex optimization and in the theory of variational inclusions or inequalities has
been realized in [40].
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PERTURBED TIKHONOV’S ALGORITHM 199

It is therefore quite reasonable to use the algorithms described in sections 3
and 4 for solving this optimization problem.

Convention. In the following text, we only give the results of convergence
related to the perturbed algorithms, the results related to the nonperturbed
algorithms being in fact particular cases of these.

6.3. Tikhonov’s algorithin for the resolution of problem (OH)

The Tikhonov’s algorithm adapted to the resolution of problem (OH) has
been studied by many authors (see, for example, A. Bensoussan and P.
Kenneth [11] and B. Lemaire [19]) (%).

Neglecting an error term (connected with numerical computation), this
algorithm generates a sequence (x,) in H defined by

X, =J, 0(12,=0), VneN*, (6.1)

or, in an equivalent formulation (see, for example, B. Lemaire [20]),

1
2,

x, = Argmin [f x) +

||x||2} , VYneN*. (6.2)
xeH

Following the work of B. Lemaire [20] in the context of the proximal point .
algorithm, we perturbe (6.1) and (6.2) by replacing, in iteration n (n € N*),
function f by another proper closed convex function f”, the sequence
(f") having to converge to f in an appropriate sense.

As for the error term,

— like R. T. Rockafellar, still in the context of the proximal point
algorithm, we add an element e, € H in the second member of (6.1) ;

— 1in (6.2), we take the error term into account by considering no more an
exact minimizer but only an ¢,-minimizer (¢,= 0) of

1)+

1 2
2_)1,, flx]=-

So, we obtain the two following rules :

X, =J0+e,, YneN*, (6.3)
and
X, € €, — Argmin G,(x), VneN*, 6.4)
xeH

(*) In fact, these authors considered problem (OH) for real-valued functions but their results
can easily be adapted to functions with values in R.
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(G,) denoting a sequence of proper closed and strongly convex functions
related to (") and (A,) by the relation

G,,(x):f”(x)+2%||x||2, VxeH, VneN*. 6.5)

Remark 6.2 : Rules (6.3) and (6.4)-(6.5) are no more equivalent. Never-
theless, it follows from the strong convexity of G, (n € N*), that (6.4)-(6.5)
is a particular case of (6.3) for which

le.l =</2A,¢,, VYneN*,

(See A. Auslender, J. P. Crouzeix and P. Fedit [10]).
Remark 6.3 : Rule (6.3) is nothing else but (PTR) for

T" — 3f", VneN*,

The results of convergence related with this rule are thus consequences of
section 4.

For (6.4)-(6.5), an additional result can be established by means of the
functional structure of problem (OH).

COROLLARY 6.4 : Assume

(i)0</\n7 VHEN*, 11m /\n:+w,

n—+
i) "B 10O
(iii) the sequence (x,) is generated by (6.3) and is bounded ;
(iv) lim |e,| =0.

n— + o
Then everv weak cluster point of (x,) is a solution of (OH).
If, moreover, (x,) is generated by (6.4)-(6.5), with

lim A,e,=0,
n—- + o
then

lim f"(x,) = inf f(x).

n— + 0 xeH

Proof : The first part of this result is an immediate consequence of theorem

(4.1) and of H. Attouch [4] (theorem (3.66)). We can also establish it in the
following way.

(5) Symbol ¥ denotes the Mosco-convergence (see, for example, H. Attouch [4]).
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Set
u, = Argmin G,(x), VneN*,. (6.6)

xeH

Provided (x,) is generated by (6.3), we have
X, =u,+e,, VneN*,

and, provided |le,|| -0 when n — + oo, every weak cluster point of
(x,) is also a weak cluster point of (u,) and conversely.

By another way, it is easy to see that hypothesis lim A, = + oo and
n— + 00

% fimply G, 4 £.

Therefore, it follows from H. Attouch [4] (theorem (1.10)) that every weak
cluster point of (x,) is a solution of (OH).

