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MATHEMATICA!. MOOEUJNG AND NUMERICAL ANALYSIS
MODELISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 27, n° 6, 1993, p. 777 à 799)

INTERACTION OF CONCENTRATED MASSES
IN A HARMONICALLY OSCILLATING SPATIAL BODY

WITH NEUMANN BOUNDARY CONDITIONS (*)

by S. A. NAZAROV O

Communiqué par E* SANCHEZ-PPALENCIA

Abstract. — The asymptotics of eigenvalues of the Neumann spectral problem with
concentrated masses is derived and justified. The résultant limiting problem contains intégral
terms linking all the équations for the separated inclusions into a coupled System. An approach
based on the asymptotic theory of elliptic problems in singularly perturbed domains is used,
asymptotically sharp estimâtes of solutions, and an explicit form for the almost inverse to the
initial problem operator is presented.

Résumé. — On déduit et on justifie le comportement asymptotique des valeurs propres du
problème spectral de Neumann avec masses concentrées. Le problème limite correspondant
contient des termes intégraux qui couplent les équations pour les inclusions séparées, qui
forment alors un système. On utilise une méthode basée sur la théorie asymptotique des
problèmes elliptiques dans des domaines soumis à des perturbations singulières. On donne des
estimations asymptotiques fines des solutions ainsi qu' une forme explicite du pseudo-inverse du
problème initial.

1. INTRODUCTION

Let ft and coj be three-dimensional domains with smooth closed boundaries
8/2 and dcoj, respectively ; j = 1, . . . ,ƒ . Fixing some points Pu ..., Pj in fl
we introducé the sets

œJ(e)= {xeM'is-'ix-P^ecOj} , j = 1, . . . , ƒ , ( 1 )

x(e)U ... U coj(s)] (2)

(*) Manuscript received October 6, 1992.
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778 S. A. NAZAROV

depending on a positive parameter e which is supposed to be so small as
o)j(s) cz f2. We consider the Neumann spectral problem

Axu(e, x) + A ( e ) y(e, x)u{e, i ) = 0 , j e / ] , (3)

dnu(e, x ) = 0 , x e a / ] , (4)

where ûx is Laplacian, dn = 9/9n, n is the outward normal to 9/2,

? (5)
3 ( 1 ^ ^ ) ) ()the functions y y being positive and smooth in â>p y0 » 0. The eigenvalues of

problem (3), (4) form the séquence

0 = A o < A ^ ) ^ A 2 ( e ) ^ A 3 ( £ ) ^ > + oo (6)

while an eigenfunction u0 corresponding to A 0 is constant. In this paper we
will show that for each of the positive eigenvalues the ratio Am(e)fe has a
limit (as e —• + 0) coinciding with the corresponding term jmm of the
eigenvalue séquence

0 < / x 1 ^ ^ 2 ^ A t - 3 ^ * - * - > ' + oo (7)

of the System

= 0, ieR\j = 1, . . . , / . (8)

Hère the functions w7 are assumed to vanish at infinity,

0 , f V j

r = r 0 + r x + • •. + r / f r 0 = r 0
 m e s 3 &, rj= \ 7j(£)dç . (9)

Formula (5) means that the « inclusions » (1) have masses Fj of the same
order (with respect of e) as in the « matrix » (2). In other words, we deal with
a concentrated mas s problem.

The paper [1] considered this type of spectral problems for the first time,
the Dirichlet problem being investigated. We would also mention the papers
[2-4] and the monographies [5, 6] related the same subject and similar ones.
Let us recall the results of [1] with respect f o équation (3) with Dirichlet
condition

u(e,x) = 0 , xe dU . (10)
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EIGENVALUES OF A NEUMANN SPECTRAL PROBLEM 779

Problem (3), (10) having the positive eigenvalues Aj(e) , À2(e), ..., the set

lim s~l Am(s);m = 1, 2, ... (11)
F-0 i

coincides with the union of the spectra of the équations

+ t*7?(£) V(i) = 0, i e U\ (12)

where j = 1, ..., J and w1 (g) -• 0 as | £ | -» oo.
There is an important différence between the limiting problems (8) and

(12) : the subtrahend in the square braces links all équations (8) into a
coupled System» whereas each équation in (12) may be solved separately.
From a physical point of view such an interaction of inclusions in (8) has a
spontaneous explanation. Naturally, in the case of f ree surface df2
(Neumann conditions) the inertial forces in the oscillating body £1 com-
pounded of (1) and (2) must be self-balancing, the above mentioned
subtrahend being responsible for the equilibrium while for Diriclet conditions
the same being done by exterior forces applied at the clamped surface
dû. To outline coupling of oscillating inclusions we rewrite équation (3) in a
special manner.

