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MAlHEMATtCAL MODEUJNG AND HUMERICAL ANALYStS
MODÉUSATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 27, n° 6, 1993, p. 719 à 737)

ON THE DISCRETE MAXIMUM PRINCIPLE
FOR PARABOLIC DIFFERENCE OPERATORS (*)

by HUNG-JU Kuo (\ 2) and N. S. TRUDINGER (3)

Communicated by R. TEMAM

Abstract. — We dérive a discrete analogue for par abolie différence inequalities of the Krylov
maximum principle for parabolic dijferential inequalities. The resuit embraces both explicit and
implicit différence schemes and extends to the parabolic case our previous work on linear
elliptic différence inequalities with random coefficients.

Résumé. — Pour des inégalités aux différences paraboliques, on établit V analogue discret du
principe du maximum de Krylov connu pour les inégalités paraboliques. Le résultat obtenu
concerne à la fois des schémas aux différences explicites et implicites et est une généralisation
au cas parabolique de notre travail antérieur concernant les inégalités aux différences
elliptiques linéaires à coefficients aléatoires.

AMS MOS : Primary : 65M06, 35K20, 39A70 ; Secondary : 35A15, 65M12, 39A10.

1. INTRODUCTION

In this paper we establish discrete versions of the Krylov maximum
principle [4, 5] for linear parabolic partial differential operators of the form

2£u = aiJ Duu + bl Df u + cu-Dtu (1.1)

in cylindrical régions Q+ = II x U+ cz Rn+ \ where O, is a domain in
Euclidean n-space, W\ Our results are analogues of the discrete version of
the Aleksandrov maximum principle for elliptic operators,

Lu = aij D{j u + bl Dt u + cu , (1.2)
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720 HUNG-JU KUO, N. S. TRUDINGER

established in our previous work [6] (Theorem 2.1). As in [6], our estimâtes
are formulated in such a way that their continuous versions follow via
Taylor's formula.

Our discretizations of the operator (1.1) will involve linear différence
operators, essentially of positive type, acting on space-time mesh functions.
We will consider meshes in Un + i of the form,

E = tK T = £h x £T

= {(x, t) e RW + 1|A: = (wlt ..., mn) h9 t = mr, mh mei.) (1.3)

with spatial mesh length h > 0 and time step r > 0. A real-valued function
on E is called a mesh function and, for fixed y ^ 0, e Z^, we define the
following basic différence operators, acting on the linear space of mesh
functions, Ji (E) :

8+ u(x9 t) = j — {u(x+y, t)-u(x, t)} ,

\y\
öy u(x9 t) = y-y {u(x9 t)- u{x-y, t)} ,

, t) = | ( ô + + ôy)u(x, 0 = 2]^T {"(•x+^ O - w(x-v,

ÖyU(X, t) = Ôy Ôy U (X > ^ ^ ^

= 2 {u(x + >> O - 2 u(x9 t) + u(x - y» /)} ,

1
<5r w (x, ? ) = — {u (x, t ) — u (x, t — T )} .

The spatial part of our différence operators will be determined by second
order différence operators of the form

Lhu{x, t) = J^ a(x, t, y) Ôy u(Xj t) +
y

C O (1.5)

with real coefficients a, b, c, having compact support with respect to
y, and satisfying as in [6], the condition

a ( x , t, j ) - | \ y \ \ b ( x , t , y ) \ ^ 0 . (1.6)

Such operators can be used to approximate uniformly elliptic differential

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



ON THE DISCRETE MAXIMUM PRINCIPLE 721

operators of the form (1.2) ([6, 8]). From the operators (1.5) we construct
parabolic différence operators of the form

= (1 - a)Lhu(x, 0 + <xLhu(x, t - r ) ~ S~ u(x, t) (1.7)

where a is a fixed number satisfying 0 ==s a =s 1. When a = 0, the operator
2£ is called implicit, when a = 1, the operator 3? is called explicit and the
gênerai case is refered to as explicit-implicit in correspondence with the
résultant différence schemes. The operators (1.7) are of positive type (as
defined by Motzkin and Wasow [8], see also [7]), if, as well as (1.6)
holding, we have

( a ^ f i ) U (1-8)
t bl2

(1 - a ) c(x, t) + ac(x9 t - r ) ^ 0 . (1.9)

In the parabolic case, (1.9) can be achieved by replacement of u by
eCt u for an appropriate constant C, provided r is sufficiently small.
Consequently only (1.6) and (1.8) will be essential for us with (1.9) being
replaced by a weaker condition (see (2.6)).

