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REACTIVE TRANSPORT THROUGH AN ARRAY OF CELLS WITH
SEMI-PERMEABLE MEMBRANES (*)

by U. HORNUNG 0), W. JAGER (2), A. MIKELIC (3)

Communicated by R. TEMAM

Abstract. — A problem of diffusion, convection, and nonlinear chemical reactions in a
periodic array of cells is studied. lt is assumëd that in the cells there are porous bodies which
are surrounded by semi-perméable membranes, i.e., fluxes and concentrations are coupled
nonlinearly at the interfaces between the cells and the surrounding fluid. We consider the limit
when the number of cells tends to infinity and at the same time their size tends to zero while the
volume fraction ofthe cells remains fixed. In the limit we get a nonlinearly coupled problem with
two scales, a global and a local one. We prove well-posedness of the micro-problemst

uniqueness ofthe macro-problem, and convergence of the homogenization process. In order to
détermine the form of the limit équations we use the newly developed technique of two-scale
convergence. Other methods being used are the theory of semilinear parabolic Systems,
maximum principles, compactness, monotonicity, and the energy method.

Résumé. — On considère la diffusion, la convection et les réactions chimiques non linéaires à
travers un arrangement périodique de cellules. On suppose que chaque cellule contient des
corps poreux entourés de membranes semi-perméables, c'est-à-dire qu'il y a liaison non
linéaire entre les flux et les concentrations sur les interfaces cellules-fluide. Nous considérons la
limite, quand le nombre de cellules tend vers l'infini et en même temps lorsque leur volume tend
vers zéro, tout en conservant la même fraction de volume. Notre problème initial se comporte à
grande échelle comme un problème non linéaire où interviennent deux échelles d'espace, — une
échelle globale et une échelle locale. Nous démontrons l'existence d'une solution qui satisfait le
principe du maximum à s fixé. Lorsque le paramètre e tend vers zéro, on obtient la convergence
du processus d'homogénéisation vers une solution « homogénéisée » unique. Pour déterminer
la forme des équations limite, nous utilisons la technique de convergence à deux échelles.
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1. INTRODUCTION

Mathematical modeling of reactive flow through porous media is of great
practical importance in many physical, chemical, and biological applications.
There is a need for deriving macroscopic laws for the processes in these
geometrically complex media including flow, diffusion, convection, and
chemical reactions. Homogenization is providing techniques to pass from
microscopic models to macroscopic ones letting the proper scale parameter
s in the System tend to zero. Formally, the macroscopic model équations can
be obtained by multiple scale expansions and averaging. It is the « zero
order » approximation of the original model system. The macroscopic
description does not cause problems with solving, e.g., nonlinear partial
differential équations in complex domains, However, one has to pay for this
simplification by being forced to describe the local structure of the medium
and to solve additional équations formulated with respect to microscopic
variables in a Standard cell. For simplieity, it is assumed that the medium is
composed periodically of standard cells of size s. Let us assume that such a
cell is a cube which is split up into a solid part (for instance a bail) and a fluid
part. We assume that we have Stokes flow of a fluid in the fluid part.
Substances are diffusing and reacting in the fluid and in the solid part. They
are transported by the flow in the fluid part.

The following examples for real applications should be kept in mind : 1)
The solid part is a bail of a material which is porous itself. The substances are
chemical species diffusing and reacting inside and outside of the balls. At the
boundary of the balls there is a change of material properties, expressed by a
jump of the coefficients in the équations and by — in gênerai — nonlinear
transmission conditions. If there is no reaction taking place, one has the
situation of a chromatograph used for the séparation of chemical substances.
In case of a porous catalyst the reactions are important. They may also just
take place on the surface of the balls, e.g., if the catalytic particles are
concentrated on the surface of the solid part. 2) The solid parts are biological
cells separated by a membrane from the fluid part. In this case the
permeability of the membranes which are porous media themselves plays an
important rôle. The fluid outside of biological cells is the extracellular fluid
transporting nutriants, activators, and inhibitors for development of the cells.
Again, in this case also processes on the cell surfaces and flow inside of the
cells are of interest.

Homogenization leads to mathematical results, such as to a macroscopic
limit of the microscopic System when the model parameter s (e.g., radius of
the bail) tends to zero. In case of a model for a chromatograph, this limit
proces s was also rigorously justified (see [36]) and the validity of the model
was experimentally tested (see [32]). The results show that the model
équations obtained by homogenization in the case of a periodic structure are
describing the expérimental results very precisely, see also [33].
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In this paper we consider a periodic structure, diffusion, transport and
nonlinear reactions in the fluid part» diffusion and nonlinear reactions in the
solid part. On the interface between the fluid and the solid part, we assume
continuity of the flux and additional — in gênerai nonlinear — transmission
conditions.

The case of reactions and diffusion on the surface of the solid part was
studied in [19] and [20]. The formulation of the model équations and
especially of the transmission conditions is kept rather gênerai in order to
include important applications. The main mathematical work to be done
consisted in solving the model équations of the micro-process and estimating
the solutions in proper norms uniformly with respect to s. Then the
convergence resuit of the microscopic solution towards a macroscopic
solution is obtained. Hère, we have used the only recently developed notion
of two-scale convergence coupled with monotonicity methods and eompen-
sated compactness. The energy method and the div-curl-lemma are being
used as standard arguments in this framework. It seems not to be known how
one could obtain the new results without the concept of two-scale conver-
gence. In our knowledge, this is the first time that convergence of the
homogenization procedure is proved for problems whith nonlinear reactive
terms and nonlinear transmission conditions.

For a survey on homogenization applied to flow, diffusion, convection,
and reactions in porous media see the papers [18]. Problems of related type
were investigated in various papers. Two-phase flow was studied in [5], [8]
and [9]. Miscible displacement problems were studied in [27] [24] [1] [16]
and [17]. General textbooks on the method of homogenization are [7], [6]
and [30].