If, moreover, (x,) is generated by (6.4)-(6.5), with

lim A,¢,=0,
n— + o

it follows from P. Tossings [38] (proposition (V.3.4)) that

lim G,(x,) = inf f(x).

n- + o xeH
Now, hypothesis (i) implies

lim f"(x,)= lim G,(x,).

n— + o n—-+

The sequence (x,) being assumed to be bounded, we deduce thence the
second part of the announced result. |

The condition « (x,) is bounded » in corollary (6.4) is crucial and has to be
verified in each application.

PROPOSITION 6.5 : Assume 0 < A ,, Vn € N*. Then sequence (x,) gener-
ated by (6.3) is bounded if one of the following assumptions holds :

(1) the sequence (f") is nonincreasing, f = cl( inf f”), dom f is

ne N*

bounded and (e,) is bounded ;

(ii) the sequence (f") is nonincreasing, f = cl ( inf f") and is coer-

. . neN*
cive, 1.e.

lim f&x)=+ 00,
|x|| = + o©

(A,) is nondecreasing and (e,) is bounded ;
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(iii) f" % f, the functions f* (n € N*) are uniformly coercive, i.e. for
every sequence (z,) in H such that ||z,|| - + o0 when n — + 0o, we have

lim f%(z,) = + 0,

n -+ 0

lim A, =+ oo and (e,) is bounded.
n— + 0oc

Proof : Let us consider the sequence (u,) defined by (6.6).
(i) It can easily be shown that

u, € dom f"<cdom f, VmneN*.

Provided dom f is bounded, the sequence (u,) is thus bounded and,
provided (e,) is also bounded, the sequence (x,) is finally bounded.

(ii) The conditions imposed on (f") and (A,) and the definition of
(u,) imply

F" @) + 55 ||u,,|| =[O0+ 5 |lx||2

< f" 1) + x>, VxeH, VYneN*.

2 A

n-1

In particular, for x = u,_,, we have

f”(u)+ “u“ <f" Yu, )+ lu, 1>, VneN*,
1

_ 1
2A,_
relation which implies, step by step,

[ (u, )+ ||u || fl(u1)+% HulH2 VneN*,
1

By means of the definition of f, we deduce thence
f,)<f! (u1)+—||u1|| Vne N*.

As f is coercive, the sequence (u,) is thus bounded, what allows us to
conclude.

(iii) By definition of (u,), we have

I (un)<f"(X)+—— lx||?>, VxeH, VneN*. (6.7)
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Take x € H. The Mosco-convergence of (f") to f implies the existence of
a sequence (z,) strongly converging to x and such that

lim  f*(z,) = f(x).

n— + o0

Writing (6.7) for this sequence, we obtain

Fru) = f"G) + z% lz.)>, VneN*.

The second member of this inequality is bounded, by construction. It
follows that the sequence {f"(u,,)} is bounded. Therefore, the uniform
coercivity of the f* (n € N*) ensures that (u,) is bounded and leads to the
announced result. |

COROLLARY 6.6 : Assume problem (OH) has at least one solution and

1) O<A,, Vne N*, lim A, =+ 00;

n— + o

() Vp =0, lim A,[d ,(f% f)1"*=0;

n— + o

(iii) lim |le,] = 0.
n-+
Then the sequence (x,) generated by (6.3) strongly converges to the
solution of (P) which is of minimal norm.

Proof : It is an immediate consequence of theorem (4.3) and of H. Attouch
and R. J. B. Wets [5], theorem (2.33). u

7. SEARCH FOR A ZERO OF A SUM OF OPERATORS AND APPLICATIONS

7.1. Introduction

In the present section, we begin by solving the general problem which
consists in searching a zero of a sum of operators by means of the perturbed
Tikhonov’s algorithm, under conditions ensuring the maximal monotonicity
of this sum. Then we apply the obtained results to the context of variational
inclusions (sum of operators in which one of the operators is the subdifferen-
tial of a proper closed convex function ¢ on H) and, more particularly, to the
context of variational inequalities (variational inclusions in which ¢ = ¥,
indicator function of a nonempty closed convex subset C of H). We conclude
with the approximation method in convex optimization.
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7.2. Searching a zero of a sum of operators

Let A be a monotone operator on H, Lipschitz continuous with modulus
a =0, and B be a maximal monotone operator on H.
We are interested in searching a zero of (A + B), i.e. in problem

(PS) «Tofind xe€H suchthat 0e (A+B)x».

