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! / 1 M . ! MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(vol. 27, ns 7, 1993, p. 863 à 894)

EULER CHARACTERISTIC GALERKIN SCHEME
WITH RECOVERY (*)

by P. LiNt1), K. W. MORTON O and E. SÜLI O

Communicated par R. TEMAM

Abstract- — This paper describes a gênerai formulation of the Euler Characteristic Galerkin
(ECG) scheme for scalar conservation laws, based on the theory of the Riemann-Stieltjes
intégral. The ECG scheme is proved to be equivalent to the projection of Brenier' s transport-
collapse operator. For the purpose of getting higher order accuracy, we explore two recovery
procedures, namely continuous linear recovery and discontinuous linear recovery. Some
estimâtes are obtained for proving the convergence of the ECG scheme. Finally we prove that
the limit function of the approximation constructed by the ECG scheme with recovery is an
admissible solution of the conservation law.

Resumé. — Cet article présente la formulation générale du schéma de Galerkin utilisant les
caractéristiques f (ECG) pour les lois de conservation scalaires et dans le cadre de la théorie
des intégrales de Riemann et Stieltjes. Nous montrons que ce schéma est équivalent à
V opérateur de transport-collapse de B renier. Pour obtenir une plus grande précision, nous
envisageons deux types de reconstruction, suivant que sont utilisées des fonctions linéaires
continues ou des fonctions linéaires discontinues. La convergence du schéma numérique est
alors monrée après avoir obtenu certaines majorations. Nous prouvons finalement que la limite
de la fonction approchée, obtenue après reconstruction, est une solution admissible des
équations de conservation.

X. INTRODUCTION

In this paper we shall consider the finite element method for a purely
hyperbolic conservation law in one dimension

= 0 , (1.1)

(*) Manuscrit reçu le 30 mars 1992 et sous forme révisée le 18 novembre 1992.
(') Oxford University Computing Laboratory, Numerical Analysis Group, 11 Keble Road,

Oxford, England OX1 3QD.
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864 P. LIN, K. W. MORTON, E. SÜLI

where the flux function ƒ ( . ) e C2. The difficulties associated with the
numerical solution of (1.1) are highlighted by the Godunov [5] theorem
which states that among linear finite différence schemes only first-order
accurate methods have the désirable property of preserving the monotonicity
of w. If a différence scheme only involves linear combinations of gridpoint
values Uj and ƒ(£/"), experiments show that second and higher-order
accurate approximations bring about oscillations and instabilities.

Over the past twenty years, many papers have been devoted to developing
successful methods which give accurate approximations with many valuable
qualitative features. One of the important approaches to constructing
accurate approximations of (1.1) is based on evolving along characteristics,
an idea which can be traced back to the work of Courant, Isaacson and
Rees [3]. Morton [11], [9], and Morton and Stokes [12] modify the Galerkin
method by using the properties of characteristics to introducé what we now
call the Euler Characteristic Galerkin (ECG) method. A similar idea is also
used by Lesaint [7] to deal with advection équations.

Given a family of basis functions {<£j} which is, for our purpose,
supposed to consist of piecewise constant or piecewise linear functions, we
write

ir^^uftj (1.2)

for the finite element approximation to the solution u(x, t) of (1.1) at time
tn, where {tn} is a set of gridpoints in time t. We notice that the
characteristics of (1.1) are straight lines, and that the solution u is constant
along any characteristic. Thus at two successive times tn and tn+ [ the values
of the solution u(x, tn) and u(x, tn+l) satisfy

W<J' tn+l) = w(x, tn\ y =x + a(u(x, f„))Arn , (1.3)

where Atn '-=tn+\ — tn. This relation is employed to generate a finite element
approximation of the form (1.2) via Galerkin projection :

[(Un + \<t>i) = [ Un(a)cf>i(y(a))dy(a), (1.4)

where y(a ) = x(a ) + a(Un(a )) Atn, and where (Un(a ), x(a )) is a continu-
ous parametrisation of the curve Un(x) in [Un, x] plane. The right-hand side
of (1.4) is a Riemann-Stieltjes (R-S) intégral.

Using the theory of R-S intégral (see Appendix) we can rewrite (1.4) as
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CHARACTERISTIC GALERKIN METHOD 865

and hence obtain

(Un + l - U -, 4>i) + f " +Q a f" <f>i(s)dsdUn(a) = 0 (1.5)

or

< C / " + 1 - t / n , ̂ ; > + A t n { d f ( U n ( a ) \ <P?(a)) = 0 , (1.6)

where

4>i(s) ds . (1.7)

As shown by Childs and Morton [2], in the case when ƒ is convex or concave
and {<f>j} is the piecewise constant basis, (1.6) becomes the simple
Engquist-Osher [4] algorithm if the characteristics from each element
boundary do not cross more than one element in a time step, or in other
words, if the Courant-Friedrichs-Lewy (CFL) number does not exceed one.
We shall show this is true for a gênerai flux ƒ. We note that in this paper the
mesh is supposed to be quasiregular (see Section 5). Hence a large time step
can be used in practice. In other words, we do not impose any spécifie
restriction on the CFL number.

