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REGULARIZATION IN STATE SPACE (*)

by G. CHAVENT (\ 2), K. KUNISCH (3)

Communicated by P. L. LIONS

Abstract. — This paper is devoted to the introduction and analysis of regularization in state
space for nonlinear illposed inverse problems. Applications to parameter estimation problems
are given and numerical experiments are described.

Résumé. — Nous introduisons et analysons la régularisation dans l'espace d'état pour les
problèmes inverses non linéaires. Nous donnons des applications aux problèmes d'estimation
de paramètre, ainsi que des résultats numériques.

1. INTRODUCTION

The objective of this paper is the study of a regularized least squares
formulation for nonlinear illposed inverse problems. Specifically, let <p be a
mapping from a subset C of a space E (parameter space) into a space F (state
space), and let A be a linear operator from F into a space G (measurement
space). The mapping <p may typically be the parameter-to-solution mapping
of a partial differential équation, and A may represent point évaluation or it
can be an injection operator from a function space with finer into a function
space with coarser norm, realizing the f act that in applications it may be
more realistic to assume (accurate) measurements in the coarser rather than
the finer norm.

A nonlinear least squares formulation employing regularization in par-
ameter space is given by :

inf \A<p(x)-z\2
G+e2\x~xest\

2
E, (1.1)

xeC
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536 G. CHAVENT, K. KUNISCH

where s e R is the regularization parameter, z is the measurement and
xest represents an a priori guess to the « generalized inverse » x* of
A<p ai z, i.e. x is defined as the solution to :

min \A<p(x)-z\2
G, (1.2)

xeC

provided, of course, it exists. Investigation concentrating on (1.1) (with
F = G, A = id) were carried out in ([2, 7, 13, 16, 17]), for example.

The regularization technique to be studied in this paper will not be in
parameter, but rather in the state space. It is motivated by the following
considération. In applications the nonlinear mapping <p : C c: E -> F may be
wellposed, with the only illposedness arising due to the linear mapping A
which may be compact or may even have finite dimensional range. Thus we
consider the situation :

nonlinear

wellposed

It is then natural to regularize in the domain of A rather than the domain of
(p. In this way we arrive at a formulation of the inverse problem which
involves regularization in state space :

inf \A<p(x)-z\2
G+ e2\<p{x)-z\2

F, (1.3)
xeC

where z e G and z e F . Of course, z could be chosen to be Az, but we rather
think of z e G as the available observation and of z constructed from
z. For example, if z represents pointwise data in a finite dimensional space G
and if F is a function space, then z can be an interpolation in F of the
pointwise data. If both G and F are function spaces with F strictly embedded
in G and z e G but z £ F, then r would arise from z by a smoothing process.

We shall concentrate on a study of (1.3). In section 2 it will be justified to
call (1.3) a regularization technique for determining Je from the data
z, by analyzing the properties of the solutions x£ of (1.3) as s -> 0 and as
(z, z) ' varies in F x G. These results are based on a wellposedness
assumption of the nonlinear mapping <p ; E —• F. Examples satisfying this
assumption are given in Section 3. Many results in the abstract as well as in
the numerical treatment of optimization problems rely on the « second order
sufficient optimality condition » which, roughly speaking, is the positivity of
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REGULARIZATION IN STATE SPACE 537

the Hessian of the cost functional at the minimizer. Section 4 is therefore
devoted to a study of the second order sufficient optimality condition for the
regularized least squares problem with regularization in state space.

Numerical experiments were carried out demonstrating that regularization
in state space can be an effective tooi for solving nonlinear illposed inverse
problems. These results are given in Section 5.

2. BASIC PROPERTIES

We consider the problem :

( P b ) m i n \A<p ( x ) - z \ 2
G + £2\<p(x) ~z\F o v e r x e C .

where e e U, z e G, z G F, E and F are reflexive Banach spaces, G is a
normed linear space, C is a bounded subset of E and A : F -• G is a
continuous linear operator.

In applications A may be an embedding, a restriction or a point évaluation
operator. The following hypotheses will be referred to :

{H2) tpn: C c E -• F is weakly sequentially closed, i.e.
xn -> x in £ with xn e C, and <p {xn ) -• <p in F, imply

x G C and <p (x) = <f>.

{H2) <p is continuously invertible at x e C, i.e. if <p (xn) —• ̂ > (Je) in
F, then xn -+ x 'm E.

Further we introducé the attainable set y = {A(p (x) :x s C } .