We shall formulate a discrete version of the Krylov maximum principle in
the next section for operators 3£ ̂  satisfying stricter conditions than (1.6)
and (1.8) corresponding to the non-degeneracy condition assumed in [6]. In
Section 3 we provide some basic inequalities from Krylov's paper [4] which
are used in our proof which is supplied in Section 4. Finally in Section 5 we
relate the discrete and continuous versions of the maximum principle. In an
ensuing paper, we shall apply Theorem2.1 to the dérivation of local
estimâtes, corresponding to those in the elliptic case [6].

2. THE DISCRETE MAXIMUM PRINCIPLE

In this section we formulate a discrete maximum principle for the operator
«2?(a), Theorem 2.1. The spatial operators Lh in (1.5) will be subjected to the
same non-degeneracy condition as in [6], That is, as well as (1.6), we
assume for each point x e Oh and t = mr, m = 0, 1, ..., Af for some
N G N, there exists an orthogonal set of vectors yl, ..., yn e Z£ such that

(1 - a)la(x, f, ƒ ) - 1^1 \b(x, t, y )| J +

L(JC, t - r, / ) - M |6(JC, t - r, yl )| J ^ A,.(x, O > 0 , (2.1)+ CL

vol. 27, n° 6, 1993



722 HUNG-JU KUO, N. S. TRUDINGER

i = 1, ..., n. Furthermore we will assume the coefficients a vanish whenever

\y\ = \y\2*
Kh

for some fixed K e N and write

9 = 9(x,t)=\[ A,(x,t) (2.2)
i = 1

a(x, 0 = £ a ( x , r . y ) , b(x, f ) = £ \b(x,t,y)\ ,
y y

aQ = max a(x, t), b0 = max b(x, t), c^ = max c± (x, t).

We also need to assume non-degeneracy with respect to the time variable and
this we do by strengthening the condition (1.8) to

(2.3)

for some positive function y. Note that (2.3) will be satisfied if the time step
T and the ratio r/h2 are sufficiently small, in particular if

2 aa0Kr/h2 + arc^ < 1 . (2.4)

When the operator Jf is implicit, a = 0 and (2.3), (2.4) are automatically
satisfied. Combining (2.2) with (2.3), we also write

S(x9 t) - y(x, t- T)&{X, f ) , ^ * = ( ^ ) w + 1 . (2.5)

In accordance with our remarks after condition (1.9), we shall replace (1.9)
by the condition

(1 - a ) r c 3 £ l - A * (2.6)

where JA is a positive constant. Writing T = rN, we distinguish interior and
boundary points in the discrete cylinder

QKT = n„x (Z T n [o, r ] ) ,

corresponding to the operators 3£\£l- First we define the discrete interiors
and boundaries of the set flh corresponding to the operators 2£(a) by

nt{t)= {xe nh\(l - a

M2 AN Modélisation mathématique et Analyse numérique
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ON THE DISCRETE MAXIMUM PRINCIPLE 723

The discrete parabolic interior and boundary of the cylinder Qh T are then
defined by

= {(x, t)eQh T | ( l - « ) a ( i , f, v ) + « û f c f - r , y ) = 0 ,

N

= {J [nb
h(mr)x {mr} ) U [12 h x {0} ] .

m = 1

We also need to recall the notion of upper contact set, as used in [6].
Namely, if u is a spatial mesh function defined on I2h, we define the upper
contact set of M, Z"+ = F+ (u) to be the subset where w is concave, that is
F+ consists of those points x in Oh for which there exists a hyperplane
p = P(x) in Un + l passing through (x, u(x)) and lying above the graph of
u. For a space-time mesh function u defined on the cylinder Qh T we then
define its spatial upper contact set by

r+ =r+(u)= {(x,t)eQktT\xer;}

where Tf
+ dénotes the upper contact set on 12h of the spatial mesh function,

u*(x) = M(JC, t). We also define the increasing set of a space-time mesh
function u by

I = I(u) = {(x, t) e ö/^ T | u (x, t) > u (x, 5 ), for ail s, 0 ^ 5 <= f }

and let

^ - «^(M) = r + n /

dénote the increasing-upper contact set of w. We can now state the foliowing
discrete analogues of the Krylov maximum principle corresponding to the
operator %{a\ 0 ^ a ^ 1.