As already noted, if we use the piecewise constant basis, the ECG scheme
will, in gênerai, give only first order accuracy. Furthermore, we see from
(1.6) (cf. [2]) that Un+ l may be a good approximation to u( . , tn + j ) in (1.3),
but f(Un) and a(Un) may not be very good approximations to ƒ (w( . , tn))
and a(u(. , tn)). Thus we are looking for a function ün such that
ƒ (ün) and a(ün) model f(u( . , tn)) and a(u( . , tn)) better than ƒ (Un) and
a(Un) do ; for the conservation purpose we require the projection restriction
(lJn - ün, </>;} = 0 , VÏ. Then from (1.6) and (1.7) we have a more gênerai
form

(Un + 1-Un, < £ , ) + A t n ( d f ( ü n ( a ) l 0 f ( a ) > = 0 , (1.8)

where

1

4(s)dS (1-9)
a(ün(a))Atn Jx(tf)

and (ün(a ), x(a )) is, of course, the continuous parametrisation of the curve
ün(x) in the [£", x] plane. In this paper we examine both continuous linear
recovery and discontinuous linear recovery. The ECG scheme with either of
the recoveries is believed to be higher-order accurate. The first recovery is
explored in detail by Morton [10], Childs and Morton [2]. For the second
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866 P. LIN, K. W. MORTON, E. SÜLI

recovery which is motivated by the work of van Leer [18] and the minmod
flux-limiter method of Roe [15] {cf. also Goodman and LeVeque [6],
Sweby [17]), the resulting scheme is proved to be TVD. One advantage of
this approach is the ease of numerical implementation, and it appears to be as
good as the first approach for the shock-capturing. However, it switches to
being a first-order accurate scheme at extreme points and sonic points {cf.
Osher and Chakravarthy [14]). Under an appropriate condition (see (4.4)),
the ECG scheme with continuous linear recovery is proved to be TVB,
where the total variation increases slightly. This may lead to higher-order
accuracy at extreme points, which could be explained partly by the f act that
this approach is third order accurate for linear équations on a uniform mesh.
Though it does not have the monotonieity preserving property (some
remedies for that are proposed and tested successfully by Morton and
Sweby [8]), we prove that it preserves the monotonicity near sharp gradients.
Thus it rules out any spurious oscillations near discontinuities.

The term recovery was introduced by Morton [11] in order to indicate the
link to the field of optimal recovery. An important point in the process of
recovery is that the recovery function ün is obtained using a priori knowledge
available about the function being approximated. Usually, the recovery
function ün is smoother than Un. Thus higher order accuracy is achieved. The
continuous piecewise linear recovery is used in Childs and Morton [2] where
experiments show dramatic improvement, compared with no recovery.
Indeed, in [2] this improvement of accuracy is proved for linear advection
équations.

The plan of the paper is as follows. In the next section we give a gênerai
formulation of the Euler Characteristic Galerkin scheme ; then in Section 3
we establish a relation between the ECG scheme and Brenier's [1] transport-
collapse operator. Then in Section 4 and Section 5 we examine continuous
linear recovery and discontinuous linear recovery, respectively. Some
estimâtes are obtained to prove convergence. Finally in Section 6 we prove
that the entropy inequality is satisfied by the limit function of the
approximation.

2. THE EULER CHARACTERISTIC GALERKIN SCHEME

We consider the Cauchy problem for a scalar conservation law :

3/M + 3^(M) = 0 , (2.1)

u{x, 0) = u°(x)9 (2.2)

where ƒ e C2{R). We know that the solution of (2.1) is constant along
characteristics which are therefore straight lines.

M2 AN Modélisation mathématique et Analyse numérique
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CHARACTERISTIC GALERKIN METHOD 867

We define an evolutionary operator È(t) by

y = x + a(u°(x))t , (2.3)

(È(t)u)(y) = u\x)9 (2.4)

and note that, in gênerai, after a finite time, (È(t)u)(y) becomes a
multivalued function (cf Brenier [1], for example).

We will assume that the initial datum w°(x), although possibly discontinu-
ons, has a continuons graph fra°, x^in the (u^-x) plane. T4ius we can-write-it
in the form

uö = u ° ( a ) , x = x ( a ) , (2.5)

where « is a parameter and wu(a), x(a) are continuous with respect to
a. We emphasize that x(a) is a non-decreasing function of a. If
u° is continuous at the point x, it follows that

u°(x(a)) = u°(x) = u°(a) .

We then have, corresponding to (2.3),

y(a) = x(a) + a(u°(a))t . (2.6)

Hence we obtain another continuous graph [E(t) w, y] which can be written

in the form

y = y(a\ (Ê(t) u)(a ) = u°(a ) . (2.7)

Given any set of discrete times {*„}, tn+l = tn + Atn, suppose that
u(tn) = u(x, tn) is approximated by the finite element expansion

Un(x)=^UJ<f>j(x) (2.8)
j

in terms of the basis functions {<£7}, where {<f>j} is considered to be the
basis of piecewise constant or piecewise linear functions ; henceforth we
assume Un(x) is piecewise continuous. Then the Galerkin projection leads to
the time-stepping algorithm

(ir + Kti) = {Ë(Mn)U\ct>) = J Un(a)<f>i(y(a))dy(a) VÏ , (2.9)

where the right-hand side is a R-S intégral, and
y(a) = x(a) + a(Utt(a))ton.