PROPOSITION 1 : (Existence). For ail e ^ O there exists a solution
xe of (/>Ê), provided that (Hl) holds. If in addition <p(C) is bounded in F,
then there exists a solution x of the unregularized problem (P°).

Proof :

Let e =£ 0 and let {x}™=1 be a minimizing séquence for (PÊ). Then

{(jcn, <P(^n))}<^_l is bounded in E x F . Therefore a subsequence, again

denoted by {(x„, <p (^«))}^_ t converges weakly in E x F to a limit

(xe, <pe)eE xF. Due to (#1) we have JC£ e C and <p (xe) = <p e. Weak lower
semicontinuity of the norms implies that xe is the desired solution of
(Pel

The set of solutions to (P£) is denoted by Xe.

P R O P O S I T I O N 2 : (Monotonicity). Let e2^sl^Q and let xt{ dénote a

solution of (Pei). Then :

(i) sup

vol. 27, n° 5, 1993



538 G. CHAVENT, K. KUNISCH

(ii) sup \A<p(xSl)~z\G^ïnf \A<p (X*2) - z\Q .

If the unregularized problem has a solution x then moreover :

(iii) (\A<p(x£2)-z\2
G + eï\<p(xe2)-z\2

F)^distG(z, r?+el\<p(x)-~z\2^

for ail x£2 e X£\
The sup and inf are taken over xH e Xe \ i - 1, 2, and distG(z, 'V) =
inf {\z - v\G:v e "T).

Proof:

Let x£' G XSi be arbitrary. Adding (ef - « ? ) | ̂  (^£2) — 512 to both sides of :

yields :

Estimating the first term by the last gives :

Since e\ < e | we find :

which implies (i). The first inequality in (2.1) implies

and due to (i) this gives :

\A<p(z£i)-z\G^ \Acp(xE2)~z\Gi

and (ii) follows. Assertion (iii) follows directly from the fact that
z£l is a solution of (F^2).
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REGULARIZATION IN STATE SPACE 539

PROPOSITION 3 : (Stability). Assume that (Hl) holds. Let e ^ 0 befixed, let
{(z„, zn)} be a séquence in F x G with lim (zB, zn) = (z, z)in F x G and let

xn be a solution of (PE) with (z, z) replaced by (zn, zB). 77ie« f/*ere ex/sta a
weakly convergent subsequence, every weak limit x* of suc h a subsequence
{JCBJ w a solution of (P£) and <p(xUk) -> <p(x*) fn F. If moreover

(H2) holds at x*, then the séquence xnk converges strongly in E to

x*.

Proof :

Let {xn} be a séquence of solutions to the problems (P£) with
(z, z) replaced by (zn, zB). Since C and {(zB, zrt)}°° are bounded it follows

that {(JCB, <p (x r t))}^_ x is bounded in E x F with xn e C. Thus there exists a

subsequence denoted by the same symbol with a weak limit (x*, <?*) in
E x F. Due to <7/l) we have x* e C and <p(x*)= <p*. Note that :

\A<p(x*)-z\l+e2\<p{x*)-~z\2
F

^ lim (\A<p(xn)-zn\
2

G+s2\<p(xn)-~zn\
2

F)

lim
n -» oo

(2.2)

for all x e C. Therefore JC* is a solution of (P6) . From (2.2) it also follows
that :

lim (\A<p(xn)-zn\
2
G+e2\<p(xn)-~zn\

2
F)

n oo

= \A<p(x*)~z\2
G+s2\<p(x*)-~z\2

F. (2.3)~z\2
F.

We show next that lim <p (xn) = <p (x*) in F. Since <p (xn) — <p (x*) in F it
suffices to show that lim | <p (xn) — z |

contrary that lim | < p ( x „ ) - z | = <Pj

subsequence {j

find:

lim

_̂ such that lim

^ \ <p (JC*) - z | f . So suppose to the

| ç> (JC*) — z|F« Then there exists a

<p(xnk) — z = <px* Using (2.3) we

s2\ <p , ) -

-s2lim \<p(xnk)-~z\2
F= \A9(x*) - z\2

G+ e2\<p(x*) -z\\ -

\A<p(x*)-z\2
G.
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540 G. CHAVENT, K. KUNISCH

This contradicts the fact that A <p (xn ) converges weakly in G to
A(p(x*). Therefore lim <p (xn) = <p(x*) in F and the first part of the
proposition is verified. The second part follows from (H2) at x.