Proposition (2.5) allows us to exploit the perturbed Tikhonov’s algorithm
for solving this problem, the perturbation touching only B. So, we are led to
consider the recursive sequence (x,) defined by

X, =74t 0+e,, YNeN*, (7.1)
(B") denoting a sequence of maximal monotone operators on H, having to
converge to B in an appropriate sense, (e,) a sequence of elements of
H approaching zero, introduced to take into account the errors due to
numerical computation, and (A,) a sequence of strictly positive real
parameters, having to tend to infinity.

The theorems of convergence established in section 4 directly lead to the
following corollaries.

COROLLARY 7.1 : Assume
i 0<a, VneN* lim 2A,=+00;

nost o0
(i) B" S B ;
(i11) the sequence (x,) is generated by (7.1) and is bounded ;
(iv) lim |e,| = 0.

no 400

Then every weak cluster point of (x,) is a solution of (PS).

COROLLARY 7.2 : Assume problem (PS) has at least one solution and
1) 0<A,,VneN* 1lim A,=+00;
n— + 0
(ii) there is A=0 such that A< l and, Vp =0,
(¢4
lim A,8, ,(B",B)=0;

n-— 4+ o

(iii) lim [e,| = O.

R — 4 00

Then the sequence (x,) generated by (7.1) strongly converges the solution
of (PS) which is of minimal norm.
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Remark 7.3 : Under hypothesis (i) to (iii) in corollary (7.2), remark (4.4)
ensures that the following assumptions are equivalent :

a) problem (PS) has at least one solution ;

b) the sequence (x,) generated by (7.1) is bounded.

7.3. Variational inclusions
We call variational inclusion an inclusion like the following :

_Axedp(x) (xeH), (7.2)

A denoting an operator and ¢ a function on H.

As x € H satisfies (7.2) if and only if O € (A + d¢) (x), solving a
variational inclusion is equivalent to searching for a solution of a (PS)-like
problem in which B = 3¢, subdifferential operator of ¢.

Therefore, if A is monotone and Lipschitz continuous with modulus
a =0 and ¢ is proper closed and convex, inclusion (7.2) can be solved by
means of the perturbed Tikhonov’s algorithm, the perturbation being
obtained, in this context, by replacing, in iteration n (n € N*), function
¢ by another proper closed convex function ¢”, the sequence (¢”") having to
converge to ¢ in an appropriate sense.

The developments of section (7.2) can easily be translated to the context of
variational inclusions : it suffices to replace B by 9¢ and B" by d¢"
(n € N*) and to take into account the fact that

"M o =00"5 3¢
(see H. Attouch [4], theorem (3.66)), on the one hand, and proposition (2.3),
on the other hand.

7.4. Variational inequalities

Let us take as function ¢, in (7.2), the indicator function of a nonempty
closed convex subset C of H.
We are led to search x € H satisfying

—Ax€ed¥.(x),

inclusion which is equivalent, from the definition of subdifferential operator
and indicator function, to searching for x € C satisfying

(Ax,z-x) =0, VzeC. (7.3)

Inequation (7.3) is called variational inequation. Using the previous
developments, it can be solved by means of the perturbed Tikhonov’s
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algorithm, the perturbation touching, in this context, function ¥, or, more
precisely, subset C (5).

If (C") denotes a sequence of nonempty closed convex subsets of
H, rule (7.1), adapted to the context of variational inequations, can be

written, with the previous notations, in the following form :

+ a‘l’cn

x, = J4 0+e,, VneN*. (7.4)

n

Remark 7.4 : Set

+o¥n %
w=J0 0, VneN*.

U

We have

u,=x,—e,, VneN*.

Therefore, using the definition of resolvant and subdifferential operators,
we can rewrite (7.4) in the form

u,€ C* and <</\L+A>un,z—un>20, VzeC”,

n

for all n e N*,

It follows that, in iteration n (n € N*) of the perturbed Tikhonov’s
algorithm adapted to the resolution of a variational inequality, we are led to
solve, in an inexact manner (in practice, we obtain x, and not u,), another
variational inequality containing, this time, a sfrongly monotone operator
and this, no more on C but on C”.