We also assume that the initial datum u°(x) has bounded support, i.e.,

u°(x) = 0 if \x\**N,

vol. 27, n 7, 1993



868 P. LIN, K. W. MORTON, E. SÜLl

where N is some integer. Therefore, for any tn e [0, T], there exists
M > 0, depending only on given T > 0, such that

Un(x) = 0 if \x\z*M .

Using the basic results for the R-S intégral in the Appendix and noting that
y (s) is Lipschitz-continuous in s, we can rewrite the right-hand side of (2.9)
as

f Un(a)<f>i(y(a))dy(a)= J Un(a ) d l t*™ <[><(*) ds\ =

c/>i(s)dsdUn(a), (2.10)

where y(a) = x(a) + a(Un(a )) àtn. This defines the successive approxi-
mations {Un(x)} ; on the other hand, we will prove below that their
projections can be written as a R-S intégral, Le.,

J dUn(a) . (2.11)

Hence,

rrx(a)+a(U"(a))âktn

) <Pi(s)dsdU»(a) =

f
J

x(a)

1 rx(a)+a(Un(a))ton

rrrnr u A f t{s) ds df {Un{a)) , (2.12)

or, equivalently,

(+l ) ( ) =0,

where <Pf is given by (1.7) ; this is called the Euler Characteristic Galerkin
(ECG) Scheme.

To improve the accuracy of approximation, many papers have explored
recovery procedures (cf. Morton [11], [10], Childs and Morton [2], etc).
This means that we replace Un on the right-hand side of (2.12) by a
physically more acceptable function w". Thus the ECG scheme takes the form

(Utt+1-Un, 4>i) + t e n ( < P ? , d f ( ü " ) ) = 0 , (2.13)

where the intégral appearing in the second term of the left-hand side is a R-S
intégral and 4>" is given by (1.9) ; ün is assumed to satisfy the recovery
équations

(Un -ü\ ^^ =0 W . (2.14)

M2 AN Modélisation mathématique et Analyse numérique
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We now prove (2.11). Since U" is piecewise continuous and has bounded
support, Un has only a fini te number of points of discontinuity {JCJ ,
i = 1, ..., M. For the mapping x = x(a) we can construct a series of
intervals [ah /?,] , f3i ^ ai + l9 such that x(a) = xh a e [ai9 0 J . Thus,

J. Un(a)<f>l(x(a))dx(a) = O.
/ « e [a,, /?,]

On the other hand, Un(x) is continuous on the intervals (xhxi + l) and
i- oo, Xj), (JCM, + oo ), s-o that

Un(a)= U\x\x = x(a\

l j ?;, a / + i] U (- oo, a{\ U [/?M, + oo ) .

We therefore have that

Un(a)<Pl(x(a))dx(a) =
a e f/3 h a{ + ,1

Un(x)<f?l(x)dxi i = 1, ..., M- 1 ,

£ï E ( - 00,0-,]

f Un(a)$i(x(a))dx(a)= \ Un(x) <j> t (x) dx,

where all intégrais on the right-hand sides of the above are Lebesgue
intégrais. Combining tl jse identities we obtain (2.11).

Finally we illustrate that, under the condition CFL =s 1, the ECG scheme
using piecewise cc 'stants with no recovery is equivalent to the Engquist-
Osher schemr In fact, if we write a(w) = a+ (w) - a~ (w), where
a+ ^ 0 , oT ^ O, then under the condition CFL =s 1 the ECG scheme
becomes

Af

Ar.
a (w) dw I

cu'i ru'U,
a+ (w)dw -

Ju"_l Ju"

\a+ (w) - - a ( w ) dw

vol. 27, n' 7, 1993



870 P. LIN, K. W. MORTON, E. SÜLI

where

\a(w)\dw, ? +
2

This is exactly the Engquist-Osher scheme on a non-uniform mesh.

3. PROJECTION OF THE TRANSPORT-COLLAPSE OPERATOR

In this section we prove the important resuit that (2.10) is indeed
equivalent to the projection of Brenier's transport-collapse operator (cf.
Childs and Morton [2]). Let T(t) dénote the transport-collap se operator (see
Brenier [1]) ; then

m(x)= J-T(t)u(x) = \ Ju(x-a(w)t, w)dw ,

where

Ju(x, w) =
1 if 0 -< w <= w (x)

- 1 if W(JC)<>V<:0

0 otherwise .

THEOREM 3.1 : Let u e BV have bounded support. We introducé a
parameter a, as in (2.5), such that u(a) and x(a) are continuons BV
functions of a. Then for any ƒ G L00(R) n L1 (R),

f(x)dxdu(a). (3.1)

Proof : lst step. Suppose that u(x) is piecewise constant, i.e., u(x) = Uj,
x G [xj _ I , Xj + I ), 7 = 0 , ± 1, ± 2, ... ; this is an important special case, as

well as being a convenient step in a more gênerai argument. We recall
Lemma 1 of Brenier [1] by which in this case

Ju(x,w) = £
j

where we have used the notation

UxeA} = I 1 i f x e A

x ' lO if x M .
M2 AN Modélisation mathématique et Analyse numérique
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Hence, for any ƒ e L^ (R) n L[ (R)9

er
T(t) u(x)f(x)dx = Ju(x, w) f(x + a(w)t) dx dw

f(x)dxdw

f(x)dxdw. (3.2)

We need to prove that the right-hand side of (3.1) is equal to the r ight-hand
side of (3.2). Since u is piecewise constant, there exist a . - _ I , / 3 , _ I ,

7 2 y 2

< z ; _ I Ï £ / ? ; I , s u c h t h a t x ( a ) = X; I , a e [ a , - _ I , / ? ; ! ] , a n d
• / 2 ' / 2 ^ 2 • / 2 ' / 2

u(a)= Uj = u(x(a))9 a e \fij_L, aj + - ]• T h e n

r

f(x)dxdu(a)

\ tf(x)dxdu(a)
a e [ « • _ ! , / S - _ i ] J - 0 0J 2 J 2

•x,-_I +a(M(or))/
/ ( - r ) d t c r f « ( a ) .

