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REACTIVE TRANSPORT THROUGH AN ARRAY OF CELLS WITH
SEMI-PERMEABLE MEMBRANES (*)

by U. HORNUNG ('), W. JAGER (?), A. MIKELIC (3)

Communicated by R. TEMAM

Abstract. — A problem of diffusion, convection, and nonlinear chemical reactions in a
periodic array of cells is studied. It is assumed that in the cells there are porous bodies which
are surrounded by semi-permeable membranes, i.e., fluxes and concentrations are coupled
nonlinearly at the interfaces between the cells and the surrounding fluid. We consider the limit
when the number of cells tends to infinity and at the same time their size tends to zero while the
volume fraction of the cells remains fixed. In the limit we get a nonlinearly coupled problem with
two scales, a global and a local one. We prove well-posedness of the micro-problems,
uniqueness of the macro-problem, and convergence of the homogenization process. In order to
determine the form of the limit equations we use the newly developed technique of two-scale
convergence. Other methods being used are the theory of semilinear parabolic systems,
maximum principles, compactness, monotonicity, and the energy method.

Résumé. — On considére la diffusion, la convection et les réactions chimiques nown linéaires a
travers un arrangement périodique de cellules. On suppose que chaque cellule contient des
corps poreux entourés de membranes semi-perméables, c’est-a-dire qu’il y a liaison non
linéaire entre les flux et les concentrations sur les interfaces. cellules-fluide. Nous considérons la
limite, quand le nombre de cellules tend vers U infini et en méme temps lorsque leur volume tend
vers zéro, tout en conservant la méme fraction de volume. Notre probléme initial se comporte a
grande échelle comme un probléme non linéaire ou interviennent deux échelles d’ espace, — une
échelle globale et une échelle locale. Nous démontrons I’ existence d'une solution qui satisfait le
principe du maximum a € fixé. Lorsque le paramétre & tend vers zéro, on obtient la convergence
du processus d’ homogénéisation vers une solution « homogénéisée » unique. Pour déterminer
la forme des équations limite, nous utilisons la technique de convergence a deux échelles.
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1. INTRODUCTION

Mathematical modeling of reactive flow through porous media is of great
practical importance in many physical, chemical, and biological applications.
There is a need for deriving macroscopic laws for the processes in these
geometrically complex media including flow, diffusion, convection, and
chemical reactions. Homogenization is providing techniques to pass from
microscopic models to macroscopic ones letting the proper scale parameter
£ in the system tend to zero. Formally, the macroscopic model equations can
be obtained by multiple scale expansions and averaging. It is the « zero
order » approximation of the original model system. The macroscopic
description does not cause problems with solving, e.g., nonlinear partial
differential equations in complex domains. However, one has to pay for this
simplification by being forced to describe the local structure of the medium
and to solve additional equations formulated with respect to microscopic
variables in a standard cell. For simplicity, it is assumed that the medium is
composed periodically of standard cells of size ¢. Let us assume that such a
cell is a cube which is split up into a solid part (for instance a ball) and a fluid
part. We assume that we have Stokes flow of a fluid in the fluid part.
Substances are diffusing and reacting in the fluid and in the solid part. They
are transported by the flow in the fluid part.

The following examples for real applications should be kept in mind : 1)
The solid part is a ball of a material which is porous itself. The substances are
chemical species diffusing and reacting inside and outside of the balls. At the
boundary of the balls there is a change of material properties, expressed by a
jump of the coefficients in the equations and by — in general — nonlinear
transmission conditions. If there is no reaction taking place, one has the
situation of a chromatograph used for the separation of chemical substances.
In case of a porous catalyst the reactions are important. They may also just
take place on the surface of the balls, e.g., if the catalytic particles are
concentrated on the surface of the solid part. 2) The solid parts are biological
cells separated by a membrane from the fluid part. In this case the
permeability of the membranes which are porous media themselves plays an
important role. The fluid outside of biological cells is the extracellular fluid
transporting nutriants, activators, and inhibitors for development of the cells.
Again, in this case also processes on the cell surfaces and flow inside of the
cells are of interest.

Homogenization leads to mathematical results, such as to a macroscopic
limit of the microscopic system when the model parameter ¢ (e.g., radius of
the ball) tends to zero. In case of a model for a chromatograph, this limit
process was also rigorously justified (see [36]) and the validity of the model
was experimentally tested (see [32]). The results show that the model
equations obtained by homogenization in the case of a periodic structure are
describing the experimental results very precisely, see also [33].
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REACTIVE TRANSPORT THROUGH AN ARRAY OF CELLS 61

In this paper we consider a periodic structure, diffusion, transport and
nonlinear reactions in the fluid part, diffusion and nonlinear reactions in the
solid part. On the interface between the fluid and the solid part, we assume
continuity of the flux and additional — in general nonlinear — transmission
conditions. '

The case of reactions and diffusion on the surface of the solid part was
studied in [19] and [20]. The formulation of the model equations and
especially of the transmission conditions is kept rather general in order to
include important applications. The main mathematical work to be done
consisted in solving the model equations of the micro-process and estimating
the solutions in proper norms uniformly with respect to &. Then the
convergence result of the microscopic solution towards a macroscopic
solution is obtained. Here, we have used the only recently developed notion
of two-scale convergence coupled with monotonicity methods and compen-
sated compactness. The energy method and the div-curl-lemma are being
used as standard arguments in this framework. It seems not to be known how
one could obtain the new results without the concept of two-scale conver-
gence. In our knowledge, this is the first time that convergence of the
homogenization procedure is proved for problems whith nonlinear reactive
terms and nonlinear transmission conditions.

For a survey on homogenization applied to flow, diffusion, convection,
and reactions in porous media see the papers [18]. Problems of related type
were investigated in various papers. Two-phase flow was studied in [5], [8]
and [9]. Miscible displacement problems were studied in [27] [24] [1] [16]
and [17]. General textbooks on the method of homogenization are [7], [6]
and [30].

The important features of the micro-model (section 3) can be described as
follows. In the fluid part {2 ° there is a fluid flowing according to the Stokes
equations (equations 1). The concentrations of the various chemical species
in the fluid part {2 ° and the solid part II° are v/ and wy, resp. The variables
vj6 satisfy equations with diffusive, convective and reactive terms in the fluid
part £2°, whereas the variables w/ satisfy equations with diffusive and
reactive terms in the solid part I7° (see equations 1). The transmission
conditions on /"¢ — the interface between the fluid and the solid part — are
both the continuity of the normal mass flux and a second condition of special
type. Here we consider six different cases : conditions of 1) Dirichlet type, 2,
3), 4) Neumann type, and 5), 6) of Signorini type. In case 5), e.g., the
transmission condition is

s=0 and ¢g=0 and sq=0

where s = a; U] ~w; is a weighted difference of the concentrations in the

fluid and solid part, resp., and ¢ = — ec; ¥ . Vw/ is the mass flux in normal
direction. It must be emphasized that the essential point in formulating the
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62 U. HORNUNG, W. JAGER, A. MIKELIC

micro-model is the proper scaling. The only criterion for the proper choice of
the scale parameter and its powers are measurements, calibration and
validation of experimental data. It turns out that the transmission conditions
of the micro-model appear in almost the same form as boundary conditions of
the local problems in the macro-model. Problems with some similarity to this
one were described in [15] and [14].