PROPOSITION 1 : Any eigenfunction u of problem (3), (4) is such that the
function

-1 J f
x^u'is, x)^ u(s, x) +fo

l Y, yj(e,y)tt(e>y)dy (13)

satisfies houndary conditions (4) and the équation

Axu'(e, x) + A (e) y (e, x){uf(e, x) -

- r ^ £ f 7j(s,y)u'(e9y)dy\=09xea. (14)

The eigenfunction u is restored by the formula

u(e,x) = M'(ef x)-r~l £ | yj(s,y)uf(8,y)dy. (15)

Proof : The only point to be verified is the relation

f J f
7j(s, x)u'(ef x)dx = FFQ1 £ yy(

J Û*V-(F) j = 1 J Û>J(F)

which follows from (13) and (9), (5).

vol. 27, na 6, 1993



780 S. A. NAZAROV

A dérivation of the (résultant) limiting System (8) is given in section 2. To
justify formai asymptotic représentations we use an approach which differs
from the approach in [5, 6] and is based on the results [7, 8] related to
gênerai elliptic problems in domains with singularly perturbed boundaries.
The main éléments of our approach are a réduction of the initial problem
(14), (4) to a vector équation containing a slightly perturbed matrix of
limiting problem operators and an inverse réduction of a vector équation
(with another perturbation î) to problem (14), (4) (see Sect. 4 and Sect 5,
resp. ; the first réduction was applied in [9-11, 8] to other spectral problems).
Although both réductions are non-equivalent and the vector équations
contain different realizations of the limiting problem operators» the coinci-
dence of the set (11) with the spectrum of system (8) follows (Sect. 7).

We should emphasize that norms of the perturbation operators turn out to
be small only while they are defined on special functional spaces with
weighted norms. In section 3 we recall well-known f acts touching upon
solvability of the limiting problems in these spaces being regarded as an
application of the theory of elliptic problems in domains with conical points
(cf. [12, 13], etc.).

Finally, we note that for the Neumann problem with unique small heavy
inclusion (i.e. J = 1 in (1), (2)) the présence of an intégral term in a résultant
limiting équation was mentioned in [14] but without complete proofs.

2. FORMAL ASYMPTOTICS

Let us perform the usual change of spectral parameter,

/ * ( * ) = e ' 1 A ( e ) , (16)

and let e tend to •+• 0. Equations (3), (4) become the Neumann problem for
the Laplace operator in f2. A solution of this homogeneous problem is
constant and is intended to be the principal term of the eigenfunction
asymptotics f ar from points Px, ..., P j . In the vicinity of Pj we define the
« rapid » coordinates

f= e~x(x-Pj) (17)

to dérive other limiting problem containing the operator Â^j + /üLy®(gJ) ;
j = 1, . . . , / . Thus, we seak formai asymptotics of solutions to spectral
problem (3), (4) as follows :

À 0 0 = sfJL + • • - , (18)

«(<?, JC) = I > ° + £ w*(e-l(x-Pj))+ e ^ O t K — ; (19)

we dénote by dots asymptotic terms that are inessential for our procedure.
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EIGEN VALUES OF A NEUMANN SPECTRAL PROBLEM 781

In accordance with (5) and (17) we have

in a small neighbourhood of P r Hence, the leading terms of représentations
(18), (19) must be linked by

AfW>(^) + yury°(^)[w/(^) + t;0] = 0 , ^ ^ . (20)

Suppose that for v° ^ 0 there exist a solution of équation (20) vanishing at
infinity. Being a harmonie function in (R3\<^, this solution admits the
décomposition

= 6 / 4 7 r | ^ | ) - 1 + 0 ( | ^ r 2 ) , \ïJ\ -+oo . (21)

The Green formula in the bail BR = {£ : \g\ < R} leads us to the relation

/* f yJ(£)(w>(£) + v0)dï = - lim f AfW>(£)dg =

= - l i m f ^W^)ds^ = bJ Mm f ^ = f e (22)

To détermine the boundary conditions for vl we substitute (18), (19) into
(4), take into account (21), (17) and equate to zero the coefficient at
e1. As a resuit, we obtain

Bn v
l (*) = - £ bj 3rt(4 Trr, )" \ x € 3/2 , (23)

y = i

where ry = \x - Pj |. The same arguments with respect to (3) give us the
following équation

Ax vl (x) = - fJLyöv°, xe O . (24)

The compatibility condition for problem (24), (23) takes the form

- VLV* rö = - £ ft• f 3n(4 Trr,)- ' * x = £ V (25)
; = 1 J BH j = 1

If /x ^ 0 then by using notations (9) and

<w>; = f r,«)w(f)rff (26)

vol 27, n° 6, 1993



782 S. A NAZAROV

we unité (25) and (22) into the relation

v0 = _
( 2 7 )

To this end, m équations (20), j = 1, . . . , / , we replace v° by expression (27)
and obtain System (8) which is called the résultant limiting problem.