The important features of the micro-model (section 3) can be described as
follows. In the fluid part 12s there is a fluid flowing according to the Stokes
équations (équations 1). The concentrations of the various chemical species
in the fluid part Os and the solid part U6 are vj and wj, resp. The variables
vj satisfy équations with diffusive, convective and reactive terms in the fluid
part f2£, whereas the variables wj satisfy équations with diffusive and
reactive terms in the solid part IIe (see équations 1). The transmission
conditions on Fe — the interface between the fluid and the solid part — are
both the continuity of the normal mass flux and a second condition of special
type. Hère we consider six different cases : conditions of 1) Dirichlet type, 2,
3), 4) Neumann type, and 5), 6) of Signorini type. In case 5), e.g., the
transmission condition is

s =£5 0 and q 5* 0 and sq = 0

where s = aj vj — wj is a weighted différence of the concentrations in the
fluid and solid part, resp., and q = - ecj vB. Vwj is the mass flux in normal
direction. It must be emphasized that the essential point in formulating the
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62 U. HORNUNG, W. JAGER, A. MIKELIC

micro-model is the proper scaling. The only criterion for the proper choice of
the scale parameter and its powers are measurements, calibration and
validation of expérimental data. It turns out that the transmission conditions
of the micro-model appear in almost the same form as boundary conditions of
the local problems in the macro-model. Problems with some similarity to this
one were described in [15] and [14].

2. NOTATIONS AND ASSUMPTIONS

2.1 The Geometry of the Problem

First we define the geometry of the problem.

x
y
t
T

n
Q

u
A
312
Z
Y
X

r
V

macro space variable
micro space variable
time variable
end of time-interval
bounded domain in W
[05 71 x f2 — time-space-domain
Q x Y
n x r
FD U FN = piecewise smooth boundary of /2, FD n FN = 0
(0, l)n = unit cell in Un

open subset of Z (with clos (Y) c ker (Z)) = représentative cell
Z\Y — représentative pore
BF = BX = piecewise smooth boundary of Y and of X
outer normal on 3/2 with respect to 12
or inner normal on F with respect to Y
i-Xh unit vector in W1.

For anysubset SofZ and integer vectors k = (ku ..., kn) e Zn we dénote the
shifted subset by

Let

{Fk:ke Zn}

We assume that a scale factor s > 0 is given. Then the geometry within f2 is
defined as follows :
W : U {eYk :Yk cz f2, k e Zn} = ensemble of cells
Re : [0, II x n£

&e : O \ïï£ = ensemble of pores
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r€

1, xe 12 l

0, x e n£

[o, r\xn£

dU£ = {eFk: f ^ c ü, ke Zn}
ensemble of the membranes
inner normal on f£ with respect to IT£

outer normal on f£ with respect to O l

characteristic function of ü e.

2.2 Nonlinearities

For j = 1, ..., m have

fj : Rm -> IR = reaction rate in the pores

g}• : U
m -• IR = reaction rate in the cells .

We are going to choose conditions on the functions fj and g} such that we get
L^-estimates and non-negativity of the solutions vj and wj (see proposition 3,
theorem 1 and proposition 5). Any other type of conditions giving s-
independent uniform bounds in the same class of functional spaces would
also do.

We assume that for given positive constants C] and CJ = o, Cj(/ e / )
there are constants Aj, B} ^ 0 such that

where

and

and V? e [0, C?]

fj(z) 5= 0 and gj(z) ^ 0 V? e IRm with 2 ^ 0 ,

A^—Jjiz) Vz e Um with 0 * = z / S s C Ï VZ e / ,

j^^Lgj(z) V 2 e !Rm with 7 VZ eJ.

We extend the functions ƒ , and g} to all IRm in the following way. Let

fJ(z)=fjCzFX gj(z) = gj(z
G)
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0, if zk < 0

if 0 ^ zk =s

if zt>CÏ

and the zG being defined analogously.
l2 are defined by one of the following conditions,The sets M}

(s, q)e iff

's =0
q = 0
q = bj s+

q = -bj s_
s ^ 0 and q
s s= 0 and q

, case 1
, case 2
, case 3
, case 4

•• 0 and sq = 0 , case 5
; 0 and 5"# = 0 , case 6

where bj are positive constants. The lower plus dénotes the positive part

{ s s > 0
.0 , else

and s_ = ( - s)+, hence s = s+ - s_ . W e also use the sets
by

IR defined

s e iff

= 0 , case 1
E M , cases 2, 3, 4
=s= 0 , case 5
=B= 0 , case 6

We assume that the index set / = {1, ..., m} is given as the union
/ = Jx U ... U J6 of subsets / } , ..., /6 . We shall also use positive constants
Û, in the micro-model which later will assumed to have the value 1.

2.3 Unknowns of the Micro-Model

u£ : ft£ -+ Un

p£ : O £ _• R
v] : [0, T] x n£-± R
wf : [0, T] x ns -+ M
We use the vectors vl

: velocity of the fluid
: pressure within the fluid
: concentration of the y'-th soluté in the fluid
: concentration of the y-th soluté in the cells.
= (vl ..., i;^) and we = (wf, ... wé

m).
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2.4 Data of the Micro-Model

65

«D : FD

vhD: [o, r ] xrD

R

Assumptions

prescribed boundary values of the fluid velocity
prescribed boundary values of the concentration of
the j-th soluté
initial concentration of the j-th soluté in the pores
initial concentration of the j-th. soluté in the cells
j-th diffusion constant in the fluid
j-th diffusion constant in the cells.

c
\ p . u D

J rn

H2(û£), WjI e / / 2 ( /F) , aj v}î - Wjî e Np vjI\pD = vjD(0) Vj € / ,

0 ^ vj C], 0 CJ, and C] = a} CJ Vj e / .

We use the functions

= dj + = £2Cj +

and the v e c t o r s Vj = (vlf, . . . , i>m , /) a n d Wj = ( w 1 7 , . . . , wmI).

2.5 Unknowns of the Macro-Model

u : Q -> Un : velocity of the fluid
p : (} _* U : pressure in the fluid
Vj ;Q->R : concentration of the j-th soluté in the fluid
W)• : Q x F -> IR : concentration of the j-th soluté in the cells.
We use the vectors v = (vly ..., vm) and w = (wt, .,., wm).

