M. L. Mascarenhas
 D. Poliševski
 The warping, the torsion and the Neumann problems in a quasi-periodically perforated domain

M2AN - Modélisation mathématique et analyse numérique, tome 28, n ${ }^{0} 1$ (1994), p. 37-57
http://www.numdam.org/item?id=M2AN_1994__28_1_37_0
© AFCET, 1994, tous droits réservés.
L'accès aux archives de la revue «M2AN - Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

THE WARPING, THE TORSION AND THE NEUMANN PROBLEMS IN A QUASI-PERIODICALLY PERFORATED DOMAIN (*)

by M. L. Mascarenhas (${ }^{1,2}$) and D. Poliševski (${ }^{3}$)

Communicated by P. G. Ciarlet

Abstract

Using the two-scale convergence method we study the homogenized behaviour of the warping and the torsion problems, in a two-dimensional domain with a quasi-periodic perforation, as well as the relationship between the two homogenized problems. The Neumann problem is also analized.

Key words : Homogenization, quasi-periodic, warping function, torsion function, Neumann problem.

Résumé. - Avec la technique de la convergence à double échelle, on étudie le comportement homogénéisé des problèmes de gauchissement et de torsion dans un domaine bi-dimensionnel perforé quasi périodiquement, ainsi que la relation entre les deux problèmes homogénéisés. On analyse également le problème de Neumann.

1. INTRODUCTION

The influence of the microscopic structure, the so-called, material distribution, on the global behaviour of the elastic materials is of great importance in the structural optimization problems. Many and important contributions have been made in this direction, both from the analitical and numerical points of view. An extensive bibliography may be found in [6].

[^0][^1]Quasi-periodic structures are frequently used in structural optimization problems. In [7] we present a first approach to the torsion problem, in a quasi-periodically perporated domain, generalizing the classical work [4]. In the present paper, based on two-scale convergence method introduced by G. Nguetseng (see [10] and [11]) and recently developed by G. Allaire (see [1] and [2]), and using the uniform extension and compactness property of some class of domains, due to D. Chenais (see [3]), we adopt a different approach, which has less restrictive assumptions on the variation of the holes and which can also be extended to the three-dimensional case. The same method is used to homogenize the two-dimensional warping and Neumann problems. Moreover, we find the relationship between the homogenized coefficients, following some ideas already presented in [8], for the periodic case.

In section 2 we give a very brief summary of the results of two-scale convergence and of uniform extension and compactness for some class of domains, which are necessary to prove the homogenization process.

In section 3 we present the relationship between the torsion and warping problems, as well as some sufficient conditions for the convergence process. In section 4 we obtain their homogenized behaviour and the relationship between the homogenized coefficients. The Neumann problem is treated in section 5.

2. SOME RELEVANT RESULTS

The two-scale convergence method

The two-scale convergence method was introduced by G. Nguetseng, in 1989 (see [10] and [11]), and more recently developed by G. Allaire (see [1] and [2]), in view of the periodic and quasi-periodic homogenization problems.

In this paragraph we briefly present, with no demonstrations, the results we need to prove our homogenization process.

DEFINITION 2.1: Let Ω be an open set of \mathbb{R}^{N} and $Y=[0,1]^{N}$. A sequence u_{ε} in $L^{2}(\Omega)$ two-scale converges to $u(x, y)$ in $L^{2}(\Omega \times Y)$ if, for all $\varphi \in \mathscr{D}\left(\Omega ; C_{\#}^{\infty}(Y)\right):$

$$
\int_{\Omega} u_{\varepsilon}(x) \varphi\left(x, \frac{x}{\varepsilon}\right) d x \rightarrow \int_{\Omega \times Y} u(x, y) \varphi(x, y) d x d y .
$$

THEOREM 2.2 : If u_{ε} is a bounded sequence in $L^{2}(\Omega)$ then there exists a subsequence ε^{\prime} of ε, and some u in $L^{2}(\Omega \times Y)$ such that, as ε^{\prime} goes to zero, u_{ε} two-scale converges to u.

PROPOSITION 2.3: If u_{ε} two-scale converges to u, then u_{ε} converges weakly in $L^{2}(\Omega)$ to $u_{0}=\int_{Y} u d y$. Moreover

$$
\lim _{\varepsilon \rightarrow 0}\left\|u_{\varepsilon}\right\|_{L^{2}(\Omega)} \geqslant\|u\|_{L^{2}(\Omega \times Y)} \geqslant\left\|u_{0}\right\|_{L^{2}(\Omega)}
$$

PROPOSITION 2.4 : Let u_{ε} be a sequence in $H^{1}(\Omega)$, weakly converging to $u \in H^{1}(\Omega)$, then u_{ε} two-scale converges to u and ∇u_{ε} two-scale converges to $\nabla u+\nabla_{y} u_{1}$ for $u_{1} \in L^{2}\left(\Omega ; H_{\#}^{1}(Y) / \mathbb{R}\right)$.

The uniform extension and compactness property

The following results are due to D. Chenais and their proofs may be found in [3].

DEFINITION 2.5 : Let $h>0$ and $\theta \in] 0, \pi / 2[$ be two given numbers and ξ a given element in \mathbb{R}^{N} such that $\|\xi\|=1$. We call cone of angle θ, height h and axis ξ the set

$$
C(\xi, \theta, h)=\left\{x \in \mathbb{R}^{N}:(x, \xi)>\|x\| \cos \theta ;\|x\|<h\right\}
$$

DEFINITION 2.6: Let $\theta \in] 0, \pi / 2[, h>0$ and $0<r \leqslant h / 2$ be three given numbers. A subset Ω of \mathbb{R}^{N} is said to satisfy the cone property for θ, h and r, if

$$
\begin{gathered}
\forall x \in \partial \Omega, \exists C_{x}=C\left(\xi_{x}, \theta, h\right), \text { such that } \\
\forall y \in B(x, r) \cap \Omega, \quad y+C_{x} \subset \Omega
\end{gathered}
$$

Where $B(x, r)$ denotes the open ball of radius r and center x in \mathbb{R}^{N}.

DEFINITION 2.7: Let \mathscr{D} be a fixed open and bounded subset of \mathbb{R}^{N}. For each θ, h and r we define :

$$
\pi(\theta, h, r)=\{\Omega \subset \mathscr{U}: \Omega \text { satisfies the cone property for } \theta, h \text { and } r\}
$$

and $U(\theta, h, r)$ the set of all the characteristic functions of elements of $\pi(\theta, h, r)$, with the $L^{2}(\mathscr{D})$ topology.

DEFINITION 2.8: For each $x \in \mathbb{R}^{2}$ and $\delta, k \in \mathbb{R}^{+}$, define

$$
P_{\delta, k}(x)=\left\{y \in \mathbb{R}^{2}:\left|y_{1}-x_{1}\right|<\delta \text { and }\left|y_{2}-x_{2}\right|<k . \delta\right\}
$$

and Lip (k, δ) the set of all open subset Ω of \mathscr{D}, such that : for all $x \in \partial \Omega$, there exists a local coordinate system and a function

$$
\left.\varphi_{x}:\right] x_{1}-\delta, x_{1}+\delta[\rightarrow \mathbb{R}
$$

vol. $28, \mathrm{n}^{\circ} 1,1994$
lipschitz of constant k, satisfying :

$$
y \in P_{\delta, k}(x) \cap \Omega \quad \text { iff } \quad y \in P_{\delta, k}(x) \quad \text { and } \quad y_{2}>\varphi_{x}\left(y_{1}\right) .
$$

PROPOSITION 2.9: $\forall \theta, h, r \quad \exists k, \delta: \pi(\theta, h, r) \subset \operatorname{Lip}(k, \delta)$ and, reciprocally,

$$
\forall k, \delta \quad \exists \theta, h, r: \operatorname{Lip}(k, \delta) \subset \pi(\theta, h, r)
$$

Theorem 2.10: Let $\theta \in] 0, \pi / 2[, h>0$ and $0<r \leqslant h / 2$.
There exists a constant $k=k(\theta, h, r)$, depending only on θ, h and r, such that

$$
\forall \Omega \in \pi(\theta, h, r) \quad \exists p_{\Omega}: H^{1}(\Omega) \rightarrow H^{1}\left(\mathbb{R}^{N}\right)
$$

linear and continuous extension operator, such that

$$
\left\|p_{\Omega}\right\| \leqslant k, \quad \forall \Omega \in \pi(\theta, h, r)
$$

THEOREM 2.11: $U(\theta, h, r)$ is compact in $L^{2}(\mathscr{O})$.