Since w(a ) is continuous, u(aj_L ) = Uj _x, u((3j_L ) ~ Uj. It follows that

y 2 y 2

£/; f-V;_l +a(w)t
2 f(x)dxdw,

where the right-hand side is a Riemann intégral. Thus we have proved the
required result.

2nd step. Suppose that u is piecewise linear, i.e.,

X — Xj _ 1

2 (E/ i - V ï), *6 [ x y _ I , ^ + I ) , (3.3)
^ 2 2 7 2 J 2

vol. 27, n° 7, 1993



872 P. LIN, K. W. MORTON, E. SÜLI

where Ax;- = x}•. +1 — x}•. _ I . It is easy to approximate u by a séquence of

piecewise constant functions : we just set

X e X: _ I + - A*;, X; I H AX; ,
L J 2 n J J 2 n J J

for k = 0, 1, ..., « - 1 ; j = 0, ± 1, ... From the lst step we have that

f rvj_ï rxj_i+a(W)t
T(t)un(x)f(x)dx = - Y \ 2 2 f(x)dxdw

J j JUj_L J -ÛO

" E l P a - ' fMdxdw
j k=l JUlt_l J-CD

ruj+l fxj + i +a(w)t
- £ 2 2 f(x)dxdw. (3.4)

; J£/;.*,_i J - ° o

Since the graph of u is a straight line on each interval [XJ _ 1, x; + i ],

M" is either increasing or decreasing on each of these intervals. We can easily
find a one-to-one mapping such that un(a) is a continuous function of a
where a is such that u(a) is continuous, and moreover un(a) converges
uniformly to u(a ). Hence, (3.4) can be written as a R-S intégral :

r rrX{a) + a(u"{a))t

T(t)un(x)f(x)dx = - f(x)dxdun(a)

f(x)dxdu(a),
0

as n -> oo, where we have used Theorem 7.1. On the other hand,

ï T(t)un(x)f(x)dx- f T(t)u(x)f(x)dx

dbc

r
Lœ \utl(x)~ u(x)\ dx^07 n-+ oo ,

where we have used a property of 7 (0 (see Proposition 1 of Brenier [1]).
Thus we finish the proof of the 2nd step.

M2 AN Modélisation mathématique et Analyse numérique
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3rd step. Suppose that u(x) is a BV function. Then u(a ) is a continuous
BV function, and hence it is absolutely continuous since it has bounded
support. There exists a séquence {un(a)} of piecewise linear continuous
functions such that un(a ) converges uniformly to u{a ). On the other hand,
we can construct a series of intervals [ay, f3j], j = 1, 2, ..., such that
x = x(a)is a one-to-one mapping between {x e R} and {a e U ,•[«,, jS/)}.
The inverse mapping is denoted by a = a ~ \x). In this way, un(a " '(x)) is
piecewise linear and so is un(x) = un(a~1(x)). We also have that un(x)
converges uniformly to u(x). For each function un, the 2nd step implies that

rrx(a) + a(u'\a))t
<T(t)un,f) = - f(x)dxdun(a).

JJ—CO

Passing to the limit as n -> oo, we get (3.1) and hence we finish the proof.
We end this section by remarking that the ECG scheme and Theorem 3.1

can be generalized to the case where the initial datum has unbounded
support, such as the Riemann initial datum. Suppose that

u°(x) = u", M( - X) = u~ , if x is large enough ,

where u^, u~ are some constants. Then the right-hand sides of (2.10) and
(2.11) have an additional term

"+ oo

<f>i(s)ds ,
- 00

but (2.12) remains unchanged. We now prove that (3.1) is still true if
u e L^iR). Of course, we have to introducé here the following définition.

DEFINITION 3.2 : Given that u e Lœ(R\ let

un(x) = u(x\ if | j t | s£«, un{x) - 0 if\x\iszn.

We define

T(t)u(x) = lim T(t)un(x).

We note that T(t)u(x) is uniquely defined.