2. NOTATIONS AND ASSUMPTIONS
2.1 The Geometry of the Problem

First we define the geometry of the problem.

: macro space variable

: micro space variable

: time variable

: end of time-interval

: bounded domain in R”

: [0, T] x £2 = time-space-domain

QO xY

2 x I’

: I'y U Iy = piecewise smooth boundary of £, I'y, N 'y =@

: (0, 1)" = unit cell in R”

: open subset of Z (with clos (Y) < ker (Z)) = representative cell
: Z\Y = representative pore

: 3Y = 39X = piecewise smooth boundary of ¥ and of X

: outer normal on 3{2 with respect to {2

: or inner normal on I with respect to Y

€; : i-th unit vector in R”.

For any'subset = of Z and integer vectors k = (ky, ..., k,) € Z" we denote the
shifted subset by

vy NN 3>Q©bﬂf“<k

[y
x~

I

Iy

+
M =
Kan
al

il

Let
r* = U {I‘k:ke z"} .

We assume that a scale factor € > 0 is given. Then the geometry within {2 is
defined as follows :

e : U {e¥: Y < 2, ke Z"} = ensemble of cells
R? : [0, T x IT®
n° : 2\JT* = ensemble of pores
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REACTIVE TRANSPORT THROUGH AN ARRAY OF CELLS 63

o [0, T] x £2°¢
re 2l = {el*: eT*c 2, ke Z")
: ensemble of the membranes

v : inner normal on I'® with respect to II°
: outer normal on I"® with respect to {2 °
1, xen2°
x(x)= { - : .
0, x € IT? : characteristic function of 2 °

2.2 Nonlinearities
For j =1, ..., m have

f; :R™ > R = reaction rate in the pores

g; : R" > R = reaction rate in the cells .

We are going to choose conditions on the functions f; and g; such that we get
L”-estimates and non-negativity of the solutions v; and w; (see proposition 3,
theorem 1 and proposition 5). Any other type of conditions giving e&-
independent uniform bounds in the same class of functional spaces would
also do.

We assume that for given positive constants C; and C}' = a; C;(j € J)
there are constants Aj, Bj = 0 such that

fiG)=-A;z;+ f,G) Vie [0, C}1"
and g;(Z) = - B;z; +§;(Z) VZ € [0, C}]™
where
f;Z)=0and §,Z)=0 VZ e R” with Z=0,

A= F,G) Vi eR" with 0=z, <C} VielJ,
Cj

and

B,.;%gj(z) VZeR™ with 0<z, <ClVielJ.
J

We extend the functions f; and g; to all R™ in the following way. Let
i@ =f;,G"), 9,G) =g;G%)

vol. 28, n° 1, 1994



64 U. HORNUNG. W. JAGER, A. MIKELIC
with
0, if z, <0
£ =1z, if0=<z,<C},

v 3 v
Ck’ lek>Ck

and the zZ° being defined analogously.
The sets M; c R? are defined by one of the following conditions,

s =0 , case 1
qg=0 , case 2
s, q)eMj i q =bjsf , case 3
q:—bjsA , case 4
s <0 and ¢=0 and s¢q =0, case5
s =0 and ¢g=<0 and sq =0, case 6

where b; are positive constants. The lower plus denotes the positive part

s = {s, s=>0
* 0, else

and s_ = (—s),, hence s =5, —s_. We also use the sets N; = R defined
by

s =0, casel

seN. iff s € R, cases?2, 3,4_
J s=<0, case 5
s=0, case 6

We assume that the index set J = {1,..,m} is given as the union
J=J,U ... UJgof subsets J,, ..., Jo. We shall also use positive constants
a; in the micro-model which later will assumed to have the value 1.

2.3 Unknowns of the Micro-Model

u:0°-R" : velocity of the fluid

pf:N° SR : pressure within the fluid

vi : [0, T] x 2° > R : concentration of the j-th solute in the fluid
w;i: [0, T] x II®* - R : concentration of the j-th solute in the cells.
We use the vectors ¢ = (v}, ..., v5) and w* = (W5, ... wh).
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2.4 Data of the Micro-Model

up: I'p—R" : prescribed boundary values of the fluid velocity
v p: [0, T] x I' - R : prescribed boundary values of the concentration of
the j-th solute

v, ;: 2 >R : initial concentration of the j-th solute in the pores
w2 >R : initial concentration of the j-th solute in the cells
d; : j-th diffusion constant in the fluid
¢; : j-th diffusion constant in the cells.

Assumptions :

iip € (H%(r))”, J 7.ipdl =0,
Tp
v, € H*(Q%), w; € H*(II°), a; v;; — wj; € Nj, vy | p) = v;p(0) Vj e,
O<v;;,<C/,0=<w; ;<C}, and C]=aq;C} VjelJ.
We use the functions

. - - 2 . —
vj[ = dl Avjl + fj(vl), Wf[ = £ Cj AW}I + g](UI)

and the vectors b; = (U 7, ..., Uy, p) and wy = (Wy ;, ..., Wy, 1).

2.5 Unknowns of the Macro-Model

i:02 S5 R” : velocity of the fluid

p:2-5R : pressure in the fluid

v;:@-R : concentration of the j-th solute in the fluid
w;:Q x I' 5 R : concentration of the j-th solute in the cells.
We use the vectors ¥ = (vy, ..., U,) and w = (wy, ..., w,,).

2.6 Auxiliary Functions of the Macro-Model

Forj=1,.,nlet & = («}, ..., «/): X - R" and w;:X - R be the Z-
periodic solution of the cell problem
Ay;?j(y) =Vym; - Ej, yeX
Vy-'?,(Y)=O ,}’GX
R()=0 ,yerl.
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66 U. HORNUNG, W. JAGER, A. MIKELIC

Then the elements K;; of the tensor K are defined as
Kij = Jx ki (y)dy.

It is well known that K is a symmetric, positive definite matrix (see, e.g.,
[31D).

Let forj = 1, ..., n the function A j :X >Rbea Z-periodic solution of the
cell problem

{Ay/\j(y)zo ,yeX
V.V A Q@)=—V.e;, yeTl.