3. THE TORSION AND WARPING FUNCTIONS. A PRIORI ESTIMATES

Let Ω be an open bounded connected lipschitz set of \mathbb{R}^{2} and $Y=[0,1]^{2}$.
Let $\gamma=\gamma(x, \lambda)$ be a C^{1} function of x in $\bar{\Omega}$, with values in the space of simple, closed and piecewise $-C^{1}$ curves, i.e.,

$$
\gamma \in C^{1}\left(\bar{\Omega} ; C_{s}^{1}(0,1 ; Y)\right)
$$

satisfying $\gamma(\bar{\Omega} \times[0,1]) \subset \operatorname{int} Y$.
For each $x \in \bar{\Omega}$, let $1-\chi(x,$.$) represent the characteristic set function of$ $T(x)$ the closure of the interior part of $\gamma(x,$.$) . Extending \chi(x,$.$) by Y$ periodicity to the entire \mathbb{R}^{2}, let T be the closed subset of $\bar{\Omega} \times \mathbb{R}^{2}$ defined by $1-\chi(.,$.$) ; then \mathcal{O}=\left(\Omega \times \mathbb{R}^{2}\right) \backslash T$ is a connected open subset of $\Omega \times \mathbb{R}^{2}, Y$-periodic in the sense of its characteristic function $\chi(.,$.$) , with$ respect to the second variable, and whose boundary, in ($\Omega \times Y$), is given by

$$
\partial \mathcal{O}=\{(x, y): x \in \Omega, y=\gamma(x, \lambda), \lambda \in[0,1]\} .
$$

We denote

$$
\begin{equation*}
\theta(x)=\int_{Y} \chi(x, y) d y \tag{3.1}
\end{equation*}
$$

For each $\varepsilon>0, \mathbb{R}^{2}$ is covered by squares $Y_{\varepsilon k}=\varepsilon k+\varepsilon Y$, where $k \in \mathbb{R}^{2}$. Let \mathbb{Z}_{ε} represent the set of all $k \in \mathbb{Z}^{2}$ such that $Y_{\varepsilon k}$ is included in $\bar{\Omega}$. Define

$$
\chi_{\varepsilon}(x)=\left\{\begin{array}{l}
\chi\left(x, \frac{x}{\varepsilon}\right), \text { if } x \in Y_{\varepsilon k} \text { and } k \in \mathbb{Z}_{\varepsilon}, \tag{3.2}\\
1, \text { if } x \in \Omega \cap Y_{\varepsilon k} \text { and } k \notin \mathbb{Z}_{\varepsilon} .
\end{array}\right.
$$

Lemma 3.1: χ_{ε} two-scale converges to $\chi(x, y)$.
Proof: Following Theorem 2.2 one has, up to a subsequence, $\chi_{\varepsilon}-\xi(x, y)$, with $\xi \in L^{2}(\Omega \times Y)$. Let $\phi \in \mathscr{D}\left(\Omega ; C_{\#}^{\infty}(Y)\right)$, with support in T, and $\varphi \in \mathscr{D}(\Omega)$. For ε small enough one has

$$
\int_{\Omega} \chi_{\varepsilon}(x) \phi\left(x, \frac{x}{\varepsilon}\right) \varphi(x) d x=\int_{\Omega} \chi\left(x, \frac{x}{\varepsilon}\right) \phi\left(x, \frac{x}{\varepsilon}\right) \varphi(x) d x=0
$$

which implies $\int_{\Omega \times Y} \xi(x, y) \varphi(x, y) d x d y=0$, for all $\phi \in \mathscr{D}\left(\Omega ; C_{\#}^{\infty}(Y)\right)$, supp $\phi \subset \subset T(x), \varphi \in \mathscr{D}(\Omega)$, and, then $\xi(x, y)=0$ in T. Analogously one proves that $\xi(x, y)=1$ in \mathcal{O}.

Let Ω_{ε} be the subset of Ω defined by the characteristic function χ_{ε}. Let $T_{\varepsilon k}$, with $k \in \mathbb{Z}_{\varepsilon}$, represent each of the connected components of $\Omega \backslash \Omega_{\varepsilon}$. Remark that $\frac{1}{\varepsilon} T_{\varepsilon k}$ is a slight deformation of $T(\varepsilon k) ; \frac{1}{\varepsilon} T_{\varepsilon k}$ is the interior part of the curve $y=\sigma(\varepsilon k, \lambda)$, implicity defined by $y=\gamma(\varepsilon k+\varepsilon y, \lambda)$ when $y \in Y$ and $\lambda \in[0,1]$, and, in fact, very near to $\gamma(\varepsilon k, \lambda)$, in the sense of the $C_{s}^{1}([0,1] ; Y)$-norm. As in [7] (Lemma 2.2) one may obtain, for a constant independent of ε :

$$
\begin{equation*}
d_{\mathscr{H}}\left(\partial T_{\varepsilon k}, \partial(\varepsilon T(\varepsilon k))\right)<C \varepsilon^{2}, \tag{3.3}
\end{equation*}
$$

where $d_{\mathscr{H}}$ means the Hausdorff distance between two sets.
Consider, now, the warping problem in Ω_{ε} :

$$
\left\{\begin{array}{l}
-\Delta w_{\varepsilon}=0, \text { in } \Omega_{\varepsilon}, \tag{3.4}\\
\partial_{n} w_{\varepsilon}=x_{2} n_{1}-x_{1} n_{2}, \text { on } \partial \Omega_{\varepsilon} \\
\int_{\Omega_{\varepsilon}} w_{\varepsilon} d x=0
\end{array}\right.
$$

The corresponding variational formulation is to find $w_{\varepsilon} \in H^{1}\left(\Omega_{\varepsilon}\right)$ such that $\int_{\Omega_{F}} w_{\varepsilon} d x=0$ and
vol. 28, n $^{\circ} 1,1994$

$$
\begin{equation*}
\int_{\Omega_{\varepsilon}} \nabla w_{\varepsilon} \nabla \varphi d x=\int_{\partial \Omega_{\varepsilon}}\left(x_{2} n_{1}-x_{1} n_{2}\right) \varphi d \sigma, \forall \varphi \in H^{1}\left(\Omega_{\varepsilon}\right) \tag{3.5}
\end{equation*}
$$

The associate torsion problem in Ω_{ε} is :

$$
\left\{\begin{array}{l}
-\Delta \psi_{\varepsilon}=2, \text { in } \Omega_{\varepsilon} \tag{3.6}\\
\psi_{\varepsilon}=0, \text { on } \partial \Omega \\
\psi_{\varepsilon}=C_{\varepsilon k}, \text { on } \partial T_{\varepsilon k}, k \in \mathbb{Z}_{\varepsilon} \\
\int_{\partial T_{\varepsilon k}} \partial_{n} \psi_{\varepsilon}=2\left|T_{\varepsilon k}\right|, k \in \mathbb{Z}_{\varepsilon}
\end{array}\right.
$$

where $\left|T_{\varepsilon k}\right|$ means the measure of $T_{\varepsilon k}$. Defining, $\Phi\left(\Omega_{\varepsilon}\right)=\left\{v \in H^{1}\left(\Omega_{\varepsilon}\right): v\right.$ is zero on $\partial \Omega$ and
v is constant on each $\left.\partial T_{\varepsilon k}, k \in \mathbb{Z}_{\varepsilon}\right\}$,
the variational formulation of problem (3.6) is

$$
\left\{\begin{array}{l}
\psi_{\varepsilon} \in \Phi\left(\Omega_{\varepsilon}\right), \tag{3.7}\\
\int_{\Omega_{\varepsilon}} \nabla \psi_{\varepsilon} \nabla \varphi=-\int_{\Omega_{\varepsilon}} x \cdot \nabla \varphi, \forall \varphi \in \Phi\left(\Omega_{\varepsilon}\right)
\end{array}\right.
$$

It is well known that both problems (3.5) and (3.7) have unique solutions which are related by :

Proposition 3.2 : For each $\varepsilon>0$, the warping and torsion functions satisfy, for almost all $x \in \Omega_{\varepsilon}$, the relation :

$$
\nabla \omega_{\varepsilon}-R x=R \nabla \psi_{\varepsilon}, \quad \text { with } \quad R=\left(\begin{array}{rr}
0 & 1 \tag{3.8}\\
-1 & 0
\end{array}\right) .
$$