3. HMITING PROBLEMS IN WEIGHTED SPACES

There is a lot of approaches to investigate the problems in question. We
choose one of them related to the theory of elliptic problems in domains with
piècewise smooth boundaries (the points P lt ..., P T and the infinitly remote
point can be regarded as conical ones). This choice is prescnbed by the
estimate technique we use in the following sections.

Dénote by V^t ^ (O ) and V^ (R3 ) the Hubert spaces of functions defmed on
f2 and IR3 with the weighted norms

| t > ; ^ , „(12)11 =
1/2

( 2 8 )

Hère jSeR, a ^ 0, £ = 0, 1, ... and rmm = minir!, ..., r7}, Vs
xv is the

collection of order s derivatives of v. We will deal with the cases
<x = s => 0 and a — 0. Note that for any /3 and o- > 0 the space
VpŒ(f2) coincides with Sobolev space H (12) but the norm équivalence
constants depend on a.

Let x ^ C t f W be a cut-off function, xir) = 1 (= 0) while r < 1 (=>2).
For a e (0, 1 ) we introducé new cut-off functions with supports depending
on e ; namely,

g)

LEMMA 2 : 1° If y e Vl
Pt e(O) and

y> e v £

M2 AN Modélisation mathématique et Analyse numérique
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2° If ze V^(U3) and z°(e, x) = Xj
a(s, x) z(e, e-\x-PJ)\ z1 = Xf z

then z°e Vl
p e(f2), zJ e V^(U3) and

The constants C x and C2 depend neither on s E (0, eö] nor on y and z.

Proof : The desired estimâtes follow immediately from the norm défini-
tions (28). Therefore we shall mention two facts only. First, for a
homogeneous operator Q(VX) with constant coefficients the inequalities
ea <r}<2 Ea hold on the supports of the coefficients of the commutator
[Q, Xja] - QXja - Xja Q and that is why the estimate of y0 (and zJ) is valid.
Second, due to (17) and (28) we have

while supp Z ^ {£ : \g\ ^Rs a} and s is sufficiently small, the multiplier
£t -(3 -3/2 iea(jing t 0 m e s a m e result in the estimate of Z° (and ƒ) . •

We consider two continuous mappings

which are the operators of the Neumann problem in ft and of the Laplace
équation in R3 respectively.

PROPOSITION 3 : 1° If fi e (1/2, 3/2) then Np is a Fredholm operator and
IndTV p = dimker N p — dimcoker N p = 0 and ker N p consists of constant
functions. Under the condition 1/2 < fi, y < 3/2 a solution v e V2

y 0(/2 ) of
the problem

{Axv9dnv} = {ƒ, g} e V ^ 0 ( / ] ) x 7/1/2(ôf2) (32)

belongs to V2ptO(f2).
2° Operator (31) is an isomorphism provided fi G (1/2, 3/2).

Proof : Both assertions are well-known facts (see, for example, chapter 2
[13] and chapter 1 [7]) and we outline only some features of reasoning for the
first one. Operator N2 _ p is adjoint to TV ̂  with respect to the Green formula

f f f
v Axu dx — \ v dnu dsx = u Axv dx - u dnv dsx .

n Ja/3 Jn Jsn
Hence, problem (32) has the solution v e V2@ 0(f2) if and only if

f
fV dx - gV dsx = 0 V V G ker AT 2 _ p .