We extend A; into Y such that 4A;(y) =0, yeY. The elements
D;; of the tensor D are defined as

D;; = |X| 8, + J 9;A,n)dy,
X
where §;; is the Kronecker-6. An equivalent definition is

Dz = [Vy;,bzdy Vze R",
Jx

where wu, solves

{qurz(y)zo ,yeX
v.Vu,(y)=0, yerl

such that u, — z . y is Z-periodic, hence Aj o) = ;sz(y) —y; (see [12]). Here
and in the following we use the abbreviations

1| =f dy, Y] =de_»
X Y

Furthermore, D is a symmetric, positive definite matrix (see, e.g., [12]).
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2.7 Function Spaces

We introduce the Hilbert spaces

Vi={peH' (2% : 9 =0o0nI,}" x (H (II°))"
V={eeH )¢ =00nTpH}"

W = L*(2;H X))

H® = (L2(25)" x (L>UT%))"

H:=L%0, T;H)
¥ =L*0,T;V")
v =L*0,T;V xW).
We use the convex sets
K= {(§,4):6e {peH (2:9=00nT,}",
¥ e (H'(I*))", anda; ¢; — ¢; e Nyon I'* eJ}
and
K= {(¢,0):¢€V,deW,p;=00nT)
and a; ¢; —c;eN;onA Vjel}.
We also use the convex sets
H = {((Z, J)e v (e, z,l_/.)ng a.e. on (0, T)}
and

A = {(3,4)e ¥V : (§, ¥)eKae. on (0, T)} .

3. THE MICRO-MODEL

3.1 The Strong Formulation

Written in strong form, the problem is to find functions x°, v*, and
w? that satisfy the following system of equations.

The flow :
e? Auf(x) = Vp*(x), xe 2°
V.u(x)=0 , xeN°
B(x) =0  xerl*. 1
U (x) = ip , xe Iy
ux)=0 , xe 'y
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68 U. HORNUNG, W. JAGER, A. MIKELIC

The reactive transport :
PROBLEM 1 :
3, (£, x) =d; Av; (1, x) — u(x). Voi(t, x) +fj(155(t, x)),t=0,xe2°
dqwi(t, x) = ec; Awi(t, x) + g;(W(t, x)) ,t=>0,xell*
4 . Vui(t, x) = e%¢c; ¥°. VWi (1, x) ,t=0,xerl*

(@; v (t, x) —wi(t, x), — ec; v* . Vwi(t, x)) € M; ,t=>0,xel°*

Vi, X) = V), p(t, X) t=0,xel,
5. Vo, x) =0 t=0,xel,
vi(t, x) =v; ;(x) ,t=0,xe ¢
wi(t, x) =w; ;(X) ,t=0,xell".

For simplicity of the proofs, and in order to avoid too many technical
difficulties, we assume homogeneous Dirichlet boundary conditions for the
concentrations, i.e. v; p, = 0.

3.2 The Weak Formulation

PROBLEM 2 : The weak problem for problem 1 is to find functions
@°, w e A ° with (v], w))e L®(Q°) x L°(R®) and vj=0, w;i=0,
(8,05, 3,wf) € L*(Q°) x L*(R®) such that
2 (U], ;= Vi)gr + W], t; — W) )
jeld

+d;(Vof, V(e — V]))gr + £2¢; (YW, V(i — wi) e

+ W VoE, 0 — v — (f; (B, @) — v )gr — (g;(W%), ¥ — Wi )ge)

T
+ 2 | &b ] =W, @) — V] — i+ wi)pedt —
jeis; vO
T
— 2 | &g o] —wi) , ¢; =] — ¢+ w)r-dt =0
jedy YO

V(G, y)e X (2)
with (B°, w¥)|,_o = (¥;, w;) holds.

In this paper we are going to study the situation « U » in which
J3=J, =40, i.e. we are primarily interested in the problem of unilateral
boundary conditions. The situation « N » in which J5 = J5 = @ is used as a
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REACTIVE TRANSPORT THROUGH AN ARRAY OF CELLS 69

regularization or penalization of the situation « U ». Since the set " © is a
cone, in the situation « U » an equivalent formulation of the variational
inequality 2 is the inequality

z ((atvjs’ @j)QF + (atwjga d/j)RE
jel
+d; (YU, Vo, )pe + €7 ¢;(Vw), Vi, Jge
+ (ﬁg-vvf, ®;)or — (fj(ﬁe)s ®)ge — (gj(‘v—{/g), Yir)=0
V(E, d)e A (3)

together with the equality

Z (@], V) + (BW], W) )ge +
jed
+d; (Yo}, Voi)e + €2 ¢;(Vw), Ywi e —

- (fj(as): DjE)Q’ - (gj(ws), Wf)R’) =0, @4
where the convection term with %#° has dropped, since u° is divergence free.

In the situation « N » the set " °is a linear space ; therefore instead of the
inequality 2 we get the variational equation

Z ((atvjs, ®;)or + (Qw;, ¥, g
i€l
+d; (Vo Vo;)gr + & ¢; (Vw], Vi )ge
+ @ Vui, @;)gr — (fj(ae), ®;)gr — (gj(‘x’g), ¥idre)

T
+ Z f Ebj((aj Ujs"Wje)“ P~ ‘/’j)r‘dt“

jel3 v0

-2

jely

T
€ £
. eb;i((a; v; —wi)_, @; — ¥;)pe x

xdt=0 Y(@, ¢)e X, (5

4. THE MACRO-MODEL
4.1 The Strong Formulation

The strong form of the problem is to find functions #, v, and w that satisfy
the following system of equations.
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70 U. HORNUNG, W. JAGER, A. MIKELIC

The flow :
ulx) = —KVp(x),xe.()
V.ux) = ,x€ N ®)
D’.ﬁ(x)_u,,D(x) xeFD
7.d(x)=0  ,xely

PROBLEM 3 : The global problem :
[ 1X] 8,0;(1, x) + S;(t, x) = d; V.. (DVv,(t, x)) -
—u(x).Vo(t, x)+ |X| ;@ (¢, x)), t =0, xe 2

vj(t,x):vj,u(t, Xx) ,t=0,xel,
v.Vu;(t,x)=0 ,t=>0,x€e 'y
v(t, x) =0; ;(x) ,t=0,xe N

where the sink terms
Sj(t,x)z—J C; v Vowi(t, x, y)dI'(y), t =0, x € 2
r

are defined in terms of the local problems :
ath(l, X, )’) = Cj Aij(l, X, )’) + gj(;.v([, X, }’)) >
t=0,xef,yeY
(@jv; (¢, x) —w;(t, x,y), —¢j v Vit x, y)) €M,
t=0,xe 2, yerlI
wi(t, x,y) =w; ;(x) ,t=0,xe R, yeY.