2.6 Auxiliary Functions of the Macro-Model

For j - 1, ..., n let KJ = (*ƒ, ..., «:ƒ) : X -> Un and
periodic solution of the ceil problem

/ - e j 9 y e X

, y e X

be the Z-
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66 U. HORNUNG, W. JAGER, A. MIKELIÉ

Then the éléments Ktj of the tensor K are defined as

'u = Kij(y)dy.
Jx

It is well known that K is a symmetrie, positive definite matrix (see, e.g.,
[31]).

Let for j = 1, ..., n the function \j-, : X —• R be a Z-periodic solution of the
cell problem

We extend A; into Y such that ẑ À^OO = 0, y e Y. The éléments
Z)y- of the tensor D are defined as

Dij= \X\ 8ij+ f ô ^ - C y ) ^ ,

where 0̂ - is the Kronecker-& An equivalent définition is

-lDz = Vv/x,2dv VzeR" ,
Jx

where (JLZ solves

= 0 , v eX

such that /JLZ~ z .y is Z-periodic, hence Aj(y) = /x- (y) - y; (see [12]). Here
and in the following we use the abbreviations

= f dy, \Y\ = f dy.
Jx JY

Furthermore, D is a symmetrie, positive definite matrix (see, e.g., [12]).
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2.7 Function Spaces

We introducé the Hilbert spaces

V£ = {<p eHl(ne):<p =0onFD}mx {Hl{II£))m

V = {<p G H1 (H): <p = OonrD}m

W = (L2(f2 ;H[(Y)))m

H£ = (L2(ü£))m x (L2(n£))m

J^E = L2(O, T;He)

r"e = L2(0, T\ Ve)

'T =L2(0, T\ V x W).

We use the convex sets

K<= {(^, è):<pe {<peHl(n£):<p =0onrD}m,

4, s (H1 (77e)y", and ay <py - ^ e iV; on F£ \fj e j}

and

K = {($, a): $ e V, a e W, (pj = 0 on TD

and a, <pj - o-j e Nj on A Vy e / } .

We also use the convex sets

and

e K£ a.e. on (0,

(0, 7)} .a.e. on

3. THE MICRO-MODEL

3.1 The Strong Formulation

Written in strong form, the problem is to find functions u\ vb\ and
we that satisfy the following System of équations.

The flow :

e2 Au£{x) = Vp£(x\ xe O'

V. ü£(x) = O , xe Ü£

u£{x) = 0 , xe r£

us{x) = uD , x e FD

üe(x) = 0 , x e rN

(1)
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68 U. HORNUNG, W. JAGER, A. MIKELIC

The reactive transport :

PROBLEM 1 :

dtvj (r, x ) = dj AvJ(t9 x) - ue(x). Vt?/(r, x) + fj(ve(f, x)\ r > 0 , x e / 3 £

3,w/(f, x) = e2cj AwJ(t9 x) + 9j(w£(t, x)) , t>09 xe UB

djvs . Vü/(f, JC) = £2Cj ve . Vwf(t, x) , f > ö , i Ë r £

(cLj vj(t9 x) - wj(t, x), - sCj vB . Vw/(r, x)) 6 M; , f > 0 , i É f £

u/(r, x) - üy>jD(f, x) , *>0 , XE r D

? . Vvj(t, x) = 0 , ? > 0, x e rN

v?(t,x) = vhI(x) ,t = 0,xeI2E

wj(t, x) = Wjjix) ,t = 0,xen\

For simplicity of the proofs, and in order to avoid too many technical
difficulties, we assume homogeneous Dirichlet boundary conditions for the
concentrations, i.e. t̂  D = 0.

3.2 The Weak Formulation

PROBLEM 2 : The weak problem for problem 1 is to find functions

(v£,w£)G$r£ with (vJ9wj)eL(O(Qe)xL<Xi(Re) and vj ̂  0, wj ̂  0,

(3^/, dtwj) e L2(Q£) xL2(R£) such that

. v»;, ^ - vj)Q, - ̂ .

- vj - iltj +

VJ ~

*A)e JT£ (2)

wzï/z (Ve, we)\t = 0 = (vf, Wj) holds.

In this paper we are going to study the situation « U » in which
y3 = ƒ4 = 0, i.e. we are primarily interested in the problem of unilatéral
boundary conditions. The situation « N » in which J5 = J6 = 0 is used as a
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REACTIVE TRANSPORT THROUGH AN ARRAY OF CELLS 69

regularization or penaüzation of the situation « U ». Since the set J f £ i s a
cône, in the situation « U » an equivalent formulation of the variational
inequality 2 is the inequality

+ (5*. Vvj, <pj)Q.- (fj(ve\ tpfo- (gj(w£l * ; V ) > 0

V(<p, $)e C€& (3)

together with the equality

- (fj(v£% ü/)ö- - (flf;(ive)f w / V ) = 0 , (4)

where the convection term with us has dropped, since us is divergence free.
In the situation « N » the set Jf£ is a linear space ; therefore instead of the
inequality 2 we get the variational équation

xdt = O V ( £ , ^ ) € J f £ . (5)

4. THE MACRO-MODEL

4.1 The Strong Formulation

The strong form of the problem is to find functions ü, v, and w that satisfy
the following system of équations.

vol. 28, n° 1, 1994



70 U. HORNUNG, W. JAGER, A. MIKELIÓ

The flow :

u(x) = - KVp(x), xe O
V . u{x) = 0 , x e ft

v . u{x) = uvD(x)y xe rD

v . ü(x) = 0 , x e FN

(6)

PROBLEM 3 : The global problem :

\X\ BtVj(t,x) + Sj(t,x) = djV

- u(x).VVj(t,x)+ \X\ fj(v(t,x)\ f >0, xe ft

Vj(t9 x) = vjtD(t, x)

v . Vüy(f, x) = 0

v(t, x) = VJJ(X)

where the sink terms

are defined in terms of the local problems :

dtwj(t9 x9y) = Cj AyWj(t9 x, y) + 0;(iv(r, x, y)),

{a} Vj (t,x)- Wj0, x,y\ - Cj v . VyWj(t, x, y )) e Mj

Wj(t9 x, y) = wjtI(x)

, t >0,xe rD

, t >0, xG TN

, t = 0, xe O

t >07 xe O, y e F

, t = 0, x e n, y e Y.