/ ƒ} Ja/2

voi 27, n° 6, 1993



784 S. A. NAZAROV

Besides, the subspaces ker/V^ and coker Np do not depend on
(3 e (1/2, 3/2) (due to the last assertion in 1° being derived with the help of
the asymptotic représentations of a solution near the points P1, ..., Pj ; cf.
Proposition 1.6.2 [13]). To this end, by virtue of Hardy inequality the space
VQ({2) which contains V\{Q) coincides with Hl(f2) and therefore
ker TV £ = {const.} . •

We put
f f

Uf = f - [mes3 H]-1 f dx, 7Thv = vh dx (33)
J n J a

where h e C"° {ft ) and hn = h dx ̂  0. In the following sections we shall
Jn

consider the operator

{ ^ } lQ(f2)xC (34)

corresponding to the Neumann problem which is supplemented by intégral
conditions avoiding its kernel and cokernel. Properties of (34) follow
immediately from Proposition 3 (1°).

COROLLARY 4 : Let 13 e (1/2, 3/2). Operator N^(/*) is an isomorphism
for any fx # 0 and JJL = 0 is simple eigenvalue, ker N^(0) = {const}. If
8~l > | /x | > 3 :> 0 ?Aen ?/ze norms of N^ (/x ) a^J N^ (yu, )~ ] öre majorized

by a constant depending only on f3, 5, ft and ho.
Let us introducé the vector-function w = (wl, ..., wJ). Rewriting the left-

hand side of system (8) in a vector form we connect with the résultant
limiting problem the continuous linear bundie

C B M ^ M ^ ) = L £ + M1:V^(#3/->V£(R3/ (35)
where L̂  = Lfi x ... x L^.

THEOREM 5 : Let (3 e (1/2, 3/2). The eigenvalues of the bundie L^CAO

form séquence (7). TTze corresponding eigenvector s wh == (w ,̂ ..., w^) can
Z?e normalized by the conditions

= ôgtq,h,q = 1 ,2 , . . . , (36)

where a bar means complex conjugate, (w*) is intégral (26) and
ôhg is Kronecker symboL There is no vector associated with an eigenvector.
The eigenvalues and the eigenvectors do not depend on [3 e (1/2, 3/2).

M2 AN Modélisation mathématique et Analyse numérique
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Proof : Since fl_jg is an isomorphism (Proposition 3 (2°)) and the mapping
l}p : V | (R 3 / -> Vl(U3Y is compact (compare (35) with (8)) the résolvent
[L̂  (fit y 1 exists for all fx e C with exception of points JJL U £t2> ... which are
finite multiplicity eigenvalues, the only possible accumulation point being at
infinity (cf [15, 5]).

It is clear that <w, y) = (y, w) for w, y e V2p (lR3)y. By virtue of Hölder
inequalities we get

and therefore according to (9) we obtain

(37)

Moreover, for eigenvectors wf
h, M ,̂ équations (8) and Green formula provide

M*<n, w,> - ^ [ V ^ . V ^ df ; (38)

the intégrais converge because vî , H^ are harmonie functions in IR3\ô>7 with
représentations (21). Relations (37) and (38) state lack of associated vectors,
possibility of normalization (36) and eigenvalues to be positive. Besides, one
can verify the minimization principle

f €w>\df:w = {w\ ...9w
J} eV2

0(R
3Y,

àçw' = O i n R ^ ^ , <>v, w) = 1, (w, wq) = 0, q = 1, ..., h}

to show séquence (7) to be unlimited (we will not use this property itself). To
complete the proof we note that an eigenvector wh G V^flR3/ admits
décompositions (21), j = 1, . . . , / , and, hence, belongs to V^(M*)J with
arbitrary y e (1/2, 3/2). •

4. RÉDUCTION OF THE INITIAL PROBLEM TO A VECTOR EQUATION

The goals of this section is to establish that to each solution
{A(e), w'(e, x)} of the spectral problem (14), (4) there corresponds the
vector

U= 1, ..., wJ} (39)

vol 27, n° 6, 1993



786 S. A. NAZAROV

so that equality

TU - SU + At (c)(P - Q ) 1/ = 0 (40)

is valid. Hère M ( ^ ) is the rescaled spectral parameter (16), S and
Q are operators with small norms, T + /AP is the (ƒ + 1 ) x (/ + 1 )-matrix
formed by the limiting problem operators (34) and (35), JOj = T7 0 = 0 and
Po, = P,o = O for; = 1, ...,ƒ.