4.2 The Weak Formulation

PROBLEM 4 : The weak problem for problem 3 is to find functions
(@, wye A withv e L*(Q), we L*(U), v;=0, w;=0, 3, € L*(Q) and
dw; € L*(U) such that

jedJ
+ (’:Z-VUjs ‘P_,')Q— |X|(f,(a), ‘Pj)Q)= 0 VgeV, (1
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REACTIVE TRANSPORT THROUGH AN ARRAY OF CELLS 71
and

2 (@wy, o= wy + ¢;(Vyw;, V(0 —w;))y —
jeJ

T
—(g; %), o —w)y) + Y f b;((a;v; —w;),, o, —w;)pedt +

jes ¥0

T
+ Z bi((a; v; —w;)_, o —w;)redt
jedy vO

P &)
=0 VYo with (V,0)e A

where (B, w)|,_q = (@, w;) hold.

5. EXISTENCE FOR THE MICRO-MODEL

Here we treat only the situation « U », since the other cases are simpler.
Without loss of generality, we can assume a; = 1. This can be easily
achieved by renaming a; v; by v; ; of course one has to redefine the nonlinear
functions f; appropriately. We start by introducing the following linearized
problem.

PROBLEM 5 : Let
®=F, G)= Fpy s F oy Gpy ey, Gy € (LZ(O))" x (LP (R
be given. Then we look for functions
Y= (@ B)=(ap, s ap By Bl X
with.ataj, 3,8;€ L?(Q) such that the variational inequality

Z (3, @) + (3.8, ¥)re +
jel
+d(Va;, Vo) + €2 ¢;(VB}, V¥ )r
+ @ .Va,, ¢)g+ (Aja; —F;, ¢;)g+ B; B; — Gj, ¥;)pr) =0
V(d. ¥ e A" (9

with (&',E)|,=0= (b;, wy) holds and an equality for ¢; = a; and
¥ =B
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72 U. HORNUNG, W. JAGER, A. MIKELIC
Now we introduce the linear operator E°: V* - (V°)' by
(E*(@, B), (&, ¥ NDwey,ve =
=Y @(Va;, Voo + e ¢;(VB), V¥ )
jeJ
+ (U Vay, @)gc+ (A5 @), 0))oc+ B By ¥)r)
V(& B), (&, ¥)eV:. (10)

This operator E° is a continuous and coercive linear operator; the set
K® is a closed convex subset of V° and hence Iy is a convex lower
semicontinous function on V¢ ; further, @ is an element of the Hilbert space

H*®. Using these notations we can reformulate problem 5 in the following
abstract way.

PROBLEM 6 : Find a function y € A ¢ such that

(i‘y+E57,8—y) = (&, 8 —y)paeon©T) V6eX?
dt Ve, ve

with y|,_o = ;-

Here we have used y; = (¥;, w;). We prove the existence of a solution for

this problem in two steps; first we show that there is a solution of the
following weak version of problem 6. For this we introduce the operator
E°:V 5 (¥ °) defined by

T
(v, )y, ye = f (E® v, 8)yey,yedt.
Jo

PROBLEM 7 : Find a function vy € X © such that

d 1 2
— 6 +&Fy, 5 — = (D, 6§ — ——|6(@) - .
(Go+evo—v) =« Ve =5 180 = 7}

V6 e A with %a e (VoY
and v|,_o = @, wp).
PROPOSITION 1 : Let Y, € I_(EH (:(;losure Ong in H‘) and let ® € ('V S)I‘

Then there exists a unique solution y € C ([0, T]; H®) of problem 7.

Proof : The existence is a consequence of Corollaire II.1 in [10] page 77
applied to the evolution triple V* < H® < (V*)’. The uniqueness follows from
[22] pages 268-270. Q.E.D.
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PROPOSITION 2 : Let v, € K* and ® € # °. Then there exists a unique
solution y € C ([0, T ; V?®) of problem T such that % vy e H°-

Proof : This result follows from Corollaire I1.2 in [10] page 92 in the

-

following way. We take the weak solution ¥y = (a, B) from proposition 1.
Then we define the selfadjoint operator

(5@, B)., (b, W) wrey, ye= (EE, B), (&, ¥)iyrey, v —
T
4J (Ijt'e.Vaj, (Pj)ﬂfdt
0
and the new force term
&= (F,—u.Vay, .., F,—i.Va,, Gy ..., G,)

and apply Corollaire 11.2. Q.E.D.

PROPOSITION 3 : Let

1Fill e, <A; €] and ||Gj|l wpe<B;C} VjelJ.

Then the solution y = (a, B) in proposition 2 satisfies
a;<CjaeonQandpB;<C}ae onR".

Furthermore, ifFjBO and G; =0, then a;=0 and B; =0 Vjel.

Proof : We restrict ourselves to the case j € Js, since the other cases are
similar. The variational inequality 9 is also valid for [O, ] x £2° and
[0, ¢] x I instead of Q° and R®, resp. Let & = (a; —Cj), and

Bj=(B;—C}),. First we use the test functions ¢; = a@; — &, and
;= B; — B; for the inequality and ¢; = a; and ¢; = B, for the correspond-
ing equality. By subtracting the two we get

l -—
Z J ((azajs &j)!)‘ + (a;,Bj, ,3,')17') dr <

jesvo

1
= - 2 JO (@ .Va;, a@)p:—
jeJ

— (Aja;~F;, a)g— B;B; — Gj, Bj)y)dr .
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From this we have

l t d o7 3 2 £ -

331G (el + 18]5) + 6 via ) ar <
jeJ

=Y | ((Aje;—F,, &g+ (B; B; —Gj, Bj)p)dr .

jes vo

By integrating over [0, 1] we get

l& 15+ |80, < 18O+ 8,0

2
II‘:O

because of the assumptions on F;, G, ¥,, and w,. Hence we get the upper
bounds for a; and B;. In order to prove the non-negativity, we use

a@; = (a;)_ and B; = (B;)_ and plug the test functions ¢; = — &; and

;= — B ; into the variational inequality 9 and get

et

5 J (@), @)y + (3,8, By dr +
0

j€J

t
+ Z . (@*. Va,, @) — (A a; —Fj, a;)g-—

jeJ
~ (B;B;— G, Bj)ge)dr <0.

Using @;(0) = (v;;). =0 and B;(0) = (w;;). =0 we conclude

3 T (15015 + [8,0l,) <

=% | (alal+ 58]

jedJ

2 _ —_
P~ (Fp @)g— (G, 3,)Hr> dr .

Since Fj, G; =0, Gronwall’s inequality yields &; = Ej =0. Q.E.D.
THEOREM 1 : The micro-model problem 1 has at least one solution.
Proof : We cbnsider the mapping ¥ : # ° - C ([0, T]; ¥ ) defined by

D =F,G)>%(P)=1v =(a, B) according to theorem?2. From

theorem 3 we get the following estimates

=C, +C2”‘p”#‘,

<C+Col| Pl

I «Q; HL°°(0, T;L}(2%))
|| :31’ HLw(o, T; L2UI%))

“ a; ”Lz(oyT;Hl(ﬂ")) = Cl + CZH @ ll;f‘,
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and
Hﬁj ”Lz(o,T;Hl(ns))s Ci+Chll® [lx
We also have
]l gry =< €5
and

“Bj”L‘m(Ré)s C3 .