4.2 The Weak Formulation

PROBLEM 4 : The weak problem for problem 3 is to find functions
(v9 w) e JT with v e L°°(ÖX w e L°°(£/), Ü,- ̂  0, wy ̂  0, 3^- € L2(Q) and
btwj e L2(U) such that

btvj + Sp <Pj)Q + dj(D Wj, V<Pj))Q +

+ <M.Vvj9<pj)Q-\X\(fj(v\<Pj)Q) = O , (7)
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and

X ((*tWj> °~j - Wj)ü + CjfVyWj, Vy(<Tj - Wj))v -

- r
j e / j J 0

j e;4 J 0
J ^ ) - ' aJ - wj)r*dt

(8)
Vo-with (y, a) e X*

where (v, vw)|f = 0 = (vh wt) hold.

5. EXISTENCE FOR THE MICRO-MODEL

Hère we treat only the situation « U », since the other cases are simpler.
Without loss of generality, we can assume a}-, = 1. This can be easily
achieved by renaming a} v- by v- ; of course one has to redefine the nonlinear
functions fj appropriately. We start by introducing the following linearized
problem.

PROBLEM 5 : Let

0 - (F, G) = (Fu .... Fm9 Gu .... Gm) G (L™(QB)T x (L™(R£)T

be given. Then we look for functions

y = (a, p)= («!, . . . , am, /3u ..., /3 J e JT£

with dtctj, %tfij eL 2 (g ) such that the variational inequality

£ «Btaj, <Pj)Q*+ (3,0j, >{>j)R< +

+ (uc . Vaj, ^ ) r + (Aj aj - Fj, <Pj)Q. + (Bj 0j - Gj, *j)R.) * 0

V(̂ , (J )e / J (9)

with (à, /?) | , = 0 = (5/, vw7) holds and an equality for <pj = «7 and

tj = Pi-

vol. 28, n* 1, 1994



72 U. HORNUNG, W. JAGER, A. MIKELIÓ

Now we introducé the linear operator Ee : Ve -• (Ve Y by

j e j

+ (ÏÏ . Vaj9 <Pj)n* + (A; OL-p <Pj)n< + (By /?,, ^ J )&)

V(a, £) , (£, ^ ) e V £ . (10)

This operator £Ê is a continuous and coercive linear operator ; the set
K£ is a closed convex subset of Ve, and hence IK* is a convex lower
semicontinous function o n V ' ; further, 3> is an element of the Hilbert space
H£, Using these notations we can reformulate problem 5 in the following
abstract way.

PROBLEM 6 : Find a function y e JfE such that

( !Ly +E£ y, 8 - y\ ^ (0 , Ô - y)H*a.e. on (0, T) V5 G Jt E

\ dt ] (vFy,v£

with y | r = 0 = jj.

Here we have used y{ = (v^ Wj). We prove the existence of a solution for
this problem in two steps ; first we show that there is a solution of the
following weak version of problem 6. For this we introducé the operator

b y

o

PROBLEM 7 : Find a function y e Jf£ such that

2

PROPOSITION 1 : Let y7 e Ke" ( = closure ofK£ in HE) and let <P e (-f"ey.

a unique solution y e C( [0 , T] ;H£) of problem 7.

=
Jo

Proof : The existence is a conséquence of Corollaire II. 1 in [10] page 77
applied to the évolution triple Ve a H£ <= (Ve)'. The uniqueness follows from
[22] pages 268-270. Q.E.D.
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PROPOSITION 2 : Let yl e Ke and (Pe ƒ ' . Then there exists a unique

solution y e C([0, T] ; Ve) of problem 7 suc h that ~ y e Jf£.

Proof : This resuit follows from Corollaire IL 2 in [10] page 92 in the
following way. We take the weak solution y = (a, /3 ) from proposition 1.
Then we define the self adjoint operator

(ƒ*(*, j3), (0, ^ fo

Jo

and the new force term

S = {F, - Û* . Va!, .... Fm - ue. Va . , Gl9 .... GM)

and apply Corollaire II.2. Q.E.D.

PROPOSITION 3 : Let

I I ^ I L - ^ ^ ^ c ; and I I ^ I I ^ ^ ^ C ; VjeJ.

Then the solution y = (a , f3) in proposition 2 satisfies

<*j*sCj a.e. onQs and pj^CJ a.e. onR£.

Furthermore, if F • 5= 0 and Gj ^ 0, then a} === 0 and /3j =s 0 Vy G / .

Froö/ ; We restrict ourselves to the case j e /5 , since the other cases are
similar. The variational inequality 9 is also valid for [0, r] x 12 e and
[0, t]xne instead of 2 e and R£, resp. Let ây - ( a , • - C;-)+ and
JBj = ()8y — CJ"^. First we use the test functions <pj = «y — âj and
0y = /3y — fïj for the inequality and <pj = a ; and i//j = /3^ for the correspond-
ing equality. By subtracting the two we get

J E /

- (Ay aj - Fj9 âj)ne- (Bj Pj - Gj, pjM dr
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From this we have

f' J aj - FJ> sjh'+ (Bj Pj ~ Gj, Pj)n>) dr .

By integrating over [0, f] we get

because of the assumptions on Fj, Gjy 5/s and wr Hence we get the upper

bounds for aj and fBj. In order to prove the non-negativity, we use

âj = (ctj)_ and J3j = (fij)_ and plug the test functions <pj = — â- and

tf/j = — J3j into the variational inequality 9 and get

y e/

Using 0,(0) = (Vjj)_ = 0 and j8y-(0) = (wy/). = 0 we conclude

j 6 ƒ

f' (ll^llfl' + ̂ l ^ t - ^-' « > - (°i. ëjïn-) dr.