THEOREM 2.1 : Let u be a space-time mesh function on the cylinder

Qh T satisfying the différence inequality,

Z^u&f in Q%T, (2.7)

to g ether with the boundary condition,

in ö * . r . (2-8)

vol. 27, n- 6, 1993



724 HUNG-JU KUO, N. S. TRUDINGER

Then we have the estimate
n

max u < CR ~l \\f!3* \\L^{yy (2.9)
Qh,r

b0T
where C is a constant depending only on n, K, /A, , CQ Tt R — diam H

R
and £f is the increasing-upper contact set of u.

We remark that, as with the continuous case [4, 5], the estimate (2.8) is
one of several variants which stem from the special case b0 — CQ — 0. A
more explicit form of the constant C, with an exponential dependence on the
quantities b0 and CQ will be given in the course of the proof of Theorem 2.1 .
With the intégral norm in (2.9) taken over Sf, rather than Qh T, the estimate
(2.9) actually corresponds to refinements of the original Krylov estimate due
to Nazarov and Ural'tseva [9], Reye [10] and Tso [11]. The form of estimate
(2.9), involving the intégral Ln + l norm, rather than a sup norm, will be
crucial in deriving local estimâtes and subséquent stability results in our
ensuing paper (cf. [6, 7]).

3. PRELIMINARIES

Our proof of the maximum principle, Theorem 2.1 is based on certain
inequalities of Krylov [4], together with the discrete adaptation in [6] of the
geometrie argument of Aleksandrov. As in [6], the notion of normal
mapping (or supergradient) is crucial, the normal mapping of a spatial mesh
function u on the set £2h being defined by

xW = Xu(x)= {peMn\u(z)^u(x) + p . ( z - x ) , Vz e Üh) . (3.1)

The upper contact set F+ of u is thus the subset of üh where xu is non-
empty. Note that in the discrete case, x(&h) = R" and that x(x) is
unbounded whenever x is an extreme point of the convex huil of
Qfo which we dénote as Óh. The basic inequalities we need are encompassed
in the foliowing lemmas, which correspond to special cases of [4],
Corollary 1.

LEMMA 3.1 : Let u and v be mesh functions on 12h, vanishing at extreme
points of Ûh and satisfying u^v on fïh. Then we have the inequalities,

(u(x)\xu(x)\ -

^ (fi + i) £ (i«-i>)(*)|;rB<*)| • (3.2)

M2 AN Modélisation mathématique et Analyse numérique
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Note that in (3.2), we use | S | to dénote the n dimensional Lebesgue measure
of a measurable set S in Un and the terms in the above sums are understood to
vanish whenever u and v vanish, in particular at the extreme points of the
convex set Ûh. In fact there is no loss of generality in replacing the functions
u and v in Lemma 3.1 by their concave envelopes which then vanish on
bOh. In this form, Lemma 3.1, is directly covered by Krylov [4].

LEMMA 3.2 : Let ube a mesh function of Oh, vanishing at extreme points
of Ûh, Then for any z e Qh, we have the estimate,

\dn
z 1 ^

H(Z)=S — Y u(x)\xu(x)\\ , (3.3)
{ x e h )

where dz = max | z — x \.