It is sufficient that we prove (3.1) under the condition that u is piecewise
constant, Le.,

u(x)= Uj,xe [Xj_i,xJ + l \ j = 0 , ± 1 , ..., ±M .

u(x) = u+ , x e [xM + I + o o ) ; u(x) = u~ , x G [- oo, x _ M _ I ) .

vol. 27, iT 7, 1993
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L e t
0 x>xM + l+n

2

0 x < x_ y _L — n

u(x) otherwise .

utl(x) has bounded support, so that from (3.1) for ƒ e L00(R) n L1 (/?),

<r(O«", ƒ>

= - r | ~2 " + < n M / w à ^ - f~M p^- 2
+ ö v f ^ d x d w

J 0 J — oo J K~ J — oo

- X 2 f(x)dxdw
j = -M+\ J f// _ i J - 0 0

[*«+ /"xw + i + a(w)t pO pjc^+i + n + ö(w)f
2 f(x)dxdw- 2 f(x)dxdw

JUM ^"°o Ju+ J-oo

- > - P " M P M " 2 +a W l f ( x ) d x d w - ^ f J y ~ l + a W * f{x)dxdw
J u~ J-oo y = - M + 1 J Vj — l * — oo

/(x)^(iw + M+ f(x)dx
J — OO J — 00

>)+û(«(a))f + f + 0 °

00 J — 00

which is exactly the right-hand side of (3.1) plus u+ f(x)dx.
J — 00

On the other hand, we have from Définition 3.1 that

(T(t)u\f) -+ (T(t)u,f) ,

which complètes the proof of (3.1) in this more gênerai case.

4. CONTINUOUS LINEAR RECOVERY

From now on we are only concerned with quasiregular meshes. Following
Childs and Morton [2], a mesh {tn}, { x ^ l } is called quasiregular if there

exists a constant D such that as h —• O

±h^Ax^h, V;,Ax,.=x,+I - * , . _ ! , (4.1)

±h*àtK*h, tn^T,Atn = tn+i-tn. (4.2)

M2 AN Modélisation mathématique et Analyse numérique
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CHARACTERISTIC GALERKIN METHOD 875

We also consider the piecewise constant basis {<£,-} :

[1 xe [x ;_ i ,x / + l )
</>•={ 2 2

0 otherwise.

The ECG scheme with continuous linear recovery technique, in the form
(2.13), was first used by Morton [10], Morton and Sweby [8] to improve the
accuracy of the algorithm. As shown in Childs and Morton [2], the linear
recovery function ün must, from assumption (2.14), satisfy the relation

where 0"+I, 0 =s 0f+l =s 1, is the parameter that at zero corresponds to no

spreading of the discontinuity at *,- + ! , and at unity to linear variation

between üj at Xj and üj + { at Xj + u where x-} = - (xj + i + JC,- _ I ).
.Z- 2 2

THEOREM 4.1 : Assume that the mesh is quasiregular, that {Un} is
generated by the ECG scheme (2.13) with recovery by (4.3), and that there
exists a constant C > 0 suc h that

eï+± |*y?+1 - uni\ « a V ï , v«. (4.4)

exists a constant K, de pending on the given tN > 0,

V(U"(.,tn))^K, tn^tN, (4.5)

^ | Uj - UJ | A ;̂ « K(tn - tm) , (4.6)
j

where Q<tm<tn^tN.

We shall use the following lemma to prove Theorem 4.1.

LEMMA 4.2 : Under the condition (4A), there exists a constant
M => 0, independent of h and N, such that

^ + ^ n . tn^tN. (4.7)

((4.7) holds even when the mesh is not quasiregular.)

Proof : We first prove that

115? - M?_JL| ^4Ch V/ . (4.8)
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Indeed, if (4.8) were not true, there would exist i0 such that

1 2

Since from (4.3)

UI - U?_x =

we then have

( 1

4 ' ""a

which contradicts (4.4). Hence (4.8) holds.
Using (4.3) and (4.8) we get that

\ü1- Ufl\ ^ 2 C/2 Vi . (4.10)

On the other hand, since Theorem 3.1 gives

we have that

||£/« + 1|iLoo^ | | r (Arn)^ | |L 0 0^ ||M«||L€0, (4.11)

where we have used the properties of T(. ) (c/. Brenier [1]).
Combining (4.10) and (4.11) we get (4.7).

Remark 1 : (4.4) implies that when | U? + i - E/?| is large, 0f+l has to be

small. In other words, we do little recovery near shocks and contact
discontinuities. On the other hand, we see from (4.8), (4.9) that

sgn(tf7+ 1-C/?) = sgn(«7 + 1 -S?) if 11/?+1 - C/?| > CA ,

which means that the recovery keeps the monotonicity near sharp gradients,
and thus prevents the génération of spurious oscillations near discontinuities.
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It is worth noticing that this condition on sgn (w"+1 — w") is imposed

everywhere in the recovery algorithms used in [2] and [8].

Remark 2 : The good accuracy of the continuous linear recovery scheme
sterns in part from the recovery near peaks and troughs. This means that the
total variation is increased at the recovery stage, making the following proof
rather long and delicate.