Proof: From problem (3.4) $\nabla w_{\varepsilon}-R x$ is a divergence-free function in Ω_{ε} which has zero normal trace on $\partial \Omega_{\varepsilon}$; so, following [5] (corollary 3.1, p. 26), there exists a unique stream function, solution of problem (3.6) and, consequently, equal to ψ_{ε}, that satisfies, in Ω_{ε},

$$
\left\{\begin{array}{l}
\partial_{1} w_{\varepsilon}-x_{2}=\partial_{2} \psi_{\varepsilon} \tag{3.9}\\
\partial_{2} w_{\varepsilon}+x_{1}=-\partial_{1} \psi_{\varepsilon}
\end{array},\right.
$$

Consider the natural extension of ψ_{ε} to all Ω that takes, on each hole $T_{\varepsilon k}, k \in \mathbb{Z}_{\varepsilon}$, the constant value $C_{\varepsilon k}$. One has $\psi_{\varepsilon} \in H^{1}(\Omega)$. The same extension can be considered for any function of the space $\Phi\left(\Omega_{\varepsilon}\right)$ and the
variational formulation (3.8) may be written as follows:

$$
\left\{\begin{array}{l}
\psi_{\varepsilon} \in \Phi\left(\Omega_{\varepsilon}\right), \tag{3.10}\\
\int_{\Omega_{\varepsilon}} \nabla \psi \nabla \varphi d x=2 \int_{\Omega_{\varepsilon}} \varphi, \forall \varphi \in \Phi\left(\Omega_{\varepsilon}\right) .
\end{array}\right.
$$

Lemma 3.3 : The norms $\left\|\nabla w_{\varepsilon}\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}$ and $\left\|\psi_{\varepsilon}\right\|_{H^{1}(\Omega)}$ are bounded independently of ε.

Proof : Integrating by parts the right-hand sides. of (3.5) and (3.10) and making respectively, $\varphi=w_{\varepsilon}$ and $\varphi=\psi_{\varepsilon}$, one obtains, for a constant C independent of ε,

$$
\left\|\nabla w_{\varepsilon}\right\|_{L^{2}\left(\Omega_{\epsilon}\right)} \leqslant C \quad \text { and } \quad\left\|\nabla \psi_{\varepsilon}\right\|_{L^{2}(\Omega)} \leqslant C
$$

which proves the result since, in the last inequality, one may use Poincare's inequality in Ω.

Consider, now, the following two problems, where C represents always a constant, independent of ε :

$$
\left\{\begin{array}{l}
\text { Find } \xi_{\varepsilon} \in L^{2}(\Omega) \tag{3.11}\\
\left\|\xi_{\varepsilon}\right\|_{L^{2}(\Omega)} \leqslant C \\
\operatorname{div}\left[\nabla \psi_{\varepsilon}+x \chi_{\varepsilon}+\xi_{\varepsilon}\left(1-\chi_{\varepsilon}\right)\right]=0 \text { in } \Omega
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\text { Find } v_{\varepsilon} \in H^{1}(\Omega) ; \tag{3.12}\\
\left\|v_{\varepsilon}\right\|_{H^{\prime}(\Omega)} \leqslant C, \\
v_{\varepsilon}=w_{\varepsilon} \text { in } \Omega_{\varepsilon} .
\end{array}\right.
$$

Both problems are related as follows :
Proposition 3.4 : Problem (3.11) has a solution if and only if problem (3.12) is solvable.

Proof : Let ξ_{ε} be a solution of problem (3.11) and consider $\eta_{\varepsilon}=\left(\nabla w_{\varepsilon}\right)^{\sim}$ $+R \xi_{\varepsilon}\left(1-\chi_{\varepsilon}\right)$, where $\left(\nabla w_{\varepsilon}\right)^{\sim}$ is the zero extension of ∇w_{ε} to the entire Ω and R is the orthonormal matrix in (3.8), whose transpose coincides with $(-R)$. Let $\varphi \in H_{0}^{1}(\Omega)$, then

$$
\begin{aligned}
\int_{\Omega} \eta_{\varepsilon} R \nabla \varphi d x=\int_{\Omega}-R \eta_{\varepsilon} \nabla \varphi d x & = \\
& =\int_{\Omega}\left[-R\left(\nabla w_{\varepsilon}\right)^{\sim}+\xi_{\varepsilon}\left(1-\chi_{\varepsilon}\right)\right] \nabla \varphi d x .
\end{aligned}
$$

Using equality (3.8) in the last integral, one obtains

$$
\int_{\Omega} \eta_{\varepsilon} R \nabla \varphi d x=\int_{\Omega}\left[\nabla \psi_{\varepsilon}+x \chi_{\varepsilon}+\xi_{\varepsilon}\left(1-\chi_{\varepsilon}\right)\right] \nabla \varphi d x
$$

which, by (3.11) is equal to zero. Then η_{ε} is orthogonal to any divergencefree function having its normal trace equal to zero (see [5], Thm. 3.4, p. 31) and one may conclude that η_{ε} is a gradient, i.e., there exists $u_{\varepsilon} \in H^{1}(\Omega)$, such that

$$
\left(\nabla w_{\varepsilon}\right)^{\sim}+R \xi_{\varepsilon}\left(1-\chi_{\varepsilon}\right)=\nabla u_{\varepsilon} .
$$

Defining $v_{\varepsilon}=u_{\varepsilon}-\frac{1}{\left|\Omega_{\varepsilon}\right|} \int_{\Omega_{\varepsilon}} u_{\varepsilon}$, one may conclude that $v_{\varepsilon} \chi_{\varepsilon}$ satisfies problem (3.5) and, then, $v_{\varepsilon} \chi_{\varepsilon}=w_{\varepsilon}$. Since ξ_{ε} and $\left(\nabla w_{\varepsilon}\right)^{\sim}$ are bounded in $L^{2}(\Omega)$ the same happens with $\nabla u_{\varepsilon}=\nabla \dot{v}_{\varepsilon}$ and, using Poincaré's inequality in Ω, we find that $\left\|v_{\varepsilon}\right\|_{H^{1}(\Omega)}$ is bounded independently of ε.

Conversely, the same kind of argument holds: if v_{ε} is a solution of problem (3.12), $\xi_{\varepsilon}=-R \nabla v_{\varepsilon}$ will be a solution of problem (3.11).

In order to solve problem (3.11) we shall introduce the following supplementary hypothesis (H) :
«There exist, as in Definition 2.7 for $\mathscr{D}=Y$, three numbers θ, h and r such that, for ε small enough, the family $\left\{\frac{1}{\varepsilon} T_{\varepsilon k}\right\}_{k \in \mathbb{Z}_{\varepsilon}}$ is included in $\pi(\theta, h, r)$. »

LEMMA 3.5: If $\left\{T_{\alpha}\right\}_{\alpha \in A}$ is a family of connected elements of $\pi(\theta, h, r)$ then there exists a real constant C, independent of α, such that

$$
\begin{equation*}
\sup _{\substack{u \in H^{1}\left(T_{\alpha}\right)}} \frac{\|u\|_{H^{1}\left(T_{\alpha}\right)}}{\|\nabla u\|_{L^{2}\left(T_{\alpha}\right)}} \leqslant C . \tag{3.13}
\end{equation*}
$$

Proof: Using Theorem 2.10, let $\left\{p_{\alpha}\right\}_{\alpha \in A}$ be a family of linear continuous extension operators such that $\left\|p_{\alpha}\right\| \leqslant k$, where k is a constant independent of $\alpha \in A$.

If the right hand side of (3.13) is not bounded independently of α, there exist two sequences $\alpha_{n} \in A$ and $u_{n} \in H^{1}\left(T_{\alpha_{n}}\right), \int_{T_{\alpha_{n}}} u_{n}=0$, $u_{n} \not \equiv 0$, such that $\left\|u_{n}\right\|_{H^{1}\left(T_{\alpha_{n}}\right)}=1$ and $\left\|\nabla u_{n}\right\|_{L^{2}\left(T_{\alpha_{n}}\right)}<\frac{1}{n}$.