The smoothness of ii° enables us to also get the estimates

da, <C,+Cy| 2],
dt |l *
and
dﬁj
— =sC,+C,|® ..
H @ |lzw, =€ 2Pl

All these estimates imply that the mapping ¢ maps a ball of radius r in
¢ into a ball of radius max {C; + C,r, C5} in the space

W= {7 = (@ B)e ¥ a, e L7(Q), B, e L7(R), L e f} :

which is compactly imbedded in ¥"°.
For a given y we define

Fy)=®=(F,G)=(Fy, ... F,, Gy, ..., G,))

by F; = fj(a) and G; = 7;(8) Vj € J. We also define & (v) by
fi if |a|<sC and jSz g, if la|=<C

F¢ =
T e G it | =C
fi if |a|=C gi i |a| =

where
ff =max {fj(a): |a| =C} and §F =max {§j(a):|a|=<C}.

Then the mapping ¢ o & € maps a bounded set in J# © into a compact set in
M ¢, It remains to check that ¢ o & € is continuous. Let ¢* be a sequence
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converging in # € to ¢ and let v =% o & C(¢%). Then we can extract a
subsequence yk‘ converging weakly in # and strongly in 3 ° to some

v, where W = {vy e "I/E:C;—;/ € Jff}. Obviously vy is a solution of prob-

lem 5 which is unique. Therefore, the whole sequence converges to
v, and one has vy =% o F (). Thus 4 o Z ¢ is continuous. Now
Schauder’s fixed point theorem implies that ¢ o % © has at least one fixed
point.

The estimates from theorem 3 ensure that the solution <y does not depend
on C = C, for some C. Therefore, ¥ o & also has at least one fixed point.
Q.E.D.

6. A PRIORI ESTIMATES

PROPOSITION 4 : Let (if, p) € (Hy(2°))" x L3(2°) be a weak solution of
system 1. Then we have the estimates

1@l iy =€ and (1"l 30 =<C .

Proof : This is a direct consequence of results in [26] which generalize
results in [35] from homogeneous to non-homogeneous boundary conditions.

For the case of more complicated geometries of the cells see the paper [2].
Q.E.D.

PROPOSITION 5 : For any solution of the micro-model problem 2 the
estimates

”ng “L°°(Qf) = CJP’ ijE = C;'v ’ (11)

l|L""(R‘)

” vf ”LZ(O, riH @y S C, ¢ ”wa ”LZ(O, TRy S C, (12)

Ve by|| (0f - wh), I 20 122000y = (13)
and
1005 i 200 = €+ 105 o0, 7220 = € -
||va,u;||L2(0’ e = C, ¢ ||va,w;||L2(O’T;LQ(HF)) <C. (14)

hold independently of «.
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Proof : First we treat the situation « N ». We plug the test functions
¢; =v; and ¢; = w/ into equation 5 (with ¢ instead of 7) and get

2
) T

1 . ¢
5 ¥ (or O+ [wi@)]

j€eJ

t
+ 3 | @I+ O+ A5 By

jeJ 0

+ 2

t
jevJ 0

1 2
=3 Z v llge + llw “37) +

jeJ

eb; ((v] —w)), Y dr =

+ 3| (F@), v))ge+ (G0, wige) dr

jeJ 0

From proposition 3 we have the estimates 11 ; therefore, we get also the
estimates 12 and 13.

The next step is to prove estimates for the time derivatives of
v/ and w;. For that purpose we rewrite 5 in equivalent form :

Z ((BIU;, ®i)pc+ (agsz, Y+
jeJ
+d;(Vo], Vo g + &% ¢;(VW), Vi)
+ @ . Vol ¢i)ar— (fj(as), ®i)oc— (gj(V_"’E), ¥i)me)
+ Z ebi (v —=wi),, ¢; — ¥;)re = Oae.on (0, T) VYV(p, ¢y)eV®
Jj€Js
with (U°, szE)It 0= (v;, w;). We differentiate this equation (more precisely,
we take difference quotients in time and pass to the limit) and get
Z ((attufa (Pj)12£+ (anW;, l//j)II8 +
jeJ
+d;(VopS, Vo, )gr+ &2 ¢, (VOW!, Vi, ) e
+ . Voui, ¢)or— (ij(a,») 3,0, ®i)ar— (Vg; W) 3w, i)
(Uj? - W; )+

S_Wjel

J

az(ng - sz)+1 (P/ - ‘/’]) =
re

=0ae.on (0, T) V(&, ¥)e V-
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Now we use the test functions ¢; = 9,v; and ¢; = 3w and get by integration
over time

zzwa(M&ﬁHMﬂ%}H

jeld

+ Z (d [ vavf || + e%¢; ||Va ||H‘)dr

jeJ

" Z f (Uj w; )+ 'at(ng _ st)+ IZ dr
Shdo T Ter ] r
""EZ Nop G+ Tl

t
+ Y | (V%) 8,5%, 8,8%)gr + (Vg; (%) 9,7, 3w )pe) d .

j€J 0

We get immediately the estimates 14. Now we come to the situation « U ».
From the equation in 4 (with ¢ instead of 7) we get

LS Aol + w2+

jeJ

+ Yy f (d IiVu£| + &2¢; || Vwf ”

Jo T«
jel’t

o U

50 dr

e

=5 & il + Iwilo +

jeJ

e 3 [ GE o0+ G w dr

jes vo

From theorem 3 we know the estimates 11 from which we get the bounds 12.
In order to prove estimates for the time derivatives of v; and w/, we consider
the transmission conditions of cases 5 and 6 as limits bj — © of the cases 3
and 4. Since the estimates for these cases do not depend on b;, we get for case
« U » also the estimates 14. Q.E.D.

Remark : We have not investigated the question of uniqueness of the
solutions ¥ and w* of the micro-model for case « U ». The estimates of
proposition 5 apply only to those functions that can be obtained as limits
b; — oo of the corresponding problems in the situation « N ». Therefore, the

convergence result of section 8 and 9 is applicable only to these solutions of
the micro-model.
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7. UNIQUENESS FOR THE MACRO-MODEL

THEOREM 2 : The macro-model problem 4 has at most one solution.