Proof of Theorem 4.1 : From the continuous linear recovery procedure we
see that : (a) if Oj\l = 0, 5"(. ) has a jump at xj+k ; (b) if 6jl

+i =£ 0,

M"(. ) is continuous at x. , i , and there exists an interval ia, , i , £,- ,!]<=
J 2 J 2 J 2

[xj_L,xj + ll aJ+L <jcy + l ^bj+L9 such that

^ j+± -aJ+l\ xe [ a y + l f & y + I ] ,

Therefore, (2.13) is equivalent to

<f>i(s) ds dün{a )
X(a)

<Pi(s)dsdün(x)

<f>i(s)ds dün{x) . (4.12)

Since

7 bj +1 - üj +1 y + ! y' ' j + 2 5 i + 2

(4.12) can be written as

x
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— y (W? , 1 - H'] ) \ di

/ " 1 A ^

r i r . i - , 1 (A ) + «(«" + ,
(M> + X - U}: ) ^ A

where we have used the notation

XJ

Similarly, '

(T(Atn) U"

+ i ( A > =

we have

- U", 4>

that

A =

x(a)

:)dsdUn(a)

<f>i(s) ds dw

Combining (4.13) and (4.14) we get that

\(Un+l -T(Atn)U
f\ 4>i)\ =

\ds, (4.13)

i f 6>" , = 0

R) Un - U\ <f>i) |

(4.14)

C 1 f je- + 1 (A ) + a (ùj +

- ^ | dA 2

Jo JAy + I (A ) + a(U"j +

<f>i(s)ds

je- + 1 (A ) + a (ùj + A (Ü'J + , - Ü] )) Affl

2

xj +1 (A ) + a(U'J + A (Uj+ , - U")) Af,,
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J jC; * ( A )

(s)ds

*,. + I (À ) - a' (U'J + A (U]+ i - U'j)) Atn

1

where Vh l = 1, 2, 3, dénote respectively the /-th term of the right-hand side
of the above inequality, and we have used that a(w) = a+ (v„ ) - a" (w),
a+ ^ 0, ar ^ 0.

We first notice that

where

A = max

because of (4.7), (4.10) and the quasiregularity of the mesh. This means that
for each fixed z\ all the integrands i n / J , / = 1, 2, 3, are zero if
\j — i\ > k, where k •= [AD ] + 1 with [AD ] being the integer part of
AD. Thus the summation of y in each I\ has at most 2 k + 1 non-zero terms.
Furthermore, since Un(. ), ün{. ), tn =s tN, have bounded supports, there are
only a finite number of non-zero terms I\, say, when i — 0, ± 1 , ± 2 ,
± 3 , ..., ±M.

Having the above préparation, we now turn to estimate I\. Using (4.10) we
get that
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y ji{ =
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i=-Mj= i -k

x I <iA

J

j + 1 (A ) + a(«; + A (5?+ , - «p ) Ar

J C / X I

,- + I (A ) + a(U'J
</>t(s)ds

i -5?))A f i .

^ - + I ( A )

rxy- + i (A) + fl(«; + A ( « ; + 1 - i i ; )

Jje.-^KA)

J jfj: + I (A ) + a(ü? + A (U]+ ! - U'j)) Atn

\ Y \Ch \ d\
Jo

d\ x

xj+L{A) + max { a («J1 + A (»;.' ( , - T̂ ' ) ) A/„. « ( U'j + A ( ü •' t , - t/ •' ) ) Af „ } j + M

j + 1 (A ) + min {aijï'} + A {u'j + , - «;jj A//(, « (üj' + A tty)'+ i - i/Jj) Af„} / = - M +
<t>i(s)ds)

j
^Ch&tn, (4.15)

where C is independent of TL
We now deal with ï\. By the définition of xf + I (A ), there is Ao e (0, 1 )
h hsuch that

*y + I , if A G [0, A o ] ,

x J + I , if A e [Ao, 1 ] .

Then it is clear that
±l{A) + a* {U'j1 + A ( Ü ; . , - if'-)) àt

4>i(s)ds if A e [Ao, 1]

4>i(s)ds if A e [0, Ao]

+ 1 .
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Thus
+j

I '2= I I \üJ+l-UJ\ [ dx
i = -M j ~-k i .-M +J

(j + 1 (A ) + a+ (JJ'j + A (U'J+ ! - U")) àtn

j = -k i ^~M +j J O

K} + i CA ) + a + (c / ; + A ( t / ; + , - 1 / ; 1 )

<t>t{s)ds

We notice that

*i

T, + i (A ) + a+ (U'j + A (£/;+ ,

3 +2 J J
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- c / 7 1
X; + i

and, similarly,
*An

|c/;+1-c/;|

'Ay + I (A

Jfy+1 +f l + (ü? + A(C/;+1 -U]))Atn

4>i(s) ds

: + i (A ) + a+ (if'' + A (U'l+ ! - U'j)) Mn

2

Recal l that when (9",I = 0 , x.: +1 (A ) = x.•. , I , and we then have
• / 2 2 2

if 8j\L # 0, then

that

\xj + L (A ) - xy. + I JA

Hence, using (4.4) we therefore conclude that

(4.16)

where C is independent of h.
We can treat Il

3 by the same argument and obtain that

where C is independent of h.
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With the above estimâtes we conclude that

883

which implies that

v(un+l:
/, (/ = 2 / )

max T(Atn)U
n(x)

XE [xi+l,Xi+l)

min T(Atn)U
n(x)

min T(Atn)U
n(x)

max
xs[xi+LiXl_i)

Atn

+ C Af.

from which we get (4.5).

We now prove (4.6). W e notice that, for each i in (3.14), &? is zero

outside the interval [xi_k_L, xi+k + i], where k = [AD] + 1. Thus

or,

^ (2k+ l)AAtnV(ün),

from which we get (4.6). We have completed the proof.