PROPOSITION 4 : (Convergence). Assume that (Hl) holds and that
<p(C) is bounded in F. Let en -> 0 and let x£n be a séquence of solution to
(P£n). Then there exists a weakly convergent subsequence, every weak limit
x of such a séquence {x "*} is a solution of the unregularized problem
(P°) and <p (x "*) -• <p (x) strongly in F. If moreover (H2) holds then
x nfc converges strongly in E to x.

Proof : By assumption j (x <p (xfh )) [ ̂  is bounded in £ x F and hence,

without change in notation, there exists a weakly convergent subsequence in
E x F with weak limit (i, <p ). Due to (Hl ) we have x e C and F (x) = <p.
Note that for each n :

|Aç>(*'")-z|* +e r t
2 | * (x a ' ) - z | * a S \A<p(x)-z\l+s2

n\cp(x)-~z\2
F

for ail x e C. Taking lim inf we find :

\A<p(x)-z\G^ \A<p(x)-z\G,

and hence x is a solution to (P°). From Proposition (1) (i) we further have :

l i m s u p \<p(x£n)-z\F ^ \<p(ï)-z\F

and therefore lim <p (x£n) = <p (x) in F. The second part of the proposition
follows from (H2).

Remark 1 : From Proposition (2) (i) and Proposition (4) it follows that :

| « p ( i ) - z | F =min {\<p(x)-z\F; \A<p (x) - z \G = distG(z, 1T )} ,

which shows that x is an state space z-minimum norm solution of the
unregularized problem (P°).

PROPOSITION 5 : Assume that (Hl ) holds and that <p(C) is bounded in F.
Then :

lim s~2 sup [|A^(jc)-z||-distG(z, TT)] = 0.
e - o x<eX*

Observe that the expression in brackets in nonnegative.
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REGULARIZATION IN STATE SPACE 541

Proof : The second inequality in (2.1) implies :

0*s \A<p(xs)-z\2
G-distG(z, y f

^e\\<p(x*)-z\2
F- \<p(xe)-z\2

F), (2.4)

where x* is chosen such that :

\<p(x*)-z\p = m i n {\<p(x)~z\F: \ <p(x) - z \ G = d i s t G ( z , ir ) } .

If Proposition (5) was false, then there would exist 8 > 0 and a séquence
of solutions xEn of (Pe") with sn -• 0, such that :

s-2{\A<p{xen)~z\2 - distG(z, iT)2)^ 8 > 0 for ail n . (2.5)

Due to Proposition (4), and Remark (1), there exists a subsequence
|x *j with limit x such that :

lim I <p {x H) ~ z I = | <p (x) - i | =

= {| ?>(*)- z\p : |A<p(x)- z|G = distG(z, 1T)} .

It follows that (2.5) contradicts (2.4) and the claim follows.
In the following result we consider the case where the error in the data as

well as the regularization parameter converge to zero. The optimization
problems are :
(Pn) min \A<p{x)-zn\

2
G + s2\ <p {x) - z \2

f over x € C,

where {sn} and {zn} are séquences in R and G satisfying
{H3) \zn-z\G^ônwithzer*

and
(Nà\ \ 8„ }
K } eB-*0, — bounded.

l En J
PROPOSITION 6 : (Convergence-Stability). Assume {Hl ), (Z/3) an<i

(7/4) to hold and let xn be a solution for (P n\ n — 1, 2, ... T/ze« ?/î r̂  emte
a we«A:/y convergent subsequence of {xn}, every weak limit x of such a
séquence {xnkj satisfies :

A<p{x) = z , <p (xnt) -> (p (x) in F

and :

±\Ag,(xnt)-z\G =

vol. 27, n° 5, 1993



542 G. CHAVENT, K. KUNISCH

If — = ö ( l ) , then :

<P(xnk)-+ <p{x)inF and \<p(x)-z\f = min {| <p (x) - z\p :A<p (x) = z} .

If in addition (H2 ) holds, then xnk - • x in E.

Proof : Due to (//3) there exists x* e C with A<p (JC*) = z. For each n we
find:

^ )-i|^5n
2

+^|^(x*)-i|^. (2.6)

Since zrt - ^z inG and ew -»• 0 it follows that A<p (xn) -> z in G. Boundedness

of j — > implies that {<p (xn)} is bounded in F. Since C is bounded as well

there exists a weakly convergent subsequence of {xn}, again denoted by
xw, with {xrt, <p(xn)} -»> (x, <̂ ) in Ex F. As before (//l ) implies that
5c e C and <p (x) = <p. Since A<̂  (xn) -> z in G we also find that A<p (x) = z.