Since F ; , Gy ̂  0, GronwalFs inequality yields â ; = pj = 0. Q.E.D.

THEOREM 1 : The micro-model problem 1 kas at least one solution.

Proof: We consider the mapping <§ : tf E -» C ([0, T] ; 'Ts) defined by
0 = (F, G) ^> & (<P) = y - (öf, yö) according to theorem 2. From
theorem 3 we get the following estimâtes
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and

We also have

and

The smoothness of u£ enables us to also get the estimâtes

II ^aJ II

and

All these estimâtes imply that the mapping ^ maps a bail of radius r in
fflB into a bail of radius max {C x + C2 r, C3} in the space

= {y = (à, p) e r6 : aj e

which is compactly imbedded in
For a given y we define

l ÏL

= >̂ = (F, G) = ( F b .... Fm, Gl9 .... Gm)

by F,- = ƒ;(<*) and G7 = fj(/3) \fj e J. We also define J ^ c ( y ) by

c \ f , i f | « l - c a n d j ^ . if | Œ | - CFc\f, i f | « l - c and j
\ff if | a | > C Uf if I « I > C

where

/ f = max {/7(a ) : | a | « C } and ŷ
c = max {g^a ) : | a \ ^ C } .

Then the mapping ^ o J* c maps a bounded set in ^ £ into a compact set in
J^£, It remains to check that ^ o ^ c is continuous. Let f ^ b e a séquence
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converging in ^fe to Ç and let yk = & o JFc(gk). Then we can extract a
subsequence y ' converging weakly in iP" and strongly in J^E to some

c/r 1
7, where ^ = { y e f £ : --^ e J4?£\. Obviously y is a solution of prob-

dt J
lem 5 which is unique. Therefore, the whole séquence converges to
y, and one has y = @ o ^c{(), Thus ^ o <FC is continuous. Now
Schauder's fixed point theorem implies that ^ o !FC has at least one fixed
point.

The estimâtes from theorem 3 ensure that the solution y does not depend
on C 5= Co for some Co. Therefore, <$ ° fF also has at least one fixed point.
Q.E.D.

6. A PRIORI ESTIMATES

PROPOSITION 4 : Let {ü\ p£) e (//Q(/2
 £))rt x L§(/2Ê) 6^ a wea^ solution of

system 1. 77zen we have the estimâtes

Proof : This is a direct conséquence of results in [26] which generalize
results in [35] from homogeneous to non-homogeneous boundary conditions.
For the case of more complicated geometries of the cells see the paper [2].
Q.E.D.

PROPOSITION 5 : For any solution of the micro-model problem 2 the
estimâtes

and

hold independently of s.
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Proof : First we treat the situation « N ». We plug the test functions
<Pj = Vj and if/j = wj into équation 5 (with t instead of T) and get

jeJ

j e j

From proposition 3 we have the estimâtes 11 ; therefore, we get also the
estimâtes 12 and 13.

The next step is to prove estimâtes for the time derivatives of
vj and wj. For that purpose we rewrite 5 in equivalent form :

(0, T)

with (££, w£)|^ = (u7, Wj). We differentiate this équation (more precisely,

we take différence quotients in time and pass to the limit) and get

j e /

v _ w)

= 0 a.e. on (0, T) V(<p,

vol. 28, n" 1, 1994



78 U. HORNUNG, W. JAGER, A. MIKELIC

Now we use the test functions <pj = dtvj and î y = dtwj and get by intégration
over time

+ y (4l|v3,»f|r,-
L* x 7 II l J II n

j e y J 0

f &) dr

We get immediately the estimâtes 14. Now we come to the situation « U ».
From the équation in 4 (with t instead of T) we get

2 .̂

f'
From theorem 3 we know the estimâtes 11 from which we get the bounds 12.
In order to prove estimâtes for the time derivatives of vj and wj, we consider
the transmission conditions of cases 5 and 6 as limits bj -• oo of the cases 3
and 4. Since the estimâtes for these cases do not depend on bj, we get for case
« U » also the estimâtes 14. Q.E.D.

Remark : We have not investigated the question of uniqueness of the
solutions vs and we of the micro-model for case « U ». The estimâtes of
proposition 5 apply only to those functions that can be obtained as limits
bj —• oo of the corresponding problems in the situation « N ». Therefore, the
convergence resuit of section 8 and 9 is applicable only to these solutions of
the micro-model.
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7. UNIQUENESS FOR THE MACRO-MODEL

THEOREM 2 : The macro-model problem 4 has at most one solution.

Proof : Since the variational inequality 8 is of the type of a « moving
obstacle » problem, we transform it into one with « zero obstacle ». Let
g = w — v (remember aj = 1 V/ e J) ; then we get instead of the inequality 8

36 X (~ Vy + ^ ^ + ? ) ' °V ~ ^ V<x e W with a ^ 0 a.e. on r , (15)

where now £ (0) = w} - v} in Y and f =s= 0 a.e. on F. We suppose that there
are two solutions (S1, ^2) and (t;2, f2) of the variational equality 7 and the
variational inequalities 15, resp. Then we define v = vl - v2 and
ï = ï1 - ï2. We plug o- = l2 into the inequality 15 with f1 and a = £2 into
inequality 15 with ^2. Thus we get

I f (O,Uy, ^ ^ + (6^., ^-)ü + ^-(V/;., VyS^dr ^
j e j JQ

tey(^+S1)-ffy(f+S2X f y ) ü ^ . (16)

We rewrite the source terms S] (with j e J, i = 1, 2) as

•• _ f •• -« • r r
1 )Y ' ' ' W y 'Vj + Jy ' J * JY

9j W *

and get from équation 7 the équations

f' .
^j I J J J J U

j eJ J 0

f'
y e ƒ J 0

+ (6fy(^)? yy)t/ - (u . VVj, Vj)n dr

for i = 1, 2. Subtracting these two équations and using (ïî. Vt>7, u^)^ = 0 we
get

; e J J0 ; e / JO
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Subtracting the inequality (16) and équation (17) we obtain

\

^ r(|X|C^.(iJ1)-/,.(S2),^)i3 + (gjiw1

c y

To this inequality we apply

for arbitrary 0 < 8 < 1 and get

f I

Choosing 5 such that |X| - |F | >- 0 and applying Gronwall's in-
1 — o

equality we obtain v = 0 and Ç = 0. Q.E.D.