Proof : Since the variational inequality 8 is of the type of a « moving
obstacle » problem, we transform it into one with « zero obstacle ». Let

{ = w — U (remember a; = 1 ¥j € J) ; then we get instead of the inequality 8
z (@8, 0;— &y +c;(Vyw;, Vi(o; — &)y) =
jelr

=Y (-0 +g;({ +0), 0;—¢,)y VG € W with & =0ac.onl", (15)
jeJ
where now {(0) = w; — ¥, in Y and ¢ = 0 a.e. on I". We suppose that there

are two solutions (31, ¢1) and (3% Z2) of the variational equality 7 and the
variational inequalities 15, rtesp. Then we define ¥ = 3! — 5> and
[ =7"— 72 Weplug & = £ into the inequality 15 with Z* and & = 7 into
inequality 15 with f 2. Thus we get

Z J (@, £y + @4, &y + c;(Vyd; Vil Dy dr <
0

jeJ

=Y | @@ +3)-g,(f +3%, ¢Hydr. (16)

jes vo

We rewrite the source terms Sj (with jelJ, i=1,2)as
S = J @Aw; — g;(W))dy = |Y] a,v;i+f a,;;‘dy—f g;(w') dy
Y Y Y

and get from equation 7 the equations

Y| (@), v + @3,}, v))y)dr =

jervo
t
= Z (= d;(D Vv, Vv;))g + |X| (fj(al), v;)o +
jeJ 0
+(g; W), v))y — (. VVi, v), dT
fori = 1, 2. Subtracting these two equations and using (u . Vv, vj)g =0 we
get

Yo (@, v+ Bdf, v)))dr =Y | (=d;(D Vv, Vv;)), +
jervo jer vo
+ X (f;@) — £, 00 + (g;W) — g; (W), v))ydr . (17)
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Subtracting the inequality (16) and equation (17) we obtain

T (@), &)y +

jelJ

(v (), v;())g +35 ({ (), £y
+J (d;(D Vv, V0))p + ¢;(V, ¢, vy;j),,dr)
0

= Z (|Xl(fj(6l)_fj(62), v;)g + (gj( )‘g,(Wz) v, + {;)y)dr

jes vo

t
= C Z (”v”iz(()) + ”;“iz(u)) dr .

jes vo

To this inequality we apply

| ), &l =< 1

2 1
o2 +

for arbitrary 0 < 6 <1 and get
21O +5 (1% - |Y|—)nv<r>||,,

=C Z (”vj “LZ(Q)+ ”{ ||L2(U)

jelJ

Choosing & such that |X| — |Y| TS_S >0 and applying Gronwall’s in-
equality we obtain & = 0 and { = 0. Q.E.D.

8. CONVERGENCE

PROPOSITION 6 : Let ui° be extended by zero to 2\ (2 °. Then there exists an
extension p® of the pressure p° such that

-

u* — i weaklyin L22)H)"
p* > p stronglyin L3(2)
with (i, p) € (L*(2))" x L3(2) being a solution of system 6.

Proof : This result is contained in [26] and [35]. An explicit formula for
the extension of the pressure can be found in [23]. Q.E.D.
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Let us note that the result of the previous proposition remains also valid for
the case of Navier-Stokes equations with the convergence of the pressure
taking place in some appropriate functional spaces ; for more details see [25].
For simplicity of the notations we are going to identify p* and p°*.

LEMMA 1: There exists an extension operator P € ¥ (H'(X), H' (Z))
such that :

VP e | oy < ”V(P Il L2y Yo € H! X).

Furthermore, there is an extension operator P* € & (H*(2°%), H'(2)) such
that

” VP® o “ L)y = ”V‘P l @@ ey Ve eH' 2.

Proof : For the construction of P see [12] pp. 603-604. The operator

P¢ is defined in the following way; for @ € H'(2°) let y =2 and

&

GO = % ¢(ey);then P* ¢ = eP§ ( E ), see also [20] Lemma 5. Q.E.D.
Notations : For the rest of this section we use the following functions : let
mi(x) = EP;LZ( E ) (see section 2.6 and Lemma 1), 7, = V,u, (extended
by zero in the interior of ¥), and #:(x) = ﬁz( )—; >
PROPOSITION 7 : There is a subsequence such that

mi—uX weaklyin HYW(Q2),
Vuf—z weakly in (L*(2))",
7t —Dz weaklyin (L*(2))

for any z € R" with some p} which satisfies Vu ¥ = z.

Proof : This follows by standard arguments, see, e.g. [12] page 597 or
[20] proposition 1. Q.E.D.

From now on we identify v; with P € v/. Let the vector field g?f be defined
as Vv; in £2° and by &? Vwj] in the interior of /I°. Then the extension lemma
from [12] pp. 593-597 implies that £{ and V . £ are uniformly bounded in
(L*(@))" and L*(Q) resp.

LEMMA 2 : There is an extension operator Pe¥H\(Y), H(@Z)N
L(L*®Y), L*(Z)) such that

[v.2e] car = 1V Ly
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Furthermore, there is an extension operator Pfe ¥ H'UI%), H'(2)) N
L(L® II7), L*(2)) such that

“VXI; ® “ 2 @)" = ”Vx‘p ” @Iy

Proof : There is an open set Y, with smooth boundary such that
clos (Y)c Y, and clos (Yy) cint (Z). Then one can find an extension
operator Py e & (H (Y), H{(Yy)) N L (L*(Y), L*(¥,)) with the desired
properties. If one extends this trivially into all Z, one gets P. The
construction of P ¢ is obvious by summation over the individual cells. Q.E.D.

We now identify wf with its extension according to lemma 2 ; then

w/ is uniformly bounded in L*(Q), and & Vw; is uniformly bounded in

L?(Q). Now we get

PROPOSITION 8 : There is a subsequence such that

vi—~v*  weaklyin L?(0, T; H'(2)),
vf— weak* in L*(Q),

3uf — dv* weaklyin L*(Q),
U strongly in  C ([0, T]; L*(2)),
E; — gj* weakly in L*Q))

with some vj* and E* such that V . EJ* is bounded in L*(Q).

Proof : This follows from proposition 5. Note that strong convergence in
C([0, T]; Lz(.Q )) is a consequence of proposition 5 and results from [34].
Q.E.D.

In order to prove the main convergence result of this paper, namely
theorem 3, we use the notion of two-scale convergence which was introduced
in [29] and developed further in [3]. The idea behind this concept was used in

(41].

DEFINITION 1 : The sequence {w*} c L?*(Q) is said to two-scale converge
to a limitw € L*(Q x Z) iff for any o € C*(Q ; C2.(Z)) (« per » denotes Z-
periodicity) one has

lim f wg(t,x)o-<t, x,f ) dx dt :J J w(t, x,y)o(t, x,y)dydxdt.
£-0JQ € 0Jz

LEMMA 3 : From each bounded sequence in L2(Q) one can extract a
subsequence which two-scale converges to a limit w € L*(Q x Z).
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Proof : See [29]. Q.E.D.

LEMMA 4 : Let w® and € Vw* be bounded sequences in L? (Q). Then there

exists a function w € L*(Q ; H,.(z)) and a subsequence such that both

w® and e Vw® two-scale converge to w and V,w, resp.
Proof : See [3] and [29]. Q.E.D.