We détermine the entries of vector (39) by the formulae

,Pj + e?)J = 1, . . . , ƒ ,

(cf. Lemma 2 with fi - 1/2 = /? - î + 3/2 at f = 2) where X£ is the cut-off
function in (29),

0 <= a -< 1/2 < i/ < 1 . (42)

In order to piek out the suitable operators S0/ i and Q0/î for the first line

(Too+MdOPoo)" = (Soo + /*(e)Qoo)ü+ j ; (SOj + ^ (^ )Q 0 7 )v^ (43)
J = i

of System (40) we multiply équation (14) by XQ :

W)- [AX9 X%]u' + épie) yxAu' - r~l ^ \ yuf dy\ - 0 .

l J J
Hère [A, J5 ] = AB - BA. Using (41) and (29) we can rewrite this équation in
the form

Axv(s, x) = - £& (s) yov(e, x) -

Evidently, boundary conditions (4) are fulfilled and similarly to (34) we will
omit them in notations of operators. It may be possible now to détermine the
entries of the matrices S and Q by comparing of (43) and (44). Ho wever we
mustpay attention to non-invertibility of operator 7V̂  in (30) (Proposition 3).
That is why we prefer to deal with operator (34) but we will indicate the
necessary intégral condition after finding operators in the other Unes of
System (40)

+ £ (Sjk +n(e) Qjk) wk, j = 1, . . . , ƒ . (45)
k= 1

M2 AN Modélisation mathématique et Analyse numérique
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We multiply équation (14) by e^ +3 /2 xj •> g° o v e r to rapid coordinates (17)
and obtain

e? ~ m A€(XJ u')-efi- m[A^ XJ] u' +

L 1 £ f yu'dy\=O,
J

where the functions u' and y depend on Pj + egJ. Applying (41), (29) and
(5) we conclude that

= efi-if2 [A€,XÏ(e, &)] v(e,PI + e?) -

-Xjt2(^ S!))v(et P}

(46)

where róy(^) = 0 for f G wy and y^d) = y o for g e IR3\cö/. Equalities (46)
and (45) lead to the définition of Sfh and Qjh. We should emphasize that it
would be a mistake to rewrite the term s^ +5 /2 fjuy^XJ u' in the form
s3 jji 7Q7 W because of lack of the inclusion V\ (U3) c V^ (IR3) and lossing of
continuity of operator S}J.

We are going now to calculate TT x v where TT x is the functional in (33) with
h = 1 (recall that it is necessary to détermine SOh and QQh). Let us rewrite
the right-hand side F of (44) in the form

j

F = f^{e)Qmv + £ (SOj w^ -r fx{s)Q0]w
j).

j = i

Note that because of v being a solution of the problem (32) with the right-
hand side {F, 0} the condition

F(e, x)dx = 0 (47)
n

is valid. Thus, by virtue of (33) we conclude that

F = /*(e)IIQ0Qv+ £ (IISOjw> + ti(s)IlQOjwJ). (48)

vol 27, n° 6, 1993
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Besides, in accordance with (44) equality (47) transforms into the following
one :

- J . (49)

Let us dénote the last intégral by Iy On account of (46), (41), (42) and going
over to coordinate (17), we obtain

Ju3 Ju3

Substituting this expression into (49) we find that the total coefficient of
equals

J r - f rk-7o \ xi dx-

- r0 2

(see (9) and (29)). Therefore, we can rewrite (49) in the form

j

fx{s) rrxv — IJL (e) £ q}W ~

Fmally we introducé the operators in the right-hand side of (43) by the
formulae

§oo = 0, SO j = {/K0/, O}, QQO = {^Öoo. 0} , Qo, = {^ôoy. «?7} (51)

M2 AN Modélisation mathématique et Analyse numérique
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while taking S0j9 QQh and q} out from (48), (44) and (50), the other entries of
matrices S and Q being defined according to représentation (46) compared
with (45).

Functions v and w; in (41) vanish in a neighbourhood of P} and outside a
bail respectively. Hence, the inclusion

holds for arbitrary fi and <5. Fixing positive numbers j3 and 3 so that
P ±8 e (1/2, 3/2), we put

0
(52)

and assume all the operators in (38) to act from into

LEMMA 6 : An eigenvalue À (s) and a corresponding (non-trivial)
eigenfunction u{s, .) of'problem (14), (4) give rise to a (rescaled) eigenvalue
fji(s) and a (non-trivial) eigenvector U of équation (40). The main term in
(40) being given by (52) and perturbation operators S, Q admit the estimate

IISiD^-ïIR^all + ||Q ; Dfit 8 -+ R0t s || ^cs" (53)

where % > 0 aŵ f the constant c does not depend on s e. (0, e0) while
fS e (1/2, 3/2) and 8 is small positive.