For completeness, we shall describe the proofs of Lemmas3.1, 3.2
following Krylov [4]. First we need their analogues for smooth functions.
Setting QT = ft x (0, T) and assuming ue Cco(Rn + l \ with u = 0 on
8J7 x (0, T), we have, by intégration by parts,

Dtu(dotD2 u)dxdt - - uDt(dztD2 u) dx dt +
QT J J QT

{u(x, T) det D2 u(x, T) - u(x, 0) det D2 u(x, 0)} dx .
n

Letting [ulJ] dénote the cofactor matrix of the Hessian matrix D2 u, we then
have

rr rr
uDt(det D2 u)dxdt = uulJ Dijt u dx dt

JJ Qr JJ Qr

(Pu u)uij Dtudx
JJ QrQT

(detD2 u)Dtudxdt ,
QT

n

by intégration by parts, since V Di u
1-* = 0, for each j . Accordingly, we

obtain the identity, ' = 1

(« + 1) Dtu(detD2 u)dxdt =
JJQT

{K(JC, T)dziD2u(x, T) - u(x, 0)detD2w(x, T)} dx . (3.4)
Jn

vol. 21, n° 6, 1993



726 HUNG-JU KUO, N. S. TRUDINGER

Now let us assume that O is convex and that u and v are convex functions in
C2(f2) vanishing on the boundary Bf2y with u^v in fï. Setting

w(x9 t) = (1 - t) u(x) + tv(x) ,

we shall apply (3.4) to w on Qv Since D2 w s= 0 by convexity and
Dt w = v — u ̂  0, we see immediately that

f f
udetD2u^ \ vdetD2v. (3.5)

Furthermore,

Dt{ f w, det Z)2 wJ = J (D, w) wl> Dijt W

wlj(Ditw)DJtw

since [wlJ] s= O, by virtue of the convexity of vv. Hence

f f
wt detD2w ^ (i? - u)detD2w(x, 0)

(Ü - w)detD2 u ,
ii3

so that from (3.4) and (3.5) we conclude

0 ^ (vdctD2v- u det D2u)^ (« + 1) (v - M) detD2 M , (3.6)
Jn Ja

which is the smooth version of (3.2). The passage from (3.6) to (3.2) is
achieved by approximation. If u is a concave function on f2, we define a
Borel measure cou by

\ (3.7)

for any Borel set E a O. Clearly, Ü>U is finite if u e COll(/2) and

furthermore, when u e C2(f2% we have the représentation

J
det (^D z «) , (3.8)

E

so that (ou is absolutely continuous with respect to Lebesgue measure.

M2 AN Modélisation mathématique et Analyse numérique
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Switching from convex to concave functions, it follows that we can write
(3.6) in the form

0 =s (uda)u - v dojv)^ (n + 1) (M - v)dcou ,
J a J a

where M, V e C^l{Ö) n C 2(/2 ) are concave on /2, vanish on 8/2 and satisfy
u^v in /2. Using the property that the séquence of measures {^Ufn}
converges weakly to a>w, when the séquence {um} converges uniformly to
M, we may then extend (3.9) to concave functions u, v e C°' l(Ô) and (3.2)
thus follows as a special case ; (see [2, 4] for further details). The estimate
(3.3) follows from the first inequality in (3.9), as in [4], by taking
v to be the conical function

on the bail { | x - z | < dz} .

4. PROOF OF THEOREM 2.1

First we consider the case when b = c = 0. It is convenient to consider the
différence inequality (2.7) as a System of différence inequalities for the
spatial mesh functions umi m = 0, ,.., N given by

um = u{x,mr), (4.1)

Writing «

am(x, y) = a(x,y, mr), fm(x) = f (x, mr) ,

we see that (2.7), (2.8) are thus equivalent to the system,

(1 - a)Ytam(x, y) ôy um(x)+ a ^am_L(x, y) 8^um=i(x)-

(um(x) - um_ 1(x)) (4.2)
7

*fm(x)9 for xen°m7

um^0, in nb
m,

vol. 27, n° 6, 1993



728 HUNG-JU KUO, N. S. TRUDINGER

In order to use Lemma 3.1, we need to replace um by an increasing séquence
vm defined by

vm = max uj .