Remark : Let o € Lger(Z ), define o®(x) = o ( X ), and let the sequence
£

{w®} = L*(Q) two-scale converge to a limit w € L*(Q x Z). Then {o ‘w*}
two-scale converges to a limit ow.

PROPOSITION 9 : There is a subsequence such that

wf - wj*
3w —> oW
e Vw; >V w*
in the two-scale sense with some wi*e L*(Q;H}(Z))NH'O,T;
L2 x Z)).

Proof : The first three statements follow from the estimates of prop-
osition 5 and lemmas 3 and 4. The last one is obtained by choosing a
o€ C®(N2; CL(Z)) and observing

lim owe(t, x)o (x, % ) dx dt = f

f ow(t, x,y)o(x, y)dydxdt.
e-20vQ QVvZ

Integration by parts with respect to time yields the result. Q.E.D.

PROPOSITION 10 : The function w* defined in proposition 9 satisfies
g a.e.on 2 xY.

Proof : Let ¢ € (CP(2))" and w € CF (0, T) with w (T) = 0. Further-
more, let o € CF(Y). We extend o by zero to Z\Y and Z-periodically to

R". We define 0° by o“(x) = o ( . ) Then we have

@wj, ¢, 0 w)ge == (W, ¢; 0 )pe w (0) — (W}, @; 07 3w e .
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Passing to the limit yields

( dwFodyp;diwdt =
vU

:—J ij,adygojdx—f w* o dy ¢;dx 3w dt
a2 Jy U

and thus the equality to be proved. Q.E.D.
Propositions 9 and 10 now imply w;(T) — w;*(T) in the two-scale sense.

LEMMA 5: Let @ : R" > R™ be a continuous function satisfying
O0=s®PA)<C+ |A]|?) for all A eR", o€ (CF(Q;Cx(Z)), and

oft,x)= o0 <t, X, X \. Then
)

g0

1imj <I>(05)dxdt=f J D(o)dydxdr. (18)
Qo QJz

Furthermore, let @ in addition be convex. Then, if v¢ is a bounded sequence
from (L*(2))* which two-scale converges towards v, we have

lim infj @ (v)dxdt = j
(4]

J P (v)dydxdr:. (19)
-0 QJz

Proof : Firstly, let us note that o can be approximated by linear
combinations of the form

o, x,y)=Y ¢t x) 9 )

(see [29]) ; therefore, is is sufficient to prove equation 18 for sums of this
type. Now we approximate the integral

L @ (;w(z, X) ak( z ) ) dx dt

by
N(e)
ke, x) o4 = )dxdt:
J‘J‘s(sz) (;(p * (E)

= NZ(E:) J Z(pk(t, x) 19k(y)> dx dt
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and get

. & k k { -
lim L (;qo « x) O <S)>dxdt

£0
N() (T x
= lim ZJ J ¢(Z¢k(t,x)19k(—))- dx dt
0 €@+ k;) k €

e-0 =)

f J <D(Z<p"(t,x)1?k(y)) dy dx dt ,
QVZ k

and equation 18 is proved.

Now we are going to prove the inequality 19. Standard convex analysis
implies that @ is a pointwise supremum of a family of continuous affine
functions (see, e.g., [13]) and hence

J (D(vs)dxdlaj h(w®)dxdrt,
Q ]

where % is a continuous affine form on L?(£2). Therefore, we get easily

lim inf j ¢(v5)dxdtaf
]

f h(v)dy dx dt
e-0 Q Jvz

and by taking the supremum over affine forms on the right hand side we have
inequality 19. Q.E.D.

PROPOSITION 11 : For the subsequences in propositions 8 and 9 the
relations

v, -w,eEN; VjelJ
hold on A.

Proof : First we consider the case j € J;. Let p € (C®(Y))", extend it Z-
periodically and define 7°(x) = ,3( £ ) Then with ¢ € CP(2) and
w e Cy(0,T) we get

T

T
0= J (i —wj, ¥.p" Ypw)r-dt = j e(V. (P (0] —w/) ¢), )y dt
0 0

T
= J & (V. 550 = w]), W) @ dt
0

T
+j e(p*. V@ —w)), ¥)prw dt +0(¢).
0
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Now we determine the limits of these two terms separately. We have

T
lim e(V.p (0] —w)), ¥xpglg @ dt =
-0 0

= J V,.p (0 —w*)dy ¢ dx o dt
U
and
T —

lim e(pE.V(v;—wf), YUxnpo @ dt =
e—-0 0

- j p.V,(v*—w*)dy ¢ dx w dt .
U
Therefore, we conclude
JU Vy. P —w*))dy Yy dxwdt =0
and hence
J v.p@Ff-w)dl(y)=0.
r

Since p was arbitrary, we have v* = w®* on I for j € J,.

The next case is j € Js. Here we choose test functions as before and
assume — 7 .p=0on I, ¢ =0 o0n 2, and w =0 on (0, T). Then we have

T
Osj e(= 0 W — 7. B pw)pedr.
0

In exactly the same way as before we get
0=< J —V.pWw —-v))dl'(y).
r

Since p was arbitrary, we get v*<w* on I' for j€Js. The case
J € Jg is similar. Q.E.D.
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PROPOSITION 12 : The functions w/ from proposition 9 satisfy the
variational inequality 8, i.e.,

Y (@w, oj —w*)y + ¢; (Vyw, V(o —wi))y —
jelJ
- (g;(w?*), o= Wj*)U)

=0 Vo with (,0)e A .

Proof : We choose o; € C§(Q;Cpx,(Z)) such that o; =0 on I' for

JeJ, o;=<0 for jeJs, and o;=0 for j € J¢. We define o/(t, x) =
X . .
o; (t, X, g ) . Then after choosing ®; = vf and ¢; = af + vje as test functions
we get
Z ((atwjg’ a-js + Uje - W;)RF +
jeJ
2 £ £ 3 — & £

+ &7, (Vwi, V(o[ + 0] —wj))ge — (g; (W), 07 + 07 —w/)ge)=0. (20)

At this point we suppose that — g is a strictly monotone function. The general

case will be considered later. The monotonicity of — g implies that the
inequality 20 is equivalent to

Z ((atszs Uje + vjE)RE +

JjeJ
+ ezci(Vw;', VO'J-" + Vo g — (gj([r"' +T7), ol + vl — w‘f)R;)
= Y (e2¢;(Vw], Vw))ge + 3w}, w;)R:> : (21

jeJ

Now we take the limits £ — O of the terms on the left hand side separately.
We have

@wj, of + 0 )ge > Qw/*, o; + ")y
(e Vwj, eV(0[ + 0] ))pe > (Vw*, V (o + 0))y .
Let us determine the limit of the term involving g;. Firstly, the uniform
L* -bounds of (v, w/), proposition 8, and Lebesgue’s dominated conver-

gence theorem imply that the limit is the same, if we replace v by
v*. Now, using the remark after lemma 3, we get

lim (g;(F° +U°), o+ v])gr =
-0

= lim (g;(G°+ %), 0/ + v*)pe = (g;(F +T*), o; + v*)y

e-0
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and
lim (g;(6° + B°), w)ge = lim (g;(&° + B*), w)ge = (g;(& +V*), w)y .
£-0 £-0
For limiting the quadratic terms we use the remark after lemma 3 and
proposition 9 and get
X € Vw) — xy V,w* in the two-scale sense
and

X w;(T)— xyw(T) in the two-scale sense .