Using Theorem 2.11 we may suppose that, up to a subsequence, there exists a connected $T_{0} \in \pi(\theta, h, r)$ such that, is terms of the characteristic functions, one has

$$
\begin{equation*}
\chi_{T_{\alpha_{n}}} \rightarrow \chi_{T_{0}}, \quad \text { in } \quad L^{2}(Y) . \tag{3.14}
\end{equation*}
$$

In fact, as we prove in the Appendix, the subset of connected elements of $\pi(\theta, h, r)$ is closed, in the sense of its characteristic functions, for the $L^{2}(Y)$ topology.

Since $1=\left\|u_{n}\right\|_{H^{1}\left(T_{\alpha_{n}}\right)} \leqslant\left\|p_{\alpha_{n}} u_{n}\right\|_{H^{1}(Y)} \leqslant k$, we may also suppose that, up to a subsequence, there exists a $u_{0} \in H^{1}(Y)$ such that

$$
p_{\alpha_{n}} u_{n} \rightarrow u_{0}, \quad \text { weakly in } H^{1}(Y)
$$

which implies

$$
\begin{equation*}
\nabla\left(p_{\alpha_{n}} u_{n}\right)-\nabla u_{0}, \quad \text { weakly in } L^{2}(Y) \tag{3.15}
\end{equation*}
$$

and, by compact injection,

$$
\begin{equation*}
p_{\alpha_{n}} u_{n} \rightarrow u_{0}, \quad \text { in } L^{2}(Y) \tag{3.16}
\end{equation*}
$$

From (3.14) and (3.15) one obtains

$$
\nabla\left(p_{\alpha_{n}} u_{n}\right) \cdot \chi_{T_{\alpha_{n}}} \rightarrow \nabla u_{0} \cdot \chi_{T_{0}}, \quad \text { weakly in } L^{2}(Y)
$$

Since

$$
\left\|\nabla\left(p_{\alpha_{n}} u_{n}\right) \cdot \chi_{T_{\alpha_{n}}}\right\|_{L^{2}(Y)}=\left\|\nabla u_{n}\right\|_{L^{2}\left(T_{\alpha_{n}}\right)} \rightarrow 0,
$$

one has $\nabla u_{0} \cdot \chi_{T_{0}}=0$, which means that u_{0} is constant on T_{0}.
Since

$$
0=\int_{T_{\alpha_{n}}} u_{n}=\int_{Y} \chi_{T_{\alpha_{n}}} \cdot p_{\alpha_{n}} u_{n} \rightarrow \int_{Y} \chi_{T_{0}} \cdot u_{0}=u_{0}\left|T_{0}\right|
$$

$\left|T_{0}\right| \neq 0$ and T_{0} is connected, one concludes that $u_{n} \equiv 0$ on T_{0}. We have, then, from (3.14) and (3.16),

$$
\left\|u_{n}\right\|_{L^{2}\left(T_{\alpha_{n}}\right)}=\int_{Y}\left|\chi_{T_{\alpha_{n}}} \cdot p_{\alpha_{n}} u_{n}\right|^{2} \rightarrow \int_{Y} \chi_{T_{0}}\left|u_{0}\right|^{2}=0
$$

and, consequently,

$$
1=\left\|u_{n}\right\|_{H^{1}\left(T_{\alpha_{n}}\right)}=\left\|u_{n}\right\|_{L^{2}\left(T_{\alpha_{n}}\right)}+\left\|\nabla u_{n}\right\|_{L^{2}\left(T_{\alpha_{n}}\right)} \rightarrow 0
$$

which is absurd.

Proposition 3.6 : Admit that hypothesis (H) is satisfied; then problem (3.11) has a solution.

Proof: Consider, for each $k \in \mathbb{Z}_{\varepsilon}$, the restriction of $\psi_{\varepsilon}+\frac{\|x\|^{2}}{2}$ to $Y_{\varepsilon k}$ and let $\zeta_{\varepsilon k}$ be defined, in $Y \backslash \frac{1}{\varepsilon} T_{\varepsilon k}$, by

$$
\zeta_{\varepsilon k}(y)=\frac{1}{\varepsilon} \psi_{\varepsilon}(k \varepsilon+\varepsilon y)+\frac{1}{2 \varepsilon}\|\varepsilon k+\varepsilon y\|^{2}
$$

then

$$
\left\{\begin{array}{l}
\nabla_{y} \zeta_{\varepsilon k}(y)=\nabla \psi_{\varepsilon}(k \varepsilon+\varepsilon y)+(\varepsilon k+\varepsilon y) \tag{3.17}\\
\Delta_{y} \zeta_{\varepsilon k}(y)=\varepsilon\left(\Delta \psi_{\varepsilon}(k \varepsilon+\varepsilon k)+2\right)=0
\end{array}\right.
$$

Let $\theta_{\varepsilon k} \in H^{1}\left(\frac{1}{\varepsilon} T_{\varepsilon k}\right)$ be the unique solution of the following compatible Neumann cell-problem :

$$
\left\{\begin{array}{l}
-\Delta_{y} \theta_{\varepsilon k}=0, \quad \text { in } \quad \frac{1}{\varepsilon} T_{\varepsilon k}, \tag{3.18}\\
\partial_{n_{y}} \theta_{\varepsilon k}=\partial_{n_{y}} \zeta_{\varepsilon k}, \quad \text { on } \quad \partial \frac{1}{\varepsilon} T_{\varepsilon k}, \\
\int_{\frac{1}{\varepsilon} T_{\varepsilon k}} \theta_{\varepsilon k} d y=0
\end{array}\right.
$$

Since hypothesis (H) holds, let $p \frac{1}{\varepsilon} r_{\varepsilon k}$ and k be the linear continuous extensions and constant mentioned in Theorem 2.10.

Multiplying (3.18) by $\theta_{\varepsilon k}$ and using (3.17), one obtains

$$
\begin{aligned}
\left\|\nabla_{y} \theta_{\varepsilon k}\right\|_{L^{2}}^{2}\left(\frac{1}{\varepsilon} T_{\varepsilon k}\right)=\int_{\partial \frac{1}{\varepsilon} T_{\varepsilon k}} \partial_{n_{y}} \zeta_{\varepsilon k} . \theta_{\varepsilon k} & =\int_{Y \backslash \frac{1}{\varepsilon} T_{\varepsilon k}} \nabla_{y} \zeta_{\varepsilon k} \cdot p \frac{1}{\varepsilon} T_{\varepsilon k} \theta_{\varepsilon k} \leqslant \\
\leqslant & k\left\|\nabla_{y} \zeta_{\varepsilon k}\right\|_{L^{2}}\left(Y \backslash \frac{1}{\varepsilon} T_{\varepsilon k}\right) \cdot \| \theta_{\varepsilon k_{H^{1}}\left(\frac{1}{\varepsilon} T_{\varepsilon k}\right)}
\end{aligned}
$$

Using hypothesis (H), Lemma 3.5 holds for the family $\left\{\frac{1}{\varepsilon} T_{\varepsilon k}\right\}_{k \in \mathbb{Z}_{\varepsilon}}$, and we obtain

$$
\begin{equation*}
\left\|\nabla_{y} \theta_{\varepsilon k}\right\|_{L^{2}\left(\frac{1}{\varepsilon} T_{\varepsilon k}\right)} \leqslant C\left|\nabla_{y} \zeta_{\varepsilon k}\right|_{L^{2}\left(Y \backslash \frac{1}{\varepsilon} T_{\varepsilon k}\right)} \tag{3.19}
\end{equation*}
$$

where C is a constant independent of ε and k.