8. CONVERGENCE

PROPOSITION 6 : Let üe be extended by zero to 12\O B. Then there exists an
extension ps of the pressure pE such that

a e _ u weaklyin (L2(/2))rt

p£ ->p strongly in L\(O)

with (w, p) e (L2(I2))n x L\(Q) being a solution of System 6.

Proof : This result is contained in [26] and [35]. An explicit formula for
the extension of the pressure can be found in [23]. Q.E.D.
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Let us note that the resuit of the previous proposition remains also valid for
the case of Navier-Stokes équations with the convergence of the pressure
taking place in some appropriate functional spaces ; for more details see [25],
For simplicity of the notations we are going to identify p* and p£.

LEMMA 1 : There exists an extension operator P e S£ (Hl(X), Hl(Z))
such that

Furthermore, there is an extension operator P£ e J*f (H1 (He), H1 (12)) such
that

Proof : For the construction of P see [12] pp. 603-604, The operator

PB is defined in the following way ; for <pE:Hl(ne) let y = — and

ç> (y) = - <p (sy) ; then F " <p = sP <p ( - ) , see also [20] Lemma 5. Q.E.D.

Notations : For the rest of this section we use the following functions : let

/x/(x) = eP fi2 ( - ) (see section 2.6 and Lemma 1), rfz = Vyj&z (extended

by zero in the interior of F), and v£
z(x) = vÀ - ) •

PROPOSITION 7 : There is a subsequence such that

M z
£ _ M * weaklyin

VAt/ — z weakly in (L2(Ü)f ,

ij£
z — Dz weakly in (L2(ü )f

for any z e i " with some fxf which satisfies V/x2* = z.

Proof: This follows by standard arguments, see, e.g. [12] page 597 or
[20] proposition 1. Q.E.D.

From now on we identify vj with Pe vj. Let the vector field ij be defined
as Vvj in Oe and by e2 Vwj in the interior of IIe. Then the extension lemma
from [12] pp. 593-597 implies that ij and V . $j are uniformly bounded in
(L2(Q)f and L2(Q) resp.

LEMMA 2 : There is an extension operator P e ££{Hl(Y\ Hl(Z))n
(Y), Lœ(Z)) such that
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Furthermore, there is an extension operator PE e if {HX{ÜE\ Hl(f2)) O
such that

Proof : There is an open set Yo with smooth boundary such that
clos(Y)<=F0 and clos (Fo) <= int (Z). Then one can find an extension
operator PQ e &(Hl(Y% Hl(Y0)) n ^ ( L 0 0 ^ ) , L°°(F0)) with the desired
properties. If one extends this trivially into all 2, one gets P, The
construction of P£ is obvious by summation over the individual cells. Q.E.D.

We now identify wj with its extension according to lemma 2 ; then
Wj is uniformly bounded in V° (Q ), and e VwJ is uniformly bounded in
L2(Q), Now we get

PROPOSITION 8 : There is a subsequence such that

vj^vf weaklyin L2(0, T ; Hl(Ü ) ) ,

u/ — i?/6 weak*in L00(g),

a^j __ a^* weakly in L2(Q) ,

v/ - Ü/ jrro/ig/y m C ([0, T] ; L2(/2 )) ,

f/— f/ weaklyin (L2(Q)T

with some vj* and ^*, 5wc/z r^ar V . £ƒ z5 bounded in L2(Q).

Proof : This follows from proposition 5. Note that strong convergence in
C ([0, T] ; L2(f2 )) is a conséquence of proposition 5 and results from [34].
Q.E.D.

In order to prove the main convergence resuit of this paper, namely
theorem 3, we use the notion of two-scale convergence which was introduced
in [29] and developed further in [3]. The idea behind this concept was used in
[4]-

DEFINITION 1 : The séquence {wB} <= L2(Q) is said to two-scale converge
to a limit w e L2{Q x Z) ifffor any a e C00 (g ; C^r{Z)) (« per » dénotes Z-
periodicity) one has

lim wE(t, x) a ( t, x, - ) dx dt = w(t, x, y) er (f, x, y) dy dx dt .

LEMMA 3 : From each bounded séquence in L2{Q) one can extract a
subsequence which two-scale converges to a limit w e L2(Q x Z).
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Proof: See [29]. Q.E.D.

LEMMA 4 : Let we and e Vw£ be bounded séquences in L2(Q). Then there
exists a function w e L2(Q ; 7fper(z)) and a subsequence such that both
w£ and e Vw£ two-scale converge to w and Vyw, resp.

Proof: See [3] and [29]. Q.E.D.

R e mark : Let a G L2
&r(Z\ define a£(x) = al - ), and let the séquence

{w£} Œ L2(Q) two-scale converge to a limit w e L2(Q x Z). Then {o-£w£}
two-scale converges to a limit aw.

PROPOSITION 9 : There is a subsequence such that

Wj ->> Wy*

dtw
£ -> 3 , W y *

s WwJ -» Vywf

wJ(T) - wjj -, wf(T) - w/(0)

/« ?/îe two-scale sensé with some w;* e L2(Q ; / / ^ (Z) ) n /^(O, T ;
L2(/2xZ)).

Proof: The first three statements follow from the estimâtes of prop-
osition 5 and lemmas 3 and 4. The last one is obtained by choosing a
a eC™(f2 ; C£r(Z)) and observing

lim 6,wÊ(Y, x) <x (x, - ) dxüfr = àtw(t, x, v) tr (x, y) dy dx dt .

Intégration by parts with respect to time yields the resuit. Q.E.D.

PROPOSITION 10 : The function w* defined in proposition 9 satisfies

w* | = Wjj a.e. on fl x Y .