We observe that vm = 0 in ^ | 12 ƒ, u0 = 0, m = 1, ..., N and moreover,
setting 'issm

it foliows that whenever vm(x) > vm_l (x), then vm(x) = um(x), and we have
the différence inequality

(1 - a )£ t f m (x , y) 5y
2wm(^c)+ a ^ am _ x (x, y) S ^ ^

_am-i(JC,3')- 2 a J] — (um(x)-um_{(x))
\y\

/ 1 am_i(x, y) \
i - - 2 a V - — (Mm(x)- um_l(x))+fm(x)
\ T \y\ I

by (4.2), (2.3) where rwï(x) = y (x9 mr), m = 1, ..., W. Letting T+ =

we can now follow our proof of Theorem 2.1 in [6], to obtain

Sy vm « 0 (4.4)

for all x e F*, x + v € flh. Consequently, from (4.3), we have

Jm~ l (x)

for x e y m , where yl = y'(x, mr), is as in (2.1). Letting xm = ü̂m> w e c a n

then estimate, as in [6], Theorem 2.1,

UmOOl ̂  fl 7TT {2^(x)-^(x + y)-i;(x-y)}
«

! = 1

M2 AN Modélisation mathématique et Analyse numérique
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so that using the arithmetic geometrie mean inequality, we obtain from (4.5),

where
î

n + 1

ki, m(x) = A/<X m O , m - 0, ..., N .

Since the left hand side of (4.7) vanishes for x $ Sf 'm, the inequality clearly
extends to ail x e Oh, with fm(x) replaced by zero for x £ £f m. We are now
in a position to apply Lemma 3.1. Indeed this yields the estimate

(Note that, by virtue of condition (2.1), the extreme points of Ûh lie in
Qb

m, Vm). Summing (4.8) from m = 1 to N and using u0 = 0 we thus obtain

n + 1

" ( 4 - 9 )

Hence we conclude from Lemma 3.2,

max

and the estimate (2.9) for the case b = c = 0.

vol. 27, n° 6, 1993



730 HUNG-JU KUO, N S TRUDINGER

To treat the gênerai case, we introducé a modified mesh function
ü and corresponding operators S a defined by

ü(x, t) = e~At u(x, t)

&a ü(x, t) = (1 - a ) eAr Lh 5(JC, t) +

+ aLh ü(x, t - T ) - S~ ü(x, t) , (4.11)

where A is a non-negative constant to be determmed later. Since

Lh ü(x, O = ^-^L/7w(x, O ,

i * < / - T ) «r M f e o - - ( ^ T A - i )w(x, O

we obtain, from the differential inequality (2.6),

Sa ü(x, t) = e-A(t~T)^au(x, O + - (eTA ~ l)ü(x, t)
r

=*-ƒ"(*, O + - (erA - 1) M(JC, t) (4.12)

in ö2, T- ^y virtue of conditions (1.6), (1.8), it follows that the operator

2t'a given by

&aü = &aü-±(erA-l)ü

is of positive type provided the analogue of (1.9) holds, that is

, t - T) + eTA(l - a)c(x9 t)} ^ erA - 1 . (4.13)

Clearly, (4.13) will hold for some constant A if r ( l - a ) c < 1, that is if
(2.6) holds. But if (1.6) (1.8) hold and 2C'a is nondegenerate in the sense that
a(x, t,y)>0 for some y, then r a o - 1 by (1.8) and this becomes a
necessary condition for (4.13). Accordingly, (1.6), (1.8) and (2.6) are both
necessary and sufficient conditions for the operator S a to be of positive type
for some constant A.

Returning to the proof of Theorem 2.1, we now define spatial mesh
functions üm, vm by

üm - u(x, mr), vm(x, mr) = max (üm)+ (x) (4.14)
j * * m

and let F+, if m be as before. Setting

bm(x, y) = b(x, y9 mr), cm(x) = c(x, mr) ,

M2 AN Modélisation mathématique et Analyse numérique
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together with

( a w , j 0 m , Km) = ( 1 - a)eTÀ(am7 bm cm) + a ( a m _ l s & „ _ ! , c m „ j ) ,

we then obtain, in place of (4.3), using the positive type condition (1.6),

X <*m(x, y) S* vm(x) + £ pm{x, y) ôy vm(x) + Km(x) vm(x) =*

, mr) 2 ] T + cm_x{

T f f l ' l ( X ) (Pm - ow _ t )(x) - ƒ" (x) + I (<rA - 1 ) t>M (je) , (4.15)

T T

whenever üm(^:)> ÜW_ ^JC). NOW for each xe F^7 there exists a vector
/? e Xrv an<i consequently for each j ^ O , number ry e [0, 1 ] such that

Thus,

Therefore, since 8yVm(x)^0 in F+, we obtain from (4.15),

£ âm(x, y) ô* vm(x) + £ iSm(x, j )^^ + Km vm(x) ^

7ml(X) (vm - vm^)(x)-fm (x) + - {eTA - l)vm(x) (4.16)
TT T

for ail x € Sfm9 where we have set

Sm(x9 y) = am(x, y ) - Q P^(x, y)(3* 0 by (2 .5) ) .