Proof : We have to verify only estimate (53). Recalling the définition of
QOh in (44) the inequalities

become evident. Taking into account the positions of the supports of
commutator [Ax, %"] coefficients (cf. Lemma 2) we have

' > : s v - l < z \ i j \ < 2 e v ~ l

vol. 27, n° 6, 1993
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The same estimâtes hold for JJQOh and JJSOj because of 77 being the projector
in V£ + 5>0(/2). Besides, in virtue of (50), (41) and (42) the relations

f
J {

are valid.
The desired estimâtes for the norms of operators Sj0 and Qjh in (45) (or in

(46) which is the same) are derived in a similar manner, Stk being equal to
zero. In view ot the support or the cut-ott tunction we obtain

(1 -2<r)5\\ . V2 (n\\\
C£ \\v » y p -5,o\sl)\\ »

c s l + 8 \ \ v ; V l _ 8 t 0 ( Ü ) \ \ ,

We finish the proof by mentioning that all the constants in the out-coming
inequalities depend neither on u, w1 nor on e G (0, eQ) and due to (42) all the
exponents of s are positive. •

5. INVERSE REDUCTION

In the last section we reduced the initial problem to a vector équation. We
are going now to deal with the direct oposite, namely, to find such vector
équation (40) that for each solution {jj,(e), U} of it there exist the
eigenvalue A (e) = s/u, (e) and the eigenfunction

ii'(e, x) = Xv
0(s, x)v(e9 JC)+ sm-ï £ X?(e,x)w*(e9 e-^x-Pj)) (54)

j = i

of problem (14), (4), v and w\ ..., wJ being the entries of U. We should
emphasize that the perturbation operators S and Q differ from the ones
introduced above but we will use the same symbols for them, misunderstand-
ing being excepted.
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Let functions v and w\ ..., wJ satisfy the équations

y x) = - ep(e) yov(e, x) -

791

x)

= F * - I / 2 r

, x) , e " ' , x s fî ;
(55)

3. (56)

Letusmultiply (55)and(56)byX5(s, x)and e-p'mXJ{s, Ç])respectively,
go over to coordinates x in formulae (56), j = 1, . . . , / , and sum them up. To
this end, we add the resuit to the modified equality (55) and obtain

C'O v ) - [ A x , - [ A x ,

J - 1

the functions w1 and y'Qp y^ having s~ [(x — Pj) as argument. In virtue of
(54) this equality is transformed to (14) by mu tuai ellimination of com-
mutators and by gathering similar terms. Thus, (55) and (56) are the
équations we need and rewriting them in forms (43) and (45) respectively we
introducé the operators QQh, SOh and Qjh, Sjh (functionals q} will be defined
below). New estimâtes of the operator norms take the forms

; ce
( 2 o - - l ) 8 |

; es
3/2
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The procedure we used to dérive these estimâtes was the same as in section 4
but a change of positions of the support of commutator coefficient (compare
(55), (56) with (44), (46)) forced us to demand 8 to be small and négative,
inequalities (42) and the inclusions /B ± ô € (1/2, 3/2) having been pre-
served. After that all the exponents of e in the last estimâtes become positive.
It should be outlined particularly that according to assertions 3-5 the weight
index modification performed above does not effect the properties of the
limiting problem operators forming the matrix T + pP in (52).

We, of course, subject the function v to conditions (4). Besides, we ought
to find out a supplementary intégral condition in order to treat the inversible
mapping (34). Let F be the right-hand side of (55). The solvability condition
for the Neumann problem (47) can be transformed into the relation

Xlf X? ̂  dx -

while due to (56) we have

j
Ju

y o f X

Only the first term in the right-hand side of (55) does not vanish on
supp xj because of the last inequalities in (42). Therefore

s \ [Ai9 XJ1 v diJ = - ! X; àxv dx = sfi (e) y0 f Xj
vvdx .

JR3 Ja Ja

Picking the three obtained formulae up we conclude that condition (47) is
equivalent with the relation

/x (e) X%vdx=fi(e)irxv = fi(e) ^ q,W =
Jn J = î

^ - / I O O S ™ - * I {[ X/w'd^ + r - 1 ^ ) f mes3coL) (57)
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which looks like (50), the estimate

\qjW\ ^ce-ô + 2«\\wJ ;Vyô(M
3)\\

with the positive exponent of s holding true.
Introducing the main operator T + yuD in (40) by (52) with the upper left-

hand corner element defined according to (54) where irh equals TTX in (57),
we outline that 7 r x l > const > 0 as e -> 0 and recall the last assertion of
Corollary 4. To complete the construction of the perturbation operators S, Q
we re fer to the « old » formula (51) with « new » SOh, QOh and q^.