This formulation points out the association regularization-variational
approximation used in the method presented here above.

The results of section (7.2) are directly applicable to the context of
variational inequalities : it suffices to replace B by 8%, and B" by
dW.n (n € N*) and to take into account proposition (2.6).

Let us just mention a possible lightening of the conditions imposed to
A in section (7.2), connected with the particular structure of operators
B and B" (n € N*),

Remark 7.5 : If C" = C, Vn € N*, then the condition « A is monotone and
Lipschitz continuous with modulus @ = 0 on H », in section (7.2), can be

(%) This type of perturbation is called, in literature, variational approximation ,; an important
particular case of such an approximation consists in approaching C by finite-dimensional
subsets of H (as in discretization).

M? AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



PERTURBED TIKHONOV’S ALGORITHM 207

replaced by « A is monotone and continuous on H and Lipschitz continuous
with modulus « =0 only on C ».

It suffices, to be convinced, to revise the proof of proposition (4.4) in
P. Tossings [39] and to note that the Lipschitz’s property of A is only
exploited in formulas in which the arguments of A are respectively in
C" and in C (to proceed as in remark (7.4)) ; that leads immediately to the
announced result.

7.5 Variational approximation
We mentioned, in section 6, that the convex optimization problem

(00 «Tofind xe C suchthat g ()= inf g(x)»,

xeC

C denoting a nonenmpty closed convex subset of H and g : H — R a proper
closed convex function, was equivalent to the minimization of the function
(g + ¥.) over all H, which allowed us, provided (domg N C) was
nonenmpty, to use the perturbed Tikhonov’s algorithm for solving (OC).

A particular form of perturbation is often used in this context: the
penalization which consists in replacing, in iteration n (n € N*) of the
Tikhonov’s algorithm, function (g + ¥) by (g + ¢"), ¢ " denoting a real-
valued convex function on H, taking implicitly into account the constraints
of the considered problem (7).

Another form of perturbation usually used in convex optimization lies on
approximation in which one modifies no more the objective function but well
the set of constraints.

The developments of section (7.2) allow to obtain results related to this
method.

Consider the (OH)-type problem :

«Tofind Xe€ H suchthat (g + ¥.) (X)= inf (g + ¥) (x)».
xeH

It is known (see section 6) that solving this problem is equivalent to
searching for a zero of 3(g + ¥, ) (this operator being maximal monotone if

(dom g N C) # 9).
As, provided a relatively weak assumption on (g, C), i.e.

0 € core (domg — C)(®

(7) For a synthetic presentation of the penalization method, see P. Tossings [38], chapter VI.

(®) Recall that, for C < H, core C is defnined by
coreC = {ceC: VyxeH,Ie=0,Vre |-7 ¢l (c+Ax)eC} .
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(see S. Gowda and M. Teboulle [15]), we have
(g + ¥e)=0,+0%.,
we are led to solve the equivalent problem
«Tofind xe H suchthat —3g(Xx)€ea¥ (x)»,

that is to say a variational inequation in which A = 3g.

Provided 3¢ is Lipschitz continuous with modulus « = 0, the results of
section (7.2) are thus applicable to the approximation method in convex
optimization : it suffices to replace, as in the study of variational inequalities,
the hypothesis related to (B") by translated conditions related to (C”"). Note
still that, as in the previously mentioned section, if C" < C, Vrn € N*, then
the Lipschitz’s condition assigned to 8g can be reduced to « dg Lipschitz
continuous with modulus « = 0 only on C » (see remark (7.5)).

We recall here below criterions under which these Lipschitz’s conditions
hold.

Remark 7.6 : The global Lipschitz’s condition assigned to dg holds if
g is differentiable (in the sense of Fréchet), with Lipschitz continuous
derivative on H (for example. if g is quadratic on H).

As for the local condition, it holds if g is twice differentiable, with
continuous first derivative and second derivative bounded on C.