Define, for $k \in \mathbb{Z}_{r}$,

$$
\zeta_{\varepsilon k}=\left\{\begin{array}{l}
\nabla_{y} \theta_{\varepsilon k}, \text { in } \frac{1}{\varepsilon} T_{\varepsilon k} \\
\nabla_{y} \zeta_{\varepsilon k}, \text { in } Y \backslash \frac{1}{\varepsilon} T_{\varepsilon k}
\end{array}\right.
$$

In view of (3.17) and (3.18)

$$
\begin{equation*}
\operatorname{div}_{y} \xi_{\varepsilon k}=0, \operatorname{in} Y,\left\|\xi_{\varepsilon k}\right\|_{L^{2}(Y)} \leqslant \bar{C}\left\|\nabla_{y} \zeta_{\varepsilon k}\right\|_{L^{2}\left(Y \backslash \frac{1}{\varepsilon} T_{\varepsilon k}\right)} \tag{3.20}
\end{equation*}
$$

where \bar{C} is a constant independent of ε and k.
Defining, $\xi_{\varepsilon}(x)=\nabla \psi_{\varepsilon}(x)+x$ for $x \in \Omega \cap Y_{\varepsilon k}, k \notin \mathbb{Z}_{\varepsilon}$, and $\xi_{\varepsilon}(x)=$ $\xi_{\varepsilon k}\left(\frac{x}{\varepsilon}-k\right)$ for $x \in Y_{\varepsilon k}, k \in \mathbb{Z}_{\varepsilon}$, one has

$$
\operatorname{div}_{x}\left(\nabla \psi_{\varepsilon}+x \chi_{\varepsilon}+\xi_{\varepsilon}\left(1-\chi_{\varepsilon}\right)\right)=\operatorname{div}_{x} \xi_{\varepsilon}=0, \text { in } \Omega
$$

and finally,

$$
\begin{aligned}
\left\|\xi_{\varepsilon}\right\|_{L^{2}(\Omega)}^{2} & =\sum_{\substack{\varepsilon_{k} \\
k \notin \mathbb{Z}_{\varepsilon}}} \int_{Y_{\varepsilon k \cap \Omega}}\left|\nabla \psi_{\varepsilon}(x)+x\right|^{2} d x+\sum_{\substack{\varepsilon k \\
k \in \mathbb{Z}_{\varepsilon}}} \int_{Y_{\varepsilon k}}\left|\xi_{\varepsilon k}\left(\frac{x}{\varepsilon}-k\right)\right|^{2} d x \\
& =\sum_{\substack{\varepsilon k \\
k \not \mathbb{Z}_{e}}} \int_{Y_{\varepsilon k \cap \Omega}}\left|\nabla \psi_{\varepsilon}(x)+x\right|^{2} d x+\sum_{\substack{\varepsilon k \\
k \in \mathbb{Z}_{\varepsilon}}} \frac{1}{\varepsilon} \int_{Y \backslash \frac{1}{\varepsilon} T_{\varepsilon k}}\left|\xi_{\varepsilon k}(y)\right|^{2} d y,
\end{aligned}
$$

by (3.20)

$$
\leqslant \sum_{\substack{\varepsilon k \\ k \notin \mathbb{Z}_{\varepsilon}}} \int_{Y_{\varepsilon k \cap \Omega}}\left|\nabla \psi_{\varepsilon}(x)+x\right|^{2} d x+\bar{C} \sum_{\substack{\varepsilon k \\ k \in \mathbb{Z}_{\varepsilon}}} \frac{1}{\varepsilon} \int_{Y \backslash \frac{1}{\varepsilon} T_{\varepsilon k}}\left|\nabla_{y} \zeta_{\varepsilon k}(y)\right|^{2} d y
$$

by (3.17)

$$
\begin{aligned}
& \leqslant \sum_{\substack{\varepsilon k \\
k \not \mathbb{Z}_{\varepsilon}}} \int_{Y_{\varepsilon k \cap \Omega}}\left|\nabla \psi_{\varepsilon}(x)+x\right|^{2} d x+\bar{C} \sum_{\substack{\varepsilon k \\
k \in \mathbb{Z}_{\varepsilon}}} \int_{Y \backslash T_{\varepsilon k}}\left|\nabla \psi_{\varepsilon}+x\right|^{2} d x \\
& \leqslant \max \{1 ; \bar{C}\} \int_{\Omega_{e}}\left|\nabla \psi_{\varepsilon}+x\right|^{2} d x \\
& \leqslant \max \{1 ; \bar{C}\}\left\|\nabla \psi_{\varepsilon}+x\right\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

vol. $28, n^{\circ} 1,1994$
which, in view of Lemma 3.3, proves that the $L^{2}(\Omega)$-norm of ξ_{ε} is bounded, independently of ε, and the proof is completed.

REMARK 3.7: Hypothesis (H) is essential since some geometries may generate unbounded sequences of the form (3.13) (see [12], ch. 6, p. 95).

4. THE HOMOGENIZATION PROCESS

Following the two-scale convergence method we determine, in this section, the homogenized behaviour of the torsion and warping problems. Moreover we study the relationship between them.

The torsion problem

Let ξ_{ε} be the solution of problem (3.11). Using Theorem 2.2, there exists a function $\psi_{2} \in L^{2}(\Omega \times Y)$, such that, up to a subsequence of $\varepsilon \rightarrow 0$, the following two-scale convergence holds

$$
\begin{equation*}
\left(\xi_{\varepsilon}-x\right)\left(1-\chi_{\varepsilon}\right)-\psi_{2} . \tag{4.1}
\end{equation*}
$$

Since ψ_{ε}, already extended to the entire Ω, is bounded in $H_{0}^{1}(\Omega)$, independently of ε, we may also assume, using Proposition 2.4, the existence of $\psi \in H_{0}^{1}(\Omega)$ and $\psi_{1} \in L^{2}\left(\Omega ; H_{\#}^{1}(y) / \mathbb{R}\right)$ such that, up to a subsequence of $\varepsilon \rightarrow 0$, the following two-scale convergences take place

$$
\begin{equation*}
\psi_{\varepsilon} \rightarrow \psi, \quad \nabla \psi_{\varepsilon} \rightarrow \nabla \psi+\nabla_{y} \psi_{1} \tag{4.2}
\end{equation*}
$$

Using as test functions, in the definition of the two-scale convergence, some $\varphi \in \mathscr{D}\left(\Omega ; C_{\#}^{\infty}(Y)\right)$, with support in \mathcal{O} or in T, one concludes that

$$
\begin{equation*}
\psi_{2}(x, y)=0, \quad \text { a.e. in } \mathcal{O} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \psi(x)+\nabla_{y} \psi_{1}(x, y)=0, \quad \text { a.e. in } T \tag{4.4}
\end{equation*}
$$

From (3.11) one has

$$
\begin{equation*}
\int_{\Omega}\left[\nabla \psi_{\varepsilon}+x+\left(\xi_{\varepsilon}-x\right)\left(1-\chi_{\varepsilon}\right)\right] \nabla \varphi d x=0, \quad \forall \varphi \in H_{0}^{1}(\Omega) \tag{4.5}
\end{equation*}
$$

Let $\quad \varphi=\phi(x)+\varepsilon \phi_{1}\left(x, \frac{x}{\varepsilon}\right)$ where $\quad \phi \in \mathscr{D}(\Omega) \quad$ and $\phi_{1} \in \mathscr{D}\left(\Omega ; C_{\#}^{\infty}(Y)\right)$. One obtain, from (4.5)

$$
\begin{aligned}
& \int_{\Omega}\left[\nabla \psi_{\varepsilon}+x+\left(\xi_{\varepsilon}-x\right)\left(1-\chi_{\varepsilon}\right)\right] \times \\
& \times\left[\nabla \phi+\varepsilon \nabla_{x} \phi_{1}\left(x, \frac{x}{\varepsilon}\right)+\nabla_{y} \phi_{1}\left(x, \frac{x}{\varepsilon}\right)\right] d x=0,
\end{aligned}
$$

and, consequently, passing this to the limit,

$$
\int_{\Omega \times Y}\left[\nabla \psi+\nabla_{y} \phi_{1}+x+\psi_{2}\right] \cdot\left[\nabla \phi+\nabla_{y} \phi_{1}\right] d x d y=0
$$

for all ϕ and ϕ_{1}. It yields the following two-scale homogenized torsion system :

$$
\left\{\begin{array}{l}
-\operatorname{div}_{x}\left[\nabla \psi+\int_{Y} \psi_{2} d y\right]=2, \quad \text { in } \Omega \tag{4.6}\\
\psi=0, \text { on } \partial \Omega, \\
-\operatorname{div}_{y}\left[\nabla_{y} \psi_{1}+\psi_{2}\right]=0, \quad \text { in } \Omega \times Y
\end{array}\right.
$$