Remark 3 : The results in this section can be easily generalised to the case
where the initial datum has unbounded support.
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5. DISCONTINUOUS LINEAR RECOVERY

In this section, following the idea of van Leer [18] we discuss another
recovery technique, namely, discontinuous linear recovery. Suppose that
Un is the approximation at time tn :

j J - 2 ' J + 2

Then we define the recovery function un(x) (cf. van Leer [18]) to be

w h e r e Xj — - ( * , - + ! -\- Xj +l) a n d

|^"+i - UJ\

if sgn iU';.., - if]) = sgn (W; - U'j_ , ) (5.2)
0 otherwise .

This choice, including the switching off of the modification at a peak or a
trough, corresponds to the device used by van Leer [18] ; other choices of
discontinuous linear recovery are also possible.

The ECG scheme is then given by (2.13), with &" given by (1.9) using
(5.1) to define ün(x). Clearly, the projection property (2.14) is satisfied. We
also have from Theorem 3.1 that

(Un+\ </>;) = (T(Atn)ü\ <f>i) V» , (5.3)

where T(. ) is the transport-collapse operator.
The following theorem is obvious, since the recovery in this case does not

increase the total variation.

THEOREM 5.1 : Suppose the mesh is quasiregular. For the ECG scheme
defined with recovery (5.1) and (5.2) we have that

, V/i, (5.4)

\/n, (5.5)

Z l J ^ j - t J , (5.6)
j

where 0 =s tm <: tn < oo, and K is a constant independent of n and m.
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Remark : (5.6) can be derived from the properties of the transport-collapse
operator, namely,

\\Un + 1 - Un\\LX ^ \\T(Atn) ün - 5"||Ll ^ V (ün) Atn .

Moreover, in doing so the mesh condition of quasiregularity can be dropped.

Numerical experiments : Here we present some computational results
using the discontinuous linear recovery described above. Our purpose is to
compare them with the results given for the continuous linear recovery by
Morton and Sweby [8], Childs and Morton [2] obtained with the continuous
linear recovery scheme of Section 4 (we remind the reader that figs. 13 and
14 in [2] are upside-down).

Figure 1. — Linear advection without recovery for mesh ratios 0.4875(square), 1.4444(triangle),
4.3333(star), 7.8(dot).
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Figure 2. — As figure 1 after discontinuons linear recovery.

We first consider the linear advection équation with periodic initial datum

ut + ux = 0 ,

u(x9 0) -

x e KWH
We illustrate the solutions after a time 8.125 on a uniform grid on [0, 1] with
Ax = 1/48. We test different mesh ratios A == Af/Ax = 0.4875 (800 steps),
1.4444(270 steps), 4.3333(90 steps), 7.8(50 steps). Figure 1 shows the re-
sults without recovery, while figure 2 shows the results using the discontinu-
ous linear recovery.
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We next consider the inviscid Burgers' équation

887

with the following initial datum, consisting of two positive puises separated
by a négative puise,

u(x) = sin2[7r(x - 0.088)/0.313]
u(x) = - 1 + 2 | x - 0.571 |/0.136
u{x)=l if 0.683 <%< 0.7415
u(x) = 0 otherwise .

0.088 -
0.503

: X -

= X

0.401 ,
= 0.639

We have used a uniform mesh with Ax = 0.01, and show results for
t = 0.3061. Figure 3 gives the results of the scheme with and without
recovery for the mesh ratio À = 1.0 which corresponds to a maximum CFL
number of 1.0. Figures 4 and 5 give the corresponding results for
A = 2.5 and 7.0 respectively.

Conclusions : For the linear équation, the scheme with continuous linear
recovery clearly performs better than that with discontinuous iinear recovery.
This is due to the fact that in the former the linear recovery is still applied at
extreme points, while in the latter it is switched off by (5.2) ; it is possible

Figure 3. — The ECG scheme for Burgers' équation with mesh ratio 1.0 ; results with no
recovery are shown on the left and with discontinuous linear recovery on the right.
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Figure 4, — As figure 3, with ratio 2.5.

1 0

Figure 5. — As figure 3, with ratio 7.0.
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that a more careful choice of 5 ƒ would make the accuracy of the two schemes
more comparable. However, both perform about equally well for Burgers'
équation; there is a slight spreading of the shocks for A = 1.0 with the
present scheme but improved performance for large A. Notice that there is a
great improvement compared with the scheme having no recovery.

6. ADMISSIBLE SOLUTIONS. ENTROPY INEQUALITY

In this section we shall prove the convergence of the approximation given
by Section 4 and Section 5, and that the limit function is an admissible
solution of the conservation law.

By the quasiregularity of the mesh, for a given séquence {h},
h -• 0, we have the corresponding discretizations {tn} and {xj} in time and
space respectively. With the given mesh, we suppose that {Un} results from
the ECG scheme with recovery discussed in Section 4 and Section 5. We
then define a séquence of approximations {Uh} on R x [0, oo) by

Uh(x,t) = U'l for {x,t)e[Xi_L,xi+L)x[tn,tn + l). (6-1)

THEOREM 6.1 : Suppose that {U"} is the approximation produced by the
recovered ECG scheme, as in Theorem 4.1 or Theorem 5.1. Then the
séquence {Uh} is compact in L00 ([0, T] iL 1 ^ ) ) , 0 < r < : o o , converging to
some function u ; and u is an admissible solution of the conservation law. In
other words, u satisfies the following entropy inequality ;

V (u) <pt + q(u) <px] dxdt^O, (6.2)

where <p e C^(R x (0, oo)), <p ^ 0, and where r}{u) is any Lipschitz

continuous convex function, q(u) = a (A ) ri ' (A ) dk .
Jo

Proof : According to a classical resuit {cf. Smoller [16], Chapter 16 § A,
for example), from (4.5)-(4.7) or (5.4)-(5.6), it follows that {Uh} is compact
in L°°([0, T] ; L1 (/?)). We may assume that

Uh(x,t)-+u(x9t) in L°°([0, T] ;L\R)).