8. NUMERICAL TESTS

We present, in this last section, some numerical experience related to the
Tikhonov’s method adapted to the context of convex optimization (°). This
experience has been carried out on simple mathematical examples of convex
programming, whose theoretical solution x* was known. In these examples,
g denotes the objective function and the f,’s are the constraint functions
which have to be less or equal too zero.

Example 1 : In R?, with 4 constraints :

g(x) =max {x} +x3, 2—x,)’ + (2 - x)% 2exp(x, — x,)}

fix)=-x,-3
1

fz(x)le‘*‘i

300 =x- 3

(®) Our numerical experience is given for illustration : it has been realized with an IBM-
PC 286 and has to be improved thanks to material with greater capacities.
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fax) = —x, -4
ko 1 l . *k —_
x* = (—5,§>, g(x*) = 8.5.

Example 2 : In R2, with 3 constraints :

g@)=max {x} + x5, 2—-x)°+ 2 -x)% 2exp(x, — x,)}
Frx) = x,
fa(x) = x,
f3(x)=x1+x5—32
x*=1(0,0); g(x*)=8.
Example 3 : In R*, with 1 constraint :

4
gx) = flx[I*+ Y x + 10

fi0) = |x|* -1

; 1 1 1 1
x*=(_§’>‘§’_§’_§>; g(X*)=9.

Example 4 : In R*, with 3 constraints :

g =x2+x3+2x3+x3-5x,-5x, -2l x5+ 7 x4
flO)=2x24+x3+x34+2x—x3—x4—5
fr)=x}+B+3+x54+x —x+x3—x,— 8

f300)=xt+2x3+x3+2x3—x,—x,—10
x*=(0,1,2,—-1); gx*)=—44,

Example 5 : In R?, with 3 constraints :
2 2 1
gx) =x7+ x5 —x; — 5 %2

[ =x; +x;—1
falx) = —x
f3(x) = —x,

* = (%%) . g(x*) = —0.3125.

We use three types of penalization : exponential, classical exterior and
exact exterior penalization.
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Exponential penalization
The exponential penalties are defined by

m

¢"(x):$i; explr(n)g;(x)], VxeRY, VneN*, (8.1)

{r(n)} and {s(n)} denoting two sequences of strictly positive real
parameters satisfying

im U _ (8.2)
n—+ o s (n)
see, for example, F. Murphy [28], J. Hartung [16], J. J. Strodiot and V.H.
Nguyen [33], K. Mouallif and P. Tossings [26]-[27]).

Classical and exact exterior penalization

The classical exterior penalties have to be distinguished from the exact
exterior penalties (see, for example, P. Fedit[14], A. Auslender,
J. P. Crouzeix and P. Fedit [10], B. Lemaire [20]).

The classical exterior penalties are defined by

o) = KM $ [gr 0, VxeRY, VneN*,  (83)

2

and the exact exterior penalties by

cp”(x):k(n)igf‘(x), VxeRY, VneN*, (8.4)

i=1

+

a* denoting the positive part of the real number a

+

a” = max {0, a}

and {k(n)} a sequence of real parameters satisfying

Q) O<k(n)<k(m+1), VneN*,
(i) lim k(n) = + oo .
n— + 00

In order to obtain x, (n"'e N*) in (6.4)-(6.5), we exploit the procedure
Valg2 proposed by A. Auslender [9], with its second stopping rule.

Remark 8.1 : Procedure Valg2 being iterative, our program is twice
iterative. This explains its relative slowness. Using another minimization
procedure to obtain x, (n € N*) or, more simply, choosing another stopping
rule in Valg2, could improve the performances of this program.
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The advantage of Valg2 is that it has been conceived for solving strongly
convex but nondifferentiable optimization problems ; it is, therefore, particu-
larly well adapted to the Tikhonov's regularization method.

The stopping rule used to stop the external iterations is the following
classical one : if

||xn+1_xn“2 ”xn_xn—lll and ”xn_xn—lllsm (I’LEN*),

then x, is taken as approached value of x*. Note that, to avoid too long
work’s time, we have limited the number of iterations admissible for our
program : 100 external iterations and 100 000 added internal iterations.