$\psi_{1} \nabla_{y} \psi_{1}, \psi_{2}$ are Y-periodic, satisfying, respectively, (4.4) and (4.3).
Developing the cell-problem in (4.6) and conditions (4.3) and (4.4), and since $\nabla \psi(x)$ is the independent of $y, \psi_{1} \in L^{2}\left(\Omega ; H_{\#}^{1}(Y) / \mathbb{R}\right)$ and $\psi_{2} \in L^{2}(\Omega \times Y)$ must satisfy the following problems, a.e. in $x \in \Omega$,

$$
\left\{\begin{array}{l}
-\Delta_{y} \psi_{1}=0, \text { in } Y \backslash T(x) \tag{4.7}\\
\psi_{1}=-\nabla \psi(x) y, \text { on } \partial T(x)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
-\operatorname{div}_{y} \psi_{2}=0, \text { in } T(x) \tag{4.8}\\
\psi_{2} n=\left(\nabla \psi+\left.\left(\nabla_{y} \psi_{1}\right)\right|_{y \backslash T(x)}\right) n, \text { on } \partial T(x)
\end{array}\right.
$$

Defining, for $i=1,2$ and $x \in \Omega, \phi_{i}^{x}$ and $\phi_{i}^{x^{*}}$ as the solutions of

$$
\left\{\begin{array}{l}
-\Delta_{y} \phi_{i}^{x}=0, \text { in } Y \backslash T(x) \tag{4.9}\\
\phi_{i}^{x}=-y_{i}, \text { on } \partial T(x) \\
\phi_{i^{\prime}}^{x} \nabla_{y} \phi_{i}^{x} \text { are } Y \text {-periodic }
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
-\Delta_{y} \phi_{i}^{x^{*}}=0, \text { in } T(x) \tag{4.10}\\
\partial_{n} \phi_{i}^{x^{*}}=\partial_{n} \phi_{i}^{x}, \text { on } \partial T(x) \\
\int_{T(x)} \phi_{i}^{x^{*}}=0, \phi_{i}^{x^{*}} Y \text {-periodic }
\end{array}\right.
$$

respectively, one has, a.e. in $x \in \Omega$,

$$
\Psi_{1}(x, y)=\phi_{1}^{x}(y) \cdot \partial_{1} \psi(x)+\phi_{2}^{x}(y) \cdot \partial_{2} \psi(x), \text { a.e. in } y \in Y \backslash T(x)
$$

and

$$
\psi_{2}(x, y)=\binom{\left(\partial_{1}^{y} \phi_{1}^{x^{*}}+1\right) \partial_{1} \psi+\partial_{1}^{y} \phi_{2}^{x^{*}} \partial_{2} \psi}{\partial_{2}^{y} \phi_{1}^{x^{*}} \partial_{1} \psi+\left(\partial_{2}^{y} \phi_{2}^{x^{*}}+1\right) \partial_{2} \psi}+\psi_{2}^{x^{*}}(x, y),
$$

a.e. in $y \in T(x)$, where ψ_{2}^{*} is the curl of some stream function, with respect to y, and, consequently,

$$
\int_{T(x)} \psi_{2}^{*} d y=0
$$

Since from (4.9) and (4.10),

$$
\int_{T(x)} \partial_{i}^{y} \phi_{j}^{x^{*}} d y=\int_{Y \backslash T(x)} \nabla_{y} \phi_{j}^{x} \cdot \nabla_{y} \phi_{i}^{x} d y,
$$

the first equation of (4.6) takes, then, the form

$$
\left\{\begin{array}{l}
-\operatorname{div}_{x}(A \nabla \psi)=2, \text { in } \Omega \tag{4.11}\\
\psi=0, \text { on } \partial \Omega
\end{array}\right.
$$

where

$$
\begin{gather*}
A=A(x)=\left[a_{i j}(x)\right]_{i, j=1,2}, \quad \text { and } \quad \text { (c.f. [7], § 4) } \\
a_{i j}(x)=(2-\theta(x)) \delta_{i j}+\int_{Y \backslash T(x)} \nabla_{y} \phi_{i}^{x} \nabla_{y} \phi_{j}^{x} d x \tag{4.12}
\end{gather*}
$$

Equations (4.11) and (4.9) (or (4.11) represent the macroscopic and microscopic problems, associated to the homogenization process, respectively.

The warping problem

Let v_{ε} be the solution of problem (3.12) and let \tilde{w}_{ε} and $\left(\nabla w_{\varepsilon}\right)^{\sim}$ be the zero extensions to Ω of w_{ε} and ∇w_{ε}, respectively. Using Theorem 2.2 and Proposition 2.4 there exists w and σ in $L^{2}(\Omega \times Y), v \in H^{1}(\Omega)$ and $v_{1} \in L^{2}\left(\Omega ; H_{\#}^{1}(Y) / \mathbb{R}\right)$, such that, up to a subsequence of ε, the following two-scale convergences hold

$$
\begin{array}{ll}
\tilde{w}_{\varepsilon} \rightharpoonup w, & \left(\nabla w_{\varepsilon}\right) \sim \sigma \tag{4.13}\\
v_{\varepsilon} \rightharpoonup w, & \nabla v_{\varepsilon} \rightharpoonup \nabla v+\nabla_{y} v_{1} .
\end{array}
$$

Using adequeted test functions one obtains:

$$
\begin{align*}
& w(x, y)=v(x) \cdot \chi(x, y), \tag{4.14}\\
& \sigma(x, y)=\left[\nabla v(x)+\nabla_{y} v_{1}(x, y)\right] \chi(x, y), \quad \text { a.e. in }(\Omega \times Y) .
\end{align*}
$$

From (3.5) one has

$$
\begin{equation*}
\int_{\Omega}\left(\left(\nabla w_{\varepsilon}\right)^{\sim}-R x \chi_{\varepsilon}\right) \nabla \varphi d x=0, \quad \forall \varphi \in H^{1}(\Omega) \tag{4.15}
\end{equation*}
$$

Let $\quad \varphi=\phi(x)+\varepsilon \phi_{1}\left(x, \frac{x}{\varepsilon}\right), \quad$ where $\quad \phi \in \mathscr{D}(\Omega) \quad$ and $\phi_{1} \in \mathscr{Q}\left(\Omega ; C_{\#}^{\infty}(Y)\right)$. Passing to the limit in (4.15) and using (4.13) and (4.14), one obtains

$$
\int_{\Omega \times Y}\left[\nabla v+\nabla_{y} v_{1}-R x\right] \cdot \chi(x, y)\left[\nabla \phi+\nabla_{y} \phi_{1}\right] d x d y=0
$$

for all ϕ and ϕ_{1}. It yields the following two scale homogenized torsion system :

$$
\left\{\begin{array}{l}
\int_{\Omega}\left[(\nabla v-R x) \theta+\int_{Y} \nabla_{y} v_{1} \cdot \chi d y\right] \cdot \nabla \phi d x=0, \forall \phi \tag{4.16}\\
\int_{\Omega} v \theta d x=0 \\
\int_{y}\left[\nabla_{y} v_{1} \chi+(\nabla v-R x) \chi\right] \nabla_{y} \phi_{1} d y=0, \forall \phi_{1}, \text { in } \Omega \\
v_{1} Y \text {-periodic }
\end{array}\right.
$$

Developing the third equation integral in (4.16) one sees that v_{1} is given by

$$
v_{1}(x, y)=\left(\partial_{1} v(x)-x_{2}\right) \theta_{1}^{x}(y)+\left(\partial_{2} v(x)+x_{1}\right) \theta_{2}^{x} \text {, a.e. in }(x, y) \in \Omega \times Y,
$$

where $\theta_{i}^{x}, i=1,2$ and $x \in \Omega$, are the unique solutions of

$$
\left\{\begin{array}{l}
-\Delta_{y} \theta_{i}^{x}=0, \text { in } Y-T(x) \tag{4.17}\\
\partial_{n} \theta_{i}^{x}=-n_{i}, \text { on } \partial T(x) \\
\int_{Y \backslash T(x)} \theta_{i}^{x} d y=0 \\
\theta_{i}^{x}, \nabla_{y} \theta_{i}^{x} Y \text {-periodic }
\end{array}\right.
$$

The first equation of (4.16) takes, then, the form

$$
\left\{\begin{array}{l}
-\operatorname{div}_{x}\left(A^{*} \nabla v\right)=-\operatorname{div}_{x}\left(A^{*} R x\right), \text { in } \Omega \tag{4.18}\\
\left(A^{*} \nabla v\right) n=\left(A^{*} R x\right) n, \text { on } \partial \Omega \\
\int_{\Omega} v \theta d x=0
\end{array}\right.
$$

where

$$
A^{*}=A^{*}(x)=\left[a_{i j}^{*}(x)\right]_{i, j=1,2}
$$

and

$$
\begin{equation*}
a_{i j}^{*}(x)=\theta(x) \delta_{i j}-\int_{Y \backslash T(x)} \nabla_{y} \theta_{i}^{x} \cdot \nabla_{y} \theta_{j}^{x} d y \tag{4.19}
\end{equation*}
$$

Equations (4.18) and (4.17) represent the macroscopic and the microscopic problems associated to the homogenization process, respectively.