Proof: Let £ G (C^(/2))m and a> e C$ (0, T) with <y ( D = 0. Further-
more, let a e C™(Y). We extend <x by zero to Z\Y and Z-periodically to

Un, We define or£ by cr£(x) = cr ( i \ . Then we have

(btwj, <Pj<Ts a> )Re = - (wy7, ^y cr
 e)nE w (0) - (w/, «P; o-s d?co )^, .
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Passing to the limit yields

dtwf a dy (pj dx <o dt =
Ju

= — \ wji a ^ 9] dx - wf er dy <pj dx dtœ dt
Jn JY Ju

and thus the equality to be proved. Q.E.D.
Propositions 9 and 10 now imply wj(T) -> w*{T) in the two-scale sense.

LEMMA 5 : Let <P : IR" -> IR+ be a continuons function satisfying
O ^ 0 ( A ) ^ C ( 1 + |A | 2 ) for all A e R " , <r e (C$(Q ; C^er(Z)))n, and

cr£{t, x) = a (t9 x, - V Then

f ff
lim 0{ae)dxdt= 0(er) dy dx dt . (18)
e ~>0 J Q JQ JZ

Furthermore, let <P in addition be convex. Then, ifv£ is a bounded séquence
from (L2(I2))n which two-scale converges towards v, we have

liminf &(v£)dxdt^ <P(v)dydxdt . (19)
e _>0 J Q JQ JZ

Proof : Firstly, let us note that <J can be approximated by linear
combinations of the form

(see [29]) ; therefore, is is sufficient to prove équation 18 for sums of this
type. Now we approximate the intégral

f dxdt

by

~f r
N(e) ÇT r

dxdt
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and get

Urn

= lim T f7" f 0 (Y <pk(U x) W - ) \ dxdt

and équation 18 is proved.
Now we are going to prove the inequality 19. Standard convex analysis

implies that <P is a pointwise supremum of a family of continuous affine
functions (see, e.g., [13]) and hence

h(v£)dxdt,
Q

where h is a continuous affine form on L2(f2). Therefore, we get easily

liminf <P(v£)dxdt^ h(v)dydxdt,
£ - • 0 JQ JQ JZ

and by taking the supremum over affine forms on the right hand side we have
inequality 19. Q.E.D.

PROPOSITION 11 : For the subsequences in propositions 8 and 9 the
relations

Vj - Wj e Nj Vy E /

hold on A,

Proof : First we consider the case j e Jv Let p e (C0 0^))*, extend it Z-

periodically and define p£(x) = p ( - J. Then with $ E Cf(O) and

a> G C$(0, T) we get

0 = fTs(vj-wf, v.pe ^co)r,dt= f e(V.(pe(vj-wj)&), <o)n*dt
Jo Jo

Jo

Jo
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Now we détermine the limits of these two terms separately. We have

lim e(V . pe(vj - w]\ &xne)n <» dt -
£=*0 Ju

f
= Vy . p (vf - wpdy $ dxa> dt

JU

and

lim e(pe . V(vj - wj), ^Xn^n o> dt =
e ^ O JO

= \ p . Vy(Uy* - w^* ) Ö?J i// dx CÜ dt .

Ju

Therefore, we conclude

*))dy <A dx o) dt = 0
Jt/

and hence

f P.p(vf-wp
Jr

Since p was arbitrary, we have vj* = w* on F for j e Jx.
The next case is j e J5. Here we choose test functions as bef ore and

assume — ^ . p ̂  0 on f, i// ̂  0 on Ï2, and w ^Oon (0, T). Then we have

0 =s e(-uf + w/, - P . pe il/u )r? dt .
Jo

In exactly the same way as before we get

0^ (* - v.p(wf-vj)dF(y).

Since p was arbitrary, we get vj* ̂  w;* on F for y' e /5 . The case
7 e ƒ6 is similar. Q.E.D.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



REACTIVE TRANSPORT THROUGH AN ARRAY OF CELLS 87

PROPOSITION 12 : The functions w* front proposition 9 satisfy the
variational inequality 8, i.e.,

5*0 Ver wiffc (S, o-)e Jf .

Proof: We choose o-,- e C?(ö ; C£r(Z)) such that cr. = 0 on F for
7 € 7l5 o-j =< 0 for y e /5, and oy ̂  0 for y e /6. We define <rf(t, x) =

cr. (t,x,- ) . Then after choosing <pj = vf and tf/j = a f + vj as test functions

we get

+ e2Cj(Vwjf V(cr/ + t;/ - w/ ) ) r - to,-(iv'), a / + i;/ - w/V) ̂  0 . (20)

At this point we suppose that - g is a strictly monotone function. The gênerai
case will be considered later. The monotonicity of - g implies that the
inequality 20 is equivalent to

;, VaJ + Vu/V - (0y.(5* + S"), cr/ + i>; - w/V)

(e2c;.(VW;, Vw/V + (8/W/, w / v ) . (21)

Nov/ we take the limits e -> 0 of the terms on the left hand side separately.
We have

(3,w;, cr/ + vj)R* -> (3,wy*, cr7 + !>ƒ%

(c Vw/, eV(cr/ + vf))R< -, (Vyw/, V/cry. + u / ) ^ .

Let us détermine the limit of the term involving gr Firstly, the uniform
L°° -bounds of (vj, wj\ proposition 8, and Lebesgue's dominated conver-
gence theorem imply that the limit is the same, if we replace vj by
fy*. Now, using the remark after lemma 3, we get

lim (gj(ffe + v<\ <rJ + vJ)Rc =
e - O

= lim (gj(ve + 5*), o-J + vj*)R* = (gj(Œ + S*), o-; + t;/)^
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and

Hm {g}(ö-s + ve), wJ)R* = lim (gj(ve + v*)9 wj)R* = (g,-(<x + u*), w/% .

For limiting the quadratic terms we use the remark after lemma 3 and
proposition 9 and get

Xne e ^wj -• Xy^yW* in the two-scale sense

and

Xns WJ(T) -* XYWJ*(J) in the two-scale sense .