The firts part of our table’s number refers to the treated example. We also
specify the nature of the used penalties, with the corresponding value of the
parameter(s), the parameters € and m which govern the stopping rules, the
rule used to construct the sequence (g,) appearing in our method and,
finally, the starting point choosen in the considered test to initialize Valg2
when it is called for the first time ; except specific mention, the sequence
(A,) has been defined by

A,=n"", VneN*.

As for the results, the first number of iterations represents the number of
external iterations ; the number put in brackets appearing for the number of
added internal iterations. The approached solution obtained by means of the
method is denoting by y. The « stops » due to the bound imposed on the
numbers of iterations are mentioned by the comment « Stopping on
overstepping the bound number of iterations ».

Comments

The comparison between the numerical tests presented here below and
those related to the proximal point algorithm, presented in [40], points out
the bad conditioning of the Tikhonov’s algorithm, due to the convergence of
the sequence (A,) to infinity. Effectively, the number of internal iterations
needed to compute an external iteration is generally greater in the Tikhonov’s
method than in the proximal one and, more far we go in the external
iterations, more sharp this problem becomes (the influence of the regulari-
zation term declines, in the Tikhonov’s method, at each external iteration).

In general, the number of external iterations needed to solve a problem is
also greater in the Tikhonov’s method (this fact being probably due to the
non-recursivity of the Tikhonov’s algorithm). The Tikhonov’s method is,
therefore, slower than the proximal one ; it is thus more affected by the
bounds imposed, in our tests, on the number of iterations.

Nevertheless, the results furnished by the Tikhonov’s method are often
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closed to those obtained with the proximal one ; they are even, for some
examples. quite hever (M),

Recall also (but we could not test this property) that, tor a problem having
several solutions, the Tikhonov’s method has a great advantage on the
proximal one : it converges, under appropriate conditions, to the solution
which is of minimal norm (in the proximal method, even when the
convergence is ensured, we do not know to which solution we go).

As for the choice of the penalties, of the penaltie’s parameter(s), of the
starting point and of the sequence (g,), the Tikhonov’s algorithm acts like
the proximal point algorithm :

— the exponential penalties lead more often to overflow-problems than
the exterior ones but, when they do not fail, they often furnish the solution of
the considered problem more rapidly ;

— the sequence {k(n)} in the external penalties has little influence,
provided it do not tend too far to infinity ;

— the influence of the sequences {r(n)} and {s(n)} in the exponential
penalties is sharper but it is not as sharp as in the proximal method (1!) ; this
fact aillows, in some cases, the Tikhonov’s method to work better than the
proximal one : the Tikhonov’s algorithm works longer and leads to a result
more closed to the solution of the considered problem ;

— the starting point « yg » has less influence on the Tikhonov's method
than on the proximal one (this is probably due to the nonrecursivity of the
Tikhonov’s algorithm : in this context, « y, » acts only in the first application
of the Auslender’s subroutine) ;

— the sequence (g,) is not fundamental but to choose a very small
£ to construct this sequence sometimes leads to an overflow-problem.

Let us consider, to conclude, the influence of the sequence (A)).

In all our tests, we construct this sequence with one of the following rules :

A,=n"(c=0), VrneN*,

or

>
I

a=c"(c=1), VneN*.

To avoid the sequence to tend too rapidly to infinity and, as a consequence,
to avoid problems connected with the bad conditioning of the Tikhonov’s
method, we only assign to ¢ values closed to 1.

So, we obtain good results, little dependant of the sequence (A ,,) and of the
parameter c.

(19) This is probably connected to the differences between the conditions imposed on the
parameters in the two methods, to ensure there convergence.

(!)) Recall that, in the proximal method, an inadequate choice of these sequences leads
rapidly to an overflow-problem.
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It is, however, possible that other choices could leave to better results or to
obtain the results more rapidly.