LEMMA 7 : A solution {/x (e), U} of équation (40) gives rise to a solution
{A (e), u'} of problem (14), (4). Operators S and Q are subject to (53)
where f3 e (1/2, 3/2), x > 0 and 8 is small négative. For any p >• 0 one can
findpositive ep such as in the case e e (0, ep)and \ fx (s) \ < p function (54)
is non-trivial provided U ̂  0.

Proof : It is only the last fact which has not been verified. By virtue of (54)
u' - 0 in H if and only if

j

s u p p v a [^_J {x : rj < 2 e "} , s u p p wJ cz {gJ : \ÇJ\ > e a ~ *} .

In this case the Neumann conditions for v can be replaced by the Dirichlet
ones and in (56) the term containing y® vanishes. That is why the function s
v e V\ + s o (12 ) and W e V\ _ § (R3 ) are solutions of the Dirichlet problem in
H and the Laplace équation in R3 (with slight perturbations of operators since
l/jt (e)| < p). Therefore v = 0 and w7 = 0 because of the uniqueness of the
solution of these problems for yS ± ô e (1/2, 3/2) (cf. Proposition 3). •

Remark 8 : Looking through the transformations made up in this section
one can conclude that if for an eigenvector U°(^ 0) the équation

(T + S ) ^ 1 + /J,(S)(P + Q)U1 = - (P + Q)C/°

has a solution £/\ then the formula (54) gives non-trivial Jordan chain
{w°, ul'} corresponding to the eigenvalue À (s) = e/m (s) of problem (14),
(4). This is impossible and, hence, there are no assotiated vector of équation
(40).

6. SOLVABILITY OF THE INITIAL PROBLEM

Here we show, in particular, that if A = e~ l A is not an eigenvalue of the
bundie (52) then the operator

^ ( A ) s {4+Ar, Bn} :V
2^e(n)^V°^e(n)xHm(bn) (58)
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of problem (3), (4) is an isomorphism. We present also asymptotically sharp
estimâtes of solutions in the weighted spaces and an almost inverse to
J^pik) is an explicit form. Namely, we shall construct the operator

&? (À > • y% eW ) x Hm(dn ) -> vjt e(n ) (59)

such that

|| ^ m || ̂ csx (60)

> 0 . Thus, Jfp{X)~l = M ^{k)[JT p{k) M^{p)Tl as s e (0, eA)

with some positive eA depending on A

LEMMA : If A is not an eigenvalue of System (8) then the équation
Lp (A) W = — A {y®, ---f jj) has the solution Wo, an entry WJ

0 of which
admits the représentation of type (21) with the coefficient bj = bj,

The vector-function W = W$+\ - F~v S satisfies

+ Ayf(&) WJ (iJ) = 0, ^ e i 3 , (62)

Proof : The calculation of 6;° follows formulae (22) with evident modifi-
cations, properties of W being a conséquence of the définition of

w0. m
Let ƒ G V°0> F(f2) with y8 e (1/2, 3/2). We put

) PJ + s£>). (63)

It is clear that

f (s, x)=f°(s,x)+e-l3-m £fJ(s, e-l(x-Pj)).

Besides, due to Lemma 2» 1° taking account of the positions of supp/0 and
supp fJ we have

i / ° ; V S _ B , 0 ( / 2 ) | | + \\f ;V$ + am
3)\\ ^ce-a'2\\f ; V l f ( n ) \ \ (64)

with a small négative a. Let us consider the problem

\ÂXU(E, X ) + eAy(e9x)u(e9 x) = / ( e , x) , x G /2 ,
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and search for the approximate solution û in the form

l £ -\x - Pj)) + X%(6, x)v(e9 x) +
J - I

J
, - p + 1/2+ £ - ^ + 1/z £ (^7(e, Jc)w /(e, £ - l ( ^ - J P j f ) ) + <X> ) (66)

J

where v e V\ _atQ(f2) c V\t0(f2) and

are solutions of limiting problems (32) and (8) with the right-hand sides
{ƒ, g} and {f\ ..., fJ) respectively,

Assuming f3 ± a e (1/2, 3/2) we get a solution w and transform Neumann
problem compatibility condition into

- y f f f
j = i Ja/3 J n J bfi

We apply (61), (25) and reduce the last relation to

1r-1( f fdx- f 0<fc\ . (68)

Note that under (67) Neumann problem in question has a unique solution

v subjected to \ v dsx = 0. By virtue of Proposition 3 the inclusions

v sVl_aQ(n\ w e Vl + a(U
3Y hold for arbitrary a e [0, aQ) where

a g is small positive. Moreover, by means of (67), (63) and (64) the
inequality

| ) ^ c | | / , ö | | (69)

is obtained where c is a constant depending neither on ƒ, g nor on
e e (0, e0).