Now we directly apply formula 19 from lemma 5 and get

f f
liminf e2\Vwj\2dxdtz* \Vyw?\2 dy dx dt

£->0 JRe JU

lim inf (3fW/, w/V = lim inf ( \ \\w](T)f - \ ||H>;7 | £ .
e->0 £ _ , 0 ^ Z Z

and

> - llw

By inserting all these relations into formula 21 we get

4- Cj(Vywf, Vy(o-j + vf - wf))v - {gj{o- + v*\ o-j + vf - wf

Standard convex analysis now implies

This inequality and proposition 11 imply the result.
If — g is non-monotone, we use g as it was defined in section 2.2. Then we

can we choose a constant C 5= 0 such that - Qj(z) + Czj; = - <?y-(z) is
monotone for y G / . Thus we get

dtwj - CwJ - cj AwJ - gj(we) = 0 .
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After introducing the function wj = e~Ct wj we get

BtwJ - cj Aw/ - e~ Ct gj (eCî w£) = 0

and

e-ctgj(ec'z)= (Ve~2Ct G(ect z))} = (VG(z)),. .

In this way we have reduced the problem to the case of a monotone function
- g, Q.E.D.

PROPOSITION 13 : The function g* from proposition 8 satisfies

if = D Vvf . (22)

Proof : From the définition of rj£
z and the extension lemma from [12] we

have V . rjl = 0 in O. Let $ e (C™(f2 ))m and <o e Cfî(O, T). Then we get

{i)l VvJ cpj a> )Q + (77z
£, «; V^ • ÛI )fi = 0 .

Passing to the limit £ - • 0 and by using the « div-curl »-lemma from [28] we
get

(Vl Wj <Pj «>)Q= (V/A/, S] <PJ<O)Q + 0(S)^ (z, fƒ ^ . û>)fi

and

(̂ ?z
e, v/ V^P7. « )Q - (Dz, vf V<pj a> )Q .

Therefore, we have

(f/\ zç>y w)G = (Z> Vu/, z^- w)G .

Since z, <p;, and a> were arbitrary, we get the resuit. Q.E.D.

Remark : This is the only place in this paper where we use the energy
method ; also we point out that in gênerai V . gj ^ 0 =£ V . £,-.

PROPOSITION 14 : For the limit of the subsequence in proposition 8 the
relation 7, i.e.,

^ * + 5,-, <Pj)Q + dj(D Vwf, V<Pj)Q +

+ (5 . V»/, ^ ) e - |X| (fj<v*\ cpj)Q) = 0 V ̂  e -T (23)
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Proof : Once again, we suppose that - g is a monotone function. The
gênerai case will be reduced to this special case in the same way as in the
proof of proposition 12.

Let <p G (Co)(ö))m- Then we use <p for both test functions <p and
tj/ in the inequality 3 and get

£ ((d,i,/, <pj - vj)Q. + (dtwf, cpj - wJ)Re

+ (5*. Vvjivj - v]))Q* - (fj(vF)9 <pj - i?/V -

^ 0 . (24)

We have

(*?, VvJ <pj)Q = - (M% V«P; !?ƒ ) c -> (M, V<p;. vf)Q = (S, Vi;/ (p-)ö

as e —• 0 and

lim inf Cj s VwJ . s VwJ xne dx dt ^ Cj \ VyWJ* \2 dy dx dt .
e-+0 JQ JU

Furthermore, by using the « div-curl » lemma from [28] we get

dj(Vvj, Vv])Q£ = djtfj, VvJ)Q + O(s) - dj(D Vi7/, Vi;/)ö .

Now propositions 8, 9, and 12 together with the last three formulas imply by
taking the limits in inequality 24

(S .

& 0 (25)

which can be written as

(dtvf-fj(v*)7 <Pj - vf)Q + dj(D Wf9 V(<pj - v*))Q

+ (S . Vt?/8, <py - ü / ) G + (3fw/ - ^-(w*), <

(26)
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We note that formula 8 implies

c , ( V / , Vy(i>/ - w/))<, + (dtwf - 0,-(iv*), i?/ - wf)u ^ 0 .

The last two relations give finally

£ (\X\ (9,vf ~ ƒ,(»*), <pj - vf)Q + dj(D Vt>/, V(Vj - vf))Q

+ (Ü . Vt>/, ^- - !>/)e 4- (6,w/ - flfy(w*), <pj - w/ )^) & 0 .

Q.E.D.

THEOREM 3 : The limit functions v * and w * ,ço/v^ ^ ^ macro-model
problem 4.

Proof : We have only to collect the results from propositions 10, 12, and
14. Q.E.D.

9. THE RESULT

THEOREM 4 : Let the data satisfy the assumptions from section 2,4 and the
functions f and g satisfy the conditions of section 2.2, Let (üe, pe) be a weak
solution of system 1 and (vs, ws) a solution of problem 2. Then there exist
extensions of û£, p\ v% and ws (denoted by the same symbols) such that

u£ -*Ü weaklyin (L2(Ü))n

ps -+p strongly inL\{O)

VJ _ Vj weakly in L2(0, T;Hl{Ù ))

vj-*Vj weak*inL™(Q)

dp- - BtVj weakly in L2(Q)

vj -> Vj strongly in C ([0, T] ; L2(Ü ))

wj -• Wj in the two-scale sensé

d{wj -> btwj in the two-scale sensé

s Vxwj -» VyWj in the two-scale sensé

forj e / , where (2, p) is a weak solution of system 6 and (S, w) is a solution
of problem 4.

Proof : The convergence of the subsequence towards (v, w) folio ws from
theorem 3. Since according to theorem 2 the macro-problem 4 has a unique
solution, we get convergence of the whole séquence. Q.E.D.
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Note added in proof: After this paper was submitted a paper (*) by G.
Allalre came to our attention. It contains a resuit similar to our semicontinui-
ty lemma regarding the behavlor of the convex functionals under two-scale
convergence.

* G. ALLAIRE, Homogenization and two-scale convergence, SIAM J. Math.
Anal., 23 (1992) 1482-1518.
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