The relation between the homogenized torsion and warping

The following proposition, whose proof was suggest by F. Murat, relates the matrices (4.12) and (4.19).

Proposition 4.1 : Both matrices A and A^{*}, introduced in (4.12) and (4.19), respectively, are elliptic, symmetric and satisfy

$$
\begin{equation*}
A=\frac{A^{*}}{\operatorname{det} A^{*}} \quad \text { or, equivalently }, \quad A^{*}=\frac{A}{\operatorname{det} A} \tag{4.20}
\end{equation*}
$$

Proof: For each fixed $x \in \Omega$ consider the following functions of y, periodically extended to the entire \mathbb{R}^{2} :

$$
\xi_{1}(y)=\left(\nabla_{y} \theta_{i}^{x}+e_{i}\right) \tilde{x}
$$

where « \sim » represents the zero extension of $\left(\nabla_{y} \theta_{i}^{x}+e_{i}\right)$ to $T(x)$,

$$
\xi_{2}(y)=\nabla_{y}\left(\hat{\theta}_{i}^{x}+y_{i}\right)
$$

where $\hat{\theta}_{i}^{x}$ is the extension of θ_{i}^{x} to a function of $H_{\#}^{1}(Y)$,

$$
\eta_{1}(y)=\left(\nabla_{y} \phi_{i}^{x}\right)^{-}+e_{i}
$$

where $\left(\nabla_{y} \phi_{i}^{x}\right)^{\wedge}$ is equal to $\nabla_{y} \phi_{i}^{x}$, in $Y \backslash T(x)$, and to $\nabla_{y} \phi_{i}^{x^{*}}$, in $T(x)$,

$$
\eta_{2}(y)=\nabla_{y}\left[\left(\phi_{i}^{x}+y_{i}\right)^{\wedge}\right]
$$

where «^ » represents the extension of $\left(\phi_{i}^{\prime}+y_{i}\right)$ to $T(x)$, by its constant value on the boundary.

The following equality holds:

$$
\begin{equation*}
\xi_{y}(y) R \eta_{1}(y)=\xi_{2}(y) R \eta_{2}(y), \text { a.e. in } y \in Y \tag{4.21}
\end{equation*}
$$

where R is defined as in (3.8).
Since, form the variational formulations (4.9), (4.10) and (4.17), one has $\operatorname{div}_{y} \xi_{1}=\operatorname{div}_{y} \eta_{1}=0$, in Y, and since ξ_{2} and η_{2} are gradients, the right hand side of equality (4.21) is the product of the divergence free vector ξ_{1} by the curl free vector $R \eta_{1}$, and the left hand side is the product of the curl free vector ξ_{2} by the divergence free vector $R \eta_{2}$. Using the compensated compactness div-curl-Theorem (see [9], Theorem 1, p. 490) we are allowed to pass to the limit, as ε goes to zero, in equality

$$
\xi_{1}\left(\frac{z}{\varepsilon}\right) R \eta_{1}\left(\frac{z}{\varepsilon}\right)=\xi_{2}\left(\frac{z}{\varepsilon}\right) R \eta_{2}\left(\frac{z}{\varepsilon}\right), \quad z \in \mathbb{R}^{2},
$$

and obtain

$$
\begin{equation*}
\int_{Y} \xi_{1} d y R \int_{Y} \eta_{1} d y=\int_{Y} \xi_{2} d y R \int_{Y} \eta_{2} d y \tag{4.22}
\end{equation*}
$$

Using the definitions (4.12) and (4.19), and the variational formulations (4.9) and (4.17), expression (4.22) implies that $A^{*} R A=R$, and, consequently, any of the two equivalent equalities

$$
A=\frac{A^{*}}{\operatorname{det} A^{*}} \quad \text { or } \quad A^{*}=\frac{A}{\operatorname{det} A} .
$$

The ellipticity of A and A^{*} follows from the fact that, using the Einstein's convention on indexes,

$$
\xi_{i} \xi_{j} \int_{Y \backslash T(x)} \nabla_{y} \phi_{i}^{x} \cdot \nabla_{y} \phi_{j}^{x} d y=\int_{Y \backslash T(x)}\left|\xi_{k} \nabla_{y} \phi_{k}^{x}\right|^{2} d y \geqslant 0,
$$

for all $\xi=\left(\xi_{i}\right)_{i=1,2} \in \mathbb{R}^{2}$.
The simmetry of A and A^{*} is obvious, from the definition.
Now the homogenization result may be stated as follows:

THEOREM 4.2: Let \tilde{w}_{ε} be the zero extension of the solution w_{ε} of problem (3.4) to the entire domain Ω and let $\tilde{\psi}_{\varepsilon}$ be the extension, by its
constant value on each connected component of the boundary, of the solution ψ_{ε} of problem (3.6) to the entire domain Ω; then the following convergences hold

$$
\begin{array}{lll}
\tilde{w}_{\varepsilon} \rightarrow v \theta, & \text { weakly in } & L^{2}(\Omega) \\
\tilde{w}_{\varepsilon}-\psi, & \text { weakly in } & H_{0}^{1}(\Omega) \tag{4.23}
\end{array}
$$

where $\theta(x)$ is defined as in (3.1) and v and ψ are the unique solutions of the homogenized problems (4.18) and (4.11), respectively, whose matrices are related as in (4.20).

Moreover the following relation between v and ψ holds

$$
\begin{equation*}
A^{*}(\nabla v-R x)=R \nabla \psi, \tag{4.24}
\end{equation*}
$$

where R is as in (3.8).
Proof: The only things left to prove are, first, that convergences (4.23) hold for all the sequence ε and not only for a subsequence and, second, expression (4.24). In view of the ellipticity of A and A^{*}, the solutions of problems (4.11) and (4.18) are unique which implies that the hole sequence ε satisfies the required convergences.

Expression (4.24) is a straightforward consequence of expression (3.8), convergences (4.13), equalities (4.14), the definition of v_{1} and of the matrix A*.

5. THE NEUMANN PROBLEM

The Neumann problem may also be treated in the same context as the warping and torsion functions.

For $f \in L^{2}(\Omega)$ let u_{ε} be the unique solution of

$$
\left\{\begin{array}{l}
-\Delta u_{\varepsilon}=f \chi_{\varepsilon}, \quad \text { in } \Omega_{\varepsilon}, \tag{5.1}\\
\partial_{n} u_{\varepsilon}=0, \quad \text { on } \partial T_{\varepsilon k}, k \in \mathbb{Z}_{\varepsilon}, \\
u_{\varepsilon}=0, \quad \text { on } \partial \Omega,
\end{array}\right.
$$

Defining $V\left(\Omega_{\varepsilon}\right)=\left\{v \in H^{1}\left(\Omega_{\varepsilon}\right): v\right.$ is equal to zero on $\left.\partial \Omega\right\}$, the variational formulation of (5.1) is :

$$
\left\{\begin{array}{l}
u_{\varepsilon} \in V\left(\Omega_{\varepsilon}\right) \tag{5.2}\\
\int_{\Omega_{\varepsilon}} \nabla u_{\varepsilon} \cdot \nabla \varphi d x=\int_{\Omega_{\varepsilon}} f d x, \forall \varphi \in V\left(\Omega_{\varepsilon}\right)
\end{array}\right.
$$

The following theorem holds :
THEOREM 5.1: Let \tilde{u}_{ε} be the zero extension of the solution u_{ε} of problem (5.1) to the entire domain Ω. Then \tilde{u}_{ε} converges weakly in $L^{2}(\Omega)$ to $v \theta$, where θ is defined as in (3.1) and v is the unique solution of the following homogenized problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(A^{*} \nabla v\right)=\theta f, \text { in } \Omega, \tag{5.3}\\
v=0, \text { on } \partial \Omega
\end{array}\right.
$$

where the matrix A^{*} is defined as in (4.19).
Proof: Since the proof is analogous to the one made for the warping function, we only point out the main differences.