We ought now to estimate discrepancies produced in (63) by approximate
solution (66),

Axü + eAyü = f + Wc + Wv + Ww in /2 , 9nM = ^ + ^ c on 6/2 .
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Recalling (66) and (62), (63), (67) we obtain for the discrepancy terms the
following expressions

1pc(e, x) = £

•„(e, x) = eylr0X^(e, x)v(e, x) + [Ax, X% {s, x)\ i>(e, x) ,

i - i

f{e, x) Ü(e~ \x - ƒ>,)

Appealing to (62), (17) and (69) we find
2 H c Ê | | / , g\\ .

In order to estimate the other terms we use the same approach as in the
previous sections. For example,

Finally,

ce \\f, g || , | | n ; V% f (/2)|| «s c£«<l/2^>|| ƒ,

Thus, collecting these estimâtes and taking (42) into account we obtain the
desired inequality (60) by denoting MP(EA) {ƒ, g) = û.

From Lemma 2 and formulae (66), (69) with a = 0 it follows that the
operator (59) norm does not exceed ce"1. Since the norm of
Jf p(eA) - ^^(e /x) (see (58)) is majorizedby ce\A - fx |, wehaveproved
the following assertion.

THEOREM 10 : ƒƒ yl ^ 0 /s not an eigenvalue of sy stem (8) then there exist
positive è, p suc/i fftat imder e e (0, ê) and \ A - e A \ < ep operator (58) Ï5
ö/ï isomorphism. The norms of JT$ (A ) and Jf p (A )~ [ do not exceed c and
ce~l respectively, the constant c not depending on E and A under the above-
mentioned restrictions.
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Remark 11 : The norm Jf^(À )~ x estimate is asymptotically sharp in the
V^f e-space scale. It is the first term in the right-hand side of (66) which gives
the norm increase as s -• 0. One can modify the estimate by handling this
term separately.

7. JUSTIFICATION OF THE ASYMPTOTICS

First of ail, we recall the équivalence of problems (3), (4) and (14), (4) (the
transition from one to the other is realized by (13) or (15)). Besides, zero is
an eigenvalue of both problems, the same holding true for the vector
équations (40).

The spectrum {y^0 = 0, /x l5 ju2, ...} of bundle (52) does not depend on a
small ô. Let /x. be an multiplicity l eigenvalue. Since there are no associated
vectors, the estimate

holds while 0 < | yu - /-tj < p * with a positive p h. Thus, in virtue of the
theorem on the total algebraic multiplicity stability (see [15, 5]) we
conclude, on account of Lemmas 6 and 7, that in both the cases (Sect. 4 and
5) there exist positive numbers es, d% and t^ such that for e e (0, s,) the
eigenvalues of équation (40) laying on the dise

B(p4;d)= {fJL e C:\fL - ^ . | < d.) (70)

belong to the disk B{/m \t+ex) where x > 0 and have total algebraic
multiplicity equal to £. The first réduction performed in Section 4 shows that
the quantity of numbers e~lÀK{e) placed in (70) does not exceed
l and each of them hits into B{JJL, ; t^ ex). The second réduction together with
Remark 8 shows that the same quantity is not smaller than î. Thus, it is equal
tof .

The obtained resuit and Theorem 10 state that for any t > 0 there exists a
positive s such as for s e (0, e) the total multiplicity of problem (14), (4)
eigenvalues in £ ( 0 ; et) coincides with the multiplicity of bundle (52)
eigenvalues in B(0, t). Therefore we have proved

THEOREM 12 : The set (11) corresponding to the eigenvalue séquence (6)
of problem (3), (4) {or (14), (4)) coïncide with the spectrum of the bundle
(35). The estimate

{with positive x and the constant ck depending on k) holds.
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Remark 13 :
1) To shorten the paper we avoid touching upon convergence of eigen-

functions.

2) When indicating the properties of operators (30), (31) (Proposition 3)
we did not use selfadjointness of problems with exception of the end of
Theorem 5 and the last assertion in Remark 8 : lack of both the facts having
no influence over reasoning in gênerai. Thus, the approach under considér-
ation can be applied for non-symmetric operators since the information on
correspondmg mappings of type (30), (31) is available {cf. [9-11]).
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