We now prove that u satisfies (6.2). At each time ttv for any fixed
x, by the geometrical structure of the TC operator (see Brenier [1] for details)
there are 2 P + 1 values (depending on x, tn) :

Uo, Ux, . . . , U2p, UQ^U{^ . . . =£ U2P ,
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such that

(T(At„) ü"){x) = \ Jù'\x - a (w) M„, w) dw = £ (- 1 )* uk .

On the other hand, it follows from Theorem 3.1 that

\ * (r(A?}"H)dx * i~ f ̂ ; X ("!}* ̂ (Mt)dx

where we have used Jensen's inequality and the inequality

77 ( 'f (-l)kuk
\k=0 /

The définition of Ju also implies that

X (~lfv(uk)= V'(w)Jün(x-a(w)Atn, w)dw+ T ? ( 0 ) .
& = o J

Thus,

= \ dx

J X Jo [ X + a W tn V

Therefore, for any <p ^ 0, <p G C ^ T ? X (0, oo)), we have that

J v

dx <p(x + a(w) àtn) r}'(w) dw + 7] (0) <p(x,tn)dx
Jo J

fn Dx <p(x, tn)dx a(w) 7}f(w) dw
J Jo
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and hence that

£ [ f V (Un + ') ? (x, tn) dx - J v (£/") <P (x, tn) dx\

Dx<p(x,tn)q(ütt(x))dx

<p(x, tn)[v(ün)- v(Un)] dx + O(h).

It is obvious that (6.2) follows, if we can prove that

<p(x, tn)[v(ün)~ v(Un)] dx-^0, as A - O . ( 6 . 3 )

In fact, by Taylor series expansion ;

C Y,] dt \ün -Un\dx

+ C A I «"-£/" I

where ^"(JC) is between ün and C/J1.
For the continuous linear recovery, (6.3) holds, because of (4.10). For the

discontinuous linear recovery, we notice that

ün-U?=oXx-Xi)9 xe
and hence that

Thus,

dx
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where we have used the inequality £ dfAx,- ^ 2 V (Un), due to the définition

of <5f in (5.2).

7. APPENDIX : RIEMANN-STIELTJES INTEGRAL

We review briefly the theory of the Stieltjes intégral. For more details, see
Natanson [13] and Volpert [19]. First we recall the définition of functions of
bounded variation in one dimension. Suppose ƒ is a function defined on the
interval [a, b] czR, and let {x(}, i = 0, 1, 2, . . . ,«, be a partition of
[a, b], that is, a = xQ ~cz Xx •<-'-<: xn = b. W e define

V(f)[a,b] =max"f \f (xk+ ,) - ƒ (*t)| ,

where the maximum is taken through all possible partitions {xi}. If
V(f)[a, b] <; oo, we say that ƒ has bounded variation on [a, b] and
V(f)[a, b] is the total variation of ƒ on [a, b].

The R-S intégral is defined as follows. Suppose ƒ and g are two functions
defined on [a, è] , and let {xt} be a partition of [a, ô]. We define

where £k, xk^ jjk^ xk+l9 is arbitrary. If as À -•= max (#* + i — x^) -* 0,
0 ^ k ̂  n - 1

the limit of a exists and is independent of the partition {JC, }, we say that
/ = lim a is the Riemann-Stieltjes intégral (or R-S intégral) of ƒ related to

A - 0

g, and we write

/ : = \f(x)dg(x).

We dénote by BV [a, b] the set of all functions having bounded variation
[a, b]. It is proved in [13] that if ƒ e

Çb
f(x)dg(x) and g{x)df{x) exist, and

on [a, b]. It is proved in [13] that if ƒ e C [a, b], g e BV [a, b], then

'b

f{x)dg{x)+

f-
Ja

f(x)dg(x) V(g)[a,b] .
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It is also clear that if g' is Riemann integrable on [a, b], then

1 f(x)dg(x)= \ f(x)g'0c)dx9\bf(x)dg(x)= P
Ja Ja

where the right-hand side is a Riemann intégral.
In the following we list some results used repeatedly in this paper.

THEOREM 7.1 : Let f eC fa, b], g eC [a, b] O BV fa, b].

a) If F (f ) is Lipschitz continous in £ and F ' (g (. )) e BV [a, b\9 we then
have that

rb f(x)dF(g{x))= \b f{x)F>{g{x))dg{x).

b) If gn converges pointwise to g on [a, b], and V(gn)[a, b] ^ K < oo,
then

\"f(x)dgn{x)= T
Ja Ja

lim f(x)dgn(x)= I f(x)dg(x).
n -*• oo J a

c) If fne C [a, b] converges uniformly to f on [a, b], then

iim ? fn{x)dg(x)= ? f{x)dg(x).
n ~* oo J a Ja
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