From the variational formulation (5.2) one obtains that the zero extension $\left(\nabla u_{\varepsilon}\right)^{\sim}$ of ∇u_{ε} to the entire Ω, is bounded in $L^{2}(\Omega)$, by some constant independent of ε.

We construct an $H_{0}^{1}(\Omega)$ bounded extension v_{ε} of u_{ε} by considering $\xi_{\varepsilon} \in L^{2}(\Omega)$ such that

$$
\begin{equation*}
\operatorname{div}\left[-R\left(\nabla w_{\varepsilon}\right)^{\sim}+\xi_{\varepsilon}\left(1-\chi^{\varepsilon}\right)\right]=0, \text { in } \Omega \tag{5.4}
\end{equation*}
$$

and concluding that $\left(\nabla w_{\varepsilon}\right)^{\sim}+R \xi_{\varepsilon}\left(1-\chi_{\varepsilon}\right)$ is the gradient of some function $v_{\varepsilon} \in H_{0}^{1}(\Omega)$.

The proof of the existence of ξ_{ε} is the same presented in Proposition 3.6: we replace, in (3.18), $\nabla_{y} \zeta_{\varepsilon k}$ by ($-R \nabla u_{\varepsilon}$) ($k \varepsilon+\varepsilon y$), with R defined as in (3.8), and the same arguments hold, since $-R\left(\nabla u_{\varepsilon}\right)^{\sim}$ is bounded in $L^{2}(\Omega)$ and $-R \nabla u_{F}$ is divergence-free in Ω_{F}.

Using the two-scale convergence method, and the boundness conditions, there exist functions

$$
u, \sigma \in L^{2}(\Omega \times Y), v \in H_{0}^{1}(\Omega) \text { and } v_{1} \in L^{2}\left(\Omega ; H_{\#}^{1}(Y) / \mathbb{R}\right)
$$

such that the following two-scale convergences hold:

$$
\tilde{u}_{f} \rightharpoonup u, \quad\left(\nabla u_{f}\right)^{-} \rightarrow \sigma, \quad v_{\varepsilon} \rightharpoonup v, \quad \nabla v_{\varepsilon} \rightharpoonup \nabla v+\nabla_{y} v_{1},
$$

with

$$
\begin{aligned}
u(x, y) & =v(x) \chi(x, y) \\
\sigma(x, y) & =\left[\nabla v(x)+\nabla_{y} v_{1}(x, y)\right] \chi(x, y), \quad \text { a.e. in } \Omega \times Y .
\end{aligned}
$$

Passing to the limit in (5.2), we obtain

$$
\int_{\Omega \times Y}\left[\nabla v+\nabla_{y} v_{1}\right] \chi(x, y)\left[\nabla \phi+\nabla_{y} \phi_{1}\right] d x d y=\theta f
$$

vol. $28, n^{\circ} 1,1994$
for all $\phi \in \mathscr{D}(\Omega)$ and $\phi_{1} \in \mathscr{D}\left(\Omega ; C_{\neq}^{\infty}(Y)\right)$, which leads to

$$
v_{1}(x, y)=\partial_{1} v(x) \theta_{1}^{x}(y)+\partial_{2} v(x) \theta_{2}^{x}(y),
$$

a.e. in $(x, y) \in \Omega \times Y$, where $\theta_{i}^{x}, i=1,2$, are defined in (4.17) and to the homogenized equation (5.3).

ACKNOWLEDGMENTS

This work has been supported by the European Project (SCIENCE) «Junctions in Elastic Microstructures» (SC1 0473-c (EDB)).

APPENDIX

Lemma A. 1 : Let $T \in \pi(\theta, h, r)$ then there exists a positive real number d_{0}, depending only on θ, h and r, such that the distance between two distinct connected components of T is greater than or equal to d_{0}.

Proof: Let $k, \delta \in \mathbb{R}^{+}: \pi(\theta, h, r) \subset \operatorname{Lip}(k, \delta)$.
Let A and B be two distinct connected components of T.
Let $a \in A$ and $b \in B, d(a, b)<\min \left\{\frac{\delta}{2}, \frac{k . \delta}{2}\right\}=d_{0}$.
There exists c, belonging to the segment $[a, b]$, such that $c \in \partial T$. Then $a, b \in P_{\delta k}(c) \cap T$, which is absurd, since, by Definition 2.8, $P_{\delta k}(c) \cap T$, is an open connected set.

Proposition A.2: The set $\pi_{1}(\theta, h, r)=\{T \in \pi(\theta, h, r): T$ is connected\} is closed, in the sense of the characteristic functions, with respect to the induced $L^{2}(Y)$ topology.

Proof: Let $T_{1} \in \pi_{1}$ and $T \in \pi \backslash \pi_{1}$. Suppose, without loss of generality, that T has only two distinct connected components A and B. We know that $d(A, B) \geqslant d_{0}>0$.

Using a covering of T_{1} made of balls $B\left(c, \frac{d_{0}}{4}\right)$, we conclude that either $\exists c \in T_{1}: B\left(c, \frac{d_{0}}{4}\right) \subset \mathbb{R}^{N} \backslash T$, either $T_{1} \subset Y \backslash A$, or $T_{2} \subset Y \backslash B$.

Since $\left|B\left(c, \frac{d_{0}}{4}\right) \cap T_{1}\right| \geqslant \frac{d_{0}}{2} \cdot \theta$, it follows that, in each case, T is exterior to Π_{1}.

REFERENCES

[1] G. Allaire, Homogénéisation et convergence à deux échelles. Applications à un problème de convection diffusion, C.R. Acad. Sci. Paris, t. 312, Série I (1991) pp. 581-586.
[2] G. Allaire, Homogenization and two-scale convergence S.I.A.M. J. Math. Anal., 23, 6, pp. 1482-1518 (1992).
[3] D. Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal. and Appl., 52 (1975) pp. 189-289.
[4] Ciorãnescu and J. S. J. Paulin. Homogenization in open sets with holes, J. Math. Anal. appl., 71 (1979) pp. 590-607.
[5] V. Girallt and P. A. Raviart, Finite Element Approximation of the NavierStokes Equation, Lecture Notes in Math., vol. 749, Springer (1981).
[6] R. V. Kohn, Numerical Structural Optimization via a Relaxed Formulation, lecture given at N.A.T.O.-A.S.I. on Free Boundary Problems and Domain Homogenization Univ. Montreal (1990).
[7] M. L. Mascarenhas and D. Poliševski, Homogenization of the torsion problem with quasi-periodic structure, Numer. Funct. Anal. Optimiz, 13 (5 \& 6), pp. 475-485 (1992).
[8] M. L. Mascarenhas and L. Trabucho, Homogenized behaviour of a beam with multicellular cross section, Appl. Anal., vol. 38 (1990) pp. 97-119.
[9] F. Murat, Compacité par compensation, Annali. Scuola Normale Sup-Pisa, classe di Science, Serie IV, vol. v, n. 3 (1978).
[10] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, S.I.A.M. J. Math. Anal., vol. 20, n ${ }^{\circ} 3$ (1989) pp. 608-623.
[11] G. Nguetseng, Asymptotic analysis for a stiff variational problem arising in Mechanics, S.I.A.M. J. Math. Anal., vol. 21, n ${ }^{\circ} 6$ (1990) pp. 1394-1414.
[12] R. P. SPERB, Maximum Principles and their Applications (Mathematics in Science and Enginneering, vol. 157) Academic Press (1981).

[^0]: (*) Manuscript received May 11, 1992, revised March 22, 1993.
 $\left.{ }^{(}{ }^{\prime}\right)$ Faculdade de Ciências da Universidade de Lisboa, R. Ernesto de Vaconcelos C1, 3° Piso, 1700 Lisboa Codex, Portugal.
 $\left({ }^{2}\right)$ Centro de Matemática e Aplicações Fundamentais, Av. Prof. Gama Pinto, 2, 1699 Lisboa Codex, Portugal.
 $\left({ }^{3}\right)$ Institutul de Matematicã al Academiei Române, P.O. Box 1-764, 70700 Bucuresti, Romania.

[^1]: M^{2} AN Modélisation mathématique et Analyse numérique 0764-583X/94/01/\$4.00 Mathematical Modelling and Numerical Analysis (C) AFCET Gauthier-Villars