Table 1.1
Classical exterior penalties : k(n) = 2"
Parameters D g, = %
Starting point : y,; = 0
P Yo2=0

Value of the function at this point : 8

Number of iterations : 13 (100001)

(Stopping on overstepping the bound number of iterations)
Approached minimizer : y; = — 4.99385836080259E — 0001

1 ¥, = 5.00362152481211E — 0001
Value of the function at this point : 8.49584323130940E + 0000

Table 2.1
Classical exterior penalties : k(n) = 2"
Parameters D g, = %
Starting point : y5; =0
" Y02=0

Value of the function at this point : 8
Number of iterations : 13 (100001)
(Stopping on overstepping the bound number of iterations)
Approached minimizer : y; = 4.88158196706397E — 0004

1y, = 4.88158196706397E — 0004
Value of the function at this point : 7.99609521102320E + 0000

Table 2.2
Exact exterior penalties : k(n) = 2"
Parameters P g, = ;
Starting point : y,; =0
P Yp2=0

Value of the function at this point : 8

Number of iterations : 3 (100001)

(Stopping on overstepping the bound number of iterations)
Approached minimizer : y; = — 4.50408306099685E — 0004

1y, = 4.50452995581059E — 0004
Value of the function at this point : 8.00000022701762E + 0000
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Table 2.3

Exact exterior penalties : k(n) = 2"
&

Parameters g, = —
2n

Starting point : yy; = 1
Yo =1

Value of the function at this point : 2

Number of iterations : 3 (100001)

(Stopping on overstepping the bound number of iterations)
Approached minimizer : y, = 4.96337361453431E —~ 0003

1y, = 6.23573938615096E — 0006
Value of the function at this point : 7.98014619770084E + 0000

Table 2.4
Exact exterior penalties : k(n) = 2"
Parameters | : &, = —
2”
Starting point : y5; = — 1
Yo =1

Value of the function at this point : 18

Number of iterations : 3 (10001)

(Stopping on overstepping the bound number of iterations)
Approached minimizer : y; = 4.14277697556338E — 0003

1y, = 4.48190820975048E — 0003
Value of the function at this point : 7.98342812708606E + 0000

Table 3.1
Exponential penalties : r(n) = (1.12)"

s s(n) = (1.11)

£

Parameters g, =—
2’1

DA, = 105
Starting point : y;,, =0
" Y,2=0
" Y3=0
D Y04=0

Value of the function at this point : 10
Number of iterations : 57 (23701)
Approached minimizer : y, = — 4.96223747627967E — 0001

Dy, = —4.96223747627967E — 0001
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o
p—
()

Y3 = — 4.96223747627967E — 0001
Ty, = —4.96223747627967E — 0001
Value of the function at this point : 9.00005704032791E + 0000

Table 3.2
Classical exterior penalties : k(n) = 3"
Parameters t g, = £
271
Starting point : y5; =0
tY02=0
“Y3=0
* Yo,4 = =0

Value of the functlon at this point : 10
Number of iterations : 52 (9370)
Approached minimizer : y, = — 4.96713386468074E — 0001
t Yy, = —4.96713386468074E — 0001
1 y3 = —4.96713386468074E — 0001
: ys = —4.96713386468074E — 0001
Value of the function at this point : 9.00004320731403E + 0000

Table 3.3
Exact exterior penalties : k(n) = 3"
Parameters T, = %
Starting point : yp; =0
tY02=0
“¥,3=0
P Yo,sa =0

Value of the functlon at this point: 10
Number of iterations : 31 (4059)
Approached minimizer : y, = — 4.94138812868472E — 0001
Ty, = —4.94138812868472E — 0001
T y3 = —4.94138812868472E — 0001
t Y4 = —4.94138812868472E — 0001
Value of the function at this point : 9.00013741405836E + 0000

Table 3.4

Exact exterior penalties : k(n) = n'/?