To estimate py, we replace the domain il above by

Ü = {xe R111dist (x, Ü)

vol. 27, n° 6S 1993



732 HUNG-JU KUO, N. S. TRUDÏNGER

where k is a positive constant and R is the diameter of £2. Extending the mesh
function u to vanish outside Qh r, we clearly arrive at (4.16) again, for the
corresponding extended functions vm, with ü replaced by Û. But then we
can estimate fox x s F^, p e xm(x)>

\P\
dist (JC,

vm(x)
^ JcR

Consequently, from (4.16), we obtain

y (x)
(Vm - Vm_

^ 0 , (4.17)

provided

( l - « ) r * „ . l , A > 1 ( 1 ^ ) r g . (4.18)

Invoking (2.6), we can satisfy (4.18) by fixing k and A such that

(1 + g)(i _ a)rbö
— + CQ ) (4.

e/* \ kR ° / V
19)

for some £ :=> 0. With these choices of k and A, we thus obtain the différence
inequality (4.5) with am replaced by âm and the estimate (4.10) follows as
before. Returning to our original function w, we then conclude the estimate,

max u^—!-jton»
 + l[K(k+ l)R]n + i eAr\fl3* ||L- + i ( y ) , (4.20)

Qh, T

where k and A are given by (4.19). Furthermore, by appropriate choice
k s* bö T//j,R, we may write (4.20) in the form

max

(4.21)

M2 AN Modélisation mathématique et Analyse numérique
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ON THE DISCRETE MAXIMUM PRINCIPLE 733

where Co and C{ are positive constants. This complètes the proof of
Theorem 2.1.

Remarks :
(i) It is clear from the above proof that the constant K in the estimâtes

(2.9), (4.10), (4.20), (4.21) can be replaced by

K - max | / |

i = 1, ..., n

(ii) When 3£ is explicit, that is a = 1, we can take C x = /x = 1 in (4.21).
(iii) When bQ = 0, we can take ^ = 0, / 5 = / 2 , C 1 = l s o that the estimate

(4.21) reduces to

max ^ C o W ( ^ ) ^ 1 exp[4 77/* ] | | / / ^ * ||L,J + I ( ^ } . (4.22)
Qh,T

(iv) Utilizing the above case, b0 = 0, and foUowing the proof of Theorem
2.1, we obtain in the gênerai case,

max
Qi,r

By appropriate choice of k, we then conclude the estimate

max u =s C

where now C dépends on n, K and c0 77/-t.

5. SEMIDISCRETE SCHEMES

By letting either of the parameters h, r tend to zero, we can recover
estimâtes for semidiscrete schemes. For a continuous time scheme, we
consider the spatially discrete mesh E = Eh = ~Hl

h x R, with mesh function
u e Ji (E) assumed to be absolutely continuous with respect to time. The
operator 3t = 3£ h is defined by

, t) = Lhu(x, t)-Dtu, (5.1)
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for almost all f, and our hypotheses on 3t reduce to (1.6), (2.1) with
^ * = ^ 0 * defined by

/

#*(*, 0 = ( n A«-(^
The discrete parabolic interior and boundary of the cylinder Qh = Qh x
(0, T]9 corresponding to «2T, are then defined by

Qt = {(x, t)eQ

The increasing upper contact set 5^ of the mesh function u is defined as
before. Corresponding to Theorem 2.1, we then have the following estimate.