Now we directly apply formula 19 from lemma 5 and get

lim inf J sZ]Vwﬂzdxdt;J lVywj*lzdydxdz
R® U

£=0
and

.. e e . | TR 1

lim inf (3,w;, w;)g- = lim inf < 3 ”wj (T)“;F -3 wi ”31>
-0 -0

_ Y]

1 2
=3 [w* Dy, 3

hwilly = @, wi)y .

By inserting all these relations into formula 21 we get

jeJ

Standard convex analysis now implies

Z (@w/, o, +v* —w* )y +c;(Vw*, Vi(o; + v/ —w™))y —
jelJ

This inequality and proposition 11 imply the result.

If — g is non-monotone, we use g as it was defined in section 2.2. Then we
can we choose a constant C =0 such that — g;(Z) + Cz; = — g;(Z) is
monotone for j € J. Thus we get

dwi — Cwj —c; Aw; — g;(w*) =0.
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After introducing the function w{ = e”“' w; we get
. — ~Ct g (€
3w —c; Awf — ™ €' g; (e W) =
and

e C g 7)) = (Ve 2 G 2)) = (VG (Z)); -

In this way we have reduced the problem to the case of a monotone function
—g. Q.E.D.

PROPOSITION 13 : The function Ej* from proposition 8 satisfies
EF=DVvjr. (22)

Proof : From the definition of 7! and the extension lemma from [12] we
have V.7 =0in 2. Let § € (CF(2))" and w € CF (0, T). Then we get
(73, VU; ?; )y + (75, U; Vo, w)y = 0.

Passing to the limit £ — 0 and by using the « div-curl »-lemma from [28] we
get

(5, Vo] @; ) = (Vi[, & ¢ @) + O(2) > (2, £ ¢; @)g
and
(715, v} Vo, w)g > (Dz, v* Vo, w)g .
Therefore, we have
(&7, Zp; W)Q = (D ij*, Ze; w)g -

Since z, ¢;, and w were arbitrary, we get the result. Q.E.D.
j y g

Remark : This is the only place in this paper where we use the energy
method ; also we point out that in general V. f #0#V. f

PROPOSITION 14 : For the limit of the subsequence in proposition 8 the
relation 7, i.e

Y UX[@pF + S, @))g +di(D VU, Vo, )o +

jeJ
+ @V e~ |X|(f;(B%), ¢)0)=0 Y@e¥ (23)
holds.

vol. 28, n° 1, 1994



90 U. HORNUNG, W. JAGER, A. MIKELIC

Proof : Once again, we suppose that — g is a monotone function. The
general case will be reduced to this special case in the same way as in the
proof of proposition 12.

Let ¢ € (CP(Q))". Then we use ¢ for both test functions & and

zZ in the inequality 3 and get

Z ((atvf’ 4’] - ")‘I"E)Q‘r + (atwfa (pj - WJ{S)RF
ji€d

+dj (VU] V(p; — v ))g + &2, (Yw], V(g; — wj)

+ @, Voi(@; — v )gr — (f;B), ; = V])gr — (G;(€), ¢; = Wj)er)
=0. 24)
We have

(O va ®i)o=— @, Ve, v))g— (u, Vo; vj*)Q = (i, ij* ®i)o

as € » 0 and

£—0

lim inf JQ cj e Vwj . e VW) ypedx dt = fu cleywj*]2 dy dx dt .

Furthermore, by using the « div-curl » lemma from [28] we get
d;(Vof, Vo) = di (€5, Vi) + O(e) > d;(D Vo ¥, Vo), .

Now propositions 8, 9, and 12 together with the last three formulas imply by
taking the limits in inequality 24

Z (IXl (atvj*y P — Uj*)Q

jeJ
+ @W @ =Wy +d;(D Vo, V(e + /)
+ WLV e =0y — X[ () e - v
— ¢ “Vij* ”?] - (g,-(@), P;— Wj* )
=0 (25)

which can be written as

Y UX|@p* — f;(*), ¢; =) +d;(DVoF, V(p; — /"))y
jeJ
+ (i . Vo F @ —vF)g + @w* — g;w*), ®;—=wi)y)

= Z ¢ (VywiE, Vow* )y, . (26)

jeJ

M? AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



REACTIVE TRANSPORT THROUGH AN ARRAY OF CELLS 91

We note that formula 8 implies
i (Vywk, V,(0F —w¥))y + @wr — g;W*), v —w*);=0.
The last two relations give finally

z (X @ ~ f,‘(a*), ;= 0% ) +d;(DVvF, V(p; —v7)),
jelt

+ ( VU E e =0 ) + QW — g]-(v?)*), e =wr)y)=0.
Q.E.D.

THEOREM 3 : The limit functions U* and w* solve the macro-model
problem 4.

Proof : We have only to collect the results from propositions 10, 12, and
14. Q.E.D.

9. THE RESULT

THEOREM 4 : Let the data satisfy the assumptions from section 2.4 and the
functions fand g satisfy the conditions of section 2.2. Let (uf, p°) be a weak
solution of system 1 and (V°, w®) a solution of problem 2. Then there exist
extensions of U, p°, V%, and w* (denoted by the same symbols) such that

W weakly in (L*(2))

pEop strongly in L3(£2)

vf v weakly in L*(0, T ; H'(2))
vf—v; weak* in L*(Q)

Quf = 3, weakly in L*(Q)

vf -0, strongly in C ({0, T]; L*(12))
Wi —w; in the two-scale sense

a‘W; — W, in the two-scale sense

e Vowi - Vow; inthe two-scale sense
forj € J, where (i, p) is a weak solution of system 6 and (T, w) is a solution
of problem 4.

Proof : The convergence of the subsequence towards (v, w) follows from
theorem 3. Since according to theorem 2 the macro-problem 4 has a unique
solution, we get convergence of the whole sequence. Q.E.D.
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Note added in proof : After this paper was submitted a paper (*) by G.
Allaire came to our attention. It contains a result similar to our semicontinui-
ty lemma regarding the behavior of the convex functionals under two-scale
convergence.

* G. ALLAIRE, Homogenization and two-scale convergence, SIAM J. Math.
Anal., 23 (1992) 1482-1518.
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