&
Parameters g, = —

n 2"
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Starting point : y5; =0

P ¥,2=0
P Y3 =0
P Y,4=0

Value of the function at this point : 10
Number of iterations : 31 (4101)
Approached minimizer : y; = — 4.94138812524675E — 0001
Ty, = —4.94138812524675E — 0001
1 y3 = —4.94138812524675E — 0001
1y, = — 4.94138812524675E — 0001
Value of the function at this point : 9.00013741407448E + 0000

Table 4.1

Exponential penalties : r(n) = (1.155)"
cs(n) = (1.154)

&
Parameters e, =,
n

Starting point : y5; =0

P Y2=0
P Y,3=0
P Y4=0

Value of the function at this point: O
Number of iterations : 14 (39822)
Approached minimizer : y;, = 2.20925356547725E — 0002
: ¥y, = 1.00385137929706E + 0000
1 y3 = 2.01537047207806E + 0000
Ty, = — 9.68119279747765E — 0001
Value of the function at this point : — 4.41604375555169E + 0001

Table 4.2
Classical exterior penalties : k(n) = 2"
Parameters Dg, = £
n
Starting point : y5; =0
o2 = 0
P Yo3=10
- Yo,4 = =0

Value of the functlon at this point: 0
Number of iterations : 7 (100001)
(Stopping on overstepping the bound number of iterations)
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Approached minimizer : y, = 8.21756116317695E — 0003

1 ¥, = 9.90894206582370E — 0001

1 y3 = 2.00217167624590E + 0000

DYy = —9.99138453007312E — 0001
Value of the function at this point: — 4.40375338633924E + 0001

Table 4.3
Classical exterior penalties : k(n) = 2"
Parameters DE, = £
27l
Starting point : yg; =0
" Y,2=0
" Y,3=0
*Y0,a=0

Value of the function at this point: O

Number of iterations : 7 (100001)

(Stopping on overstepping the bound number of iterations)
Approached minimizer : y, = 8.21756116317695E — 0003

1 Y, = 9.90894206582370E — 0001
1 y3 =2.00217167624590E + 0000
DYy = —9.99138453007312E — 0001
Value of the function at this point : — 4.40375338633924E + 0001

Table 5.1
Exponential penalties : r(n) = (1.2)"
ts(n) = (1.19)

£
Parameters D=
n

Starting point : yy; =0
“,2=0
Value of the function at this point: O
Number of iterations : 45 (6131)
Approached minimizer : y, = 4.96255471231169E — 0001
1y, = 2.48127735615585E — 0001
Value of the function at this point: — 3.12482473130374E—0001

Table 5.2

Exponential penalties : r(n) = (1.2)"
:s(n) = (1.19)
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Parameters s = 2
n n3

A, = (0.23)
Starting point : y5; =0
*Y02=0

Value of the function at this point: 0
Number of iterations : 10 (21)
Approached minimizer : y; = 7.90325909451800E — 0006

Ty, = 5.99613047395415E — 0006
Value of the function at this point : — 1.09012259164101E—-0005

Table 5.3
Classical exterior penalties : k(n) = (1.3)"
Parameters Dg, = £
2/1
Starting point : y,, =0
P Yo2=0

Value of the function at this point : O
Number of iterations : 24 (2995)
Approached minimizer : y; = 4.92180237711415E — 0001

1y, = 2.46090118855708E — 0001
Value of the function at this point : — 3.12423564147188E—-0001

Table 5.4

Classical exterior penalties : k(n) = 3"

Parameters L E, =

!lm

Starting point : yo; =0
: Yo =0
Value of the function at this point: O
Number of iterations : 24 (3052)
(Stopping on overstepping the bound number of iterations)
Approached minimizer : y; = 4.92180237486568E — 0001
1y, = 2.46090118743284E — 0001

Value of the function at this point : — 3.12423564142792E~-0001

Table 5.5
Exact exterior penalties : k(n) = (1.3)"
Parameters D g, = i”

DA, = ims
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Starting point : yo; =0
“Y¥2=0
Value of the function at this point: O
Number of iterations : 26 (3442)
Approached minimizer : y; = 4.91629129961810E — 0001
: y, = 2.45814564980905E — 0001
Value of the function at this point : — 3.12412410668505E—0001

Table 5.6
Exact exterior penalties : k(n) = 3"
Parameters Tg, = £
2'1

AL = nI.OS

TA,=
Starting point : yg; =0

" Y0,2=0

Value of the function at this point : O
Number of iterations : 26 (3442)
Approached minimizer : y; = 4.91629129961810E - 0001

1y, = 2.45814564980905E — 0001
Value of the function at this point: — 3.12412410668505E—0001
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