THEOREM 5.1 : Let u be a space-time mesh function in the cylinder
Qh, satisfying the differential-dijference inequality,

SSu^f in g», (5.2)

to g ether with the boundary conditions,

u^O in g* . (5.3)

where f is a mesh function satisfying flQi * e Ln + 1 (£f ). Then we have the
estimate,

m a x u^CRn+l \\f/@*\\Ln+\,y)9 (5.4)
Qh

where C dépends on n, K, bQ T/R, c$ T and R = diam fl.

The norm in (5.4) is defined by

\ip

\\e\\LP

for g = f/2*, p = n + l , where x $/> dénotes the characteristic function of
£f in Qh. Theorem 5.1 follows from Theorem 2.1 with a = 0, by sending
r to zero and observing that we may express (5.2) in the intégral form,

1 ' r -•'-- -̂  J- - - - - - ^ - x » f(x,s)ds (5.5)
t - r
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for ail (x, t) e Q% t 2= r > 0. Alternatively, it can be proved directly from
the spatially discrete version of the identity (3.4) and Lemma 3.2. The
remarks at the end of Section 4, with a — 0, r -> 0 also apply hère.

When we let the spatial mesh length h tend to zero, we obtain a System of
elliptic operators of the form

S a u(x, t) = (1 - a)Lu(x, 0 + <xLu(x7 t - r ) ~ ô~ u(x, t) (5.6)

where now E = Un x ZT and

t)= £a(x?y, t)D]u(x9y) +
y

) + c(x,t)u{x, t), (5.7)

where y = yl\y\ and the first and second spatial derivatives of the mesh
fonction u are assumed to exist in a reasonable sensé, for example
ume C2(Mn) for each m, where um(x) = u(x, mr). In order to fulfill
conditions (1.6), (2.1), (2.3), (2.6) as h -» 0, we clearly must restrict to the
implicit case a = 05 whence we take

(x, t) = Lu(x, t)- d~ u(x, t) (5.8)

and conditions (1.6), (2.1), (2.6) reduce to

a ( x , y , t ) 3 * 0 9 a ( x , y , t ) * * A t ( x , f ) > 0 , (5.9)

TC(X, f)*sl - M • (5.10)

Utilizing the représentation of Motzkin-Wasow [8] (see also [6]), we may
replace (5.7) by any uniformly elliptic operator L of the form

Lu(x, t) = alJ(x, t)DtJ u(x, t) + h1 (x, t)Dt u(x, t) + c(c, t) u(x, t) (5.11)

satisfying (5.10) and deduce an appropriate analogue of Theorem 2.1, by
letting h -> 0. However the proof of Theorem 2.1 can be applied directly to
the operators Jf, similar to the approach in [4], to get results for non-
uniformly parabolic operators. Letting Q7 = Ü x { W T } J = 1 , we assume that
the operator L is elliptic in QT for each t, that is the coefficient matrix
[alJ] is positive for ail je, t e QT, and write

®* = (det [alJ])n+l , feo = max \b\ , c j - max c+ .
Qr Qr

Corresponding to Theorem 2.1, 5.1, we now have the following discrete
time estirnate.
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THEOREM 5.2 : Let u, f be mesh functions on QT, with um e C2{O ) n
C°(/2), fmeLn + l(n) for each n = 1, ..., Af, satisfying the differential-
difference inequahty

*f in Q T f (5 .12)

together wit h the boundary condition

u m ^ 0 o n dI2 , w0=s=O, m = 1, . . . , W . (5 .13)

estimate

sup a^C/? t t + 1 ||//^*||L« + i (y) (5.14)

where C is a constant depending only on n, IJL, b0 T/R, CQ /?, Sf dénotes the
increasing-upper contact set of u and R = diam f2.

The norm m (5.14) is defined by

f r
— J

iip

for g = / / ^ * , p = ?Ï + 1, where ^ ^ dénotes the charactenstic function of
£f in <2T. Corresponding remarks to Remarks (m) and (iv) at the end of
Section 4 also apply here. In order to directly adapt our previous proof, we
also use that the concave huil of a function ueC2(f2) belongs to
C u ( / 2 ) , ([9], [10]). By sending r -> 0 in Theorem 5.2 we obtain the
estimâtes of [4, 9, 10, 11], but these can also be deduced directly from (3.4)
and Lemma 3.2.
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