From (2.6) it follows that — \A<p(xn) - z\ = (9(1). The first part of the
£n

proposition is thus verified. Next we assume that — = Ö(1) . Analogous to

(2.6) one finds :

I / \ - I 2 n I / - \ - | 2k ^ ^ - 2 ^ ^ —+ k ( x ) - z l F '£»
and consequent ly :

ïïïn" | < P ( J C „ ) - Z | F ^ | ^ ( i ) _ z | f ^ l i m \<p(xn)- z\p .

This implies that <p (xn) --> <p (x) = z in F. For x * an arbitrary element

satisfying A<p ( x * ) = z one obtains :

|*>C*)-Z|J = Iim \<p(xn)-~z\2
F

lim [ l ( | z - z , 4 _ |A*>(^)-zn |J)+ |»»(Jè)-2

M2 AN Modélisation mathématique et Analyse numérique
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and therefore :

\<p(x)~z\F - m i n {\<p(x*)-ï\F:A<p(x*) = z} .

This ends the proof.
The conclusions of Proposition (6) remain valid if z in (Pn) is replaced by

zn with zn -• z in F.

Remark 2 : If the problems (Prt) are not solved exactly, but rather
xn satisfies :

\A<p(xn)-zn\
2

G+e2
n\<p(xn)-~z\2

F*: \A<p{x)-zn\
2

G +

+ £2
n\<P(*n)-ï\2

F + vi f o r a l l x e C ,

then the conclusions of Proposition (6) remain correct, provided that

Remark 3 : Proposition (6) can be used to argue that the constraints
involved in defining C need not be active. In fact, assume that int C, the
interior of C, is not empty and that there exists a unique element

Sc e int C with z = A<p (Je). Then, with (Hl )-(H4) holding and — = o(l ),
€n

there exists an index Nö such that xn s int C for all n ^No,

3. EXAMPLES

In this section we give some examples illustrating the applicability of the
assumptions in section 2.

Example 3.1 : In ([3]) we considered the problem of estimating the
diffusion coefficient a in the one dimensional équation :

We considered the problem in reparametrized form with spécifie boundary
conditions :

H(0) = M(1) = 0 , (3.1)

where ƒ e H~l and

beC = {Z>eL2(0, 1) : 0 < bm ^ b(x) ^ bM, a.e. a . [0, 1]} .

vol. 27, n° 5, 1993



544 G. CHAVENT, K. KUNISCH

In the context of the theory developed in section 2 we take E = L2,
F = HQ . G = L2, with all function spaces considered over the interval
(0, 1) and A ~ id, the identity operator. The solution u = u(b) to (3.1) is
given by :

u{x) =-[ b(y){H(y) - Hb) dy . (3.2)
Jo

where :

Jo
and :

b(y)H(y)dy
A A

Hh =

f
Jo

b(y)dy

and <p : C -• HQ is given by <p (b) = u (b). Clearly (Hl ) holds in this case and
<p (C ) is bounded, so that the unregularized problem has a solution. We turn
to (H2). From (3.2) and the fact that u(b) satisfies homogenous Dirichlet
boundary conditions, we conclude that ux will vanish at least at one point if ƒ
is smooth, or it will have discontinuities if ƒ is e.g. a linear combination of 8-
functions. The set of admissible coefficients will be modified such that the
coefficients are held constant in the neighborhood of such points. Let
ƒ2 be finitely many pairwise disjoint open intervals in (0, 1) and define :

C = {b G C : b — bj = unknown constant on Ij} .

Clearly (Hl) holds with C replaced by C. In [([3]), Lemma 2,
Theoremó.l] we specified conditions on ƒ and Ij which guarantee that
<P : C -• HQ has a Lipschitz continuous inverse when restricted to its range.
This gives (H2) at every xe C.

One could equally well replace the L2-observation by a pointwise
observation by choosing G = Rn and Au = {"0O}"=1 , with

0 *zxi < ... <x„ =s 1.

Example 3.2 : Here we consider the multidimensional analog^of the
problem in Example 3.1 :

f- div (a grad u) = f in Ü (- ~.
tu l 3 / 2 = 0 . C }

where f2 is a bounded domain in M2 or U3 with C1'1 boundary 3/2,
ƒ E L2, and a e C, where :

C = {aeWlA:a(x)^a , \a\wit4*y} a L2 ,
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all function spaces being considered over the domain /2. In the context of
section 2 we choose E = G = L2, F = H2, A = id, and <p (a) = u(a) with
u(a) the solution to (3.3). It is simple to argue that C is bounded and weakly
closed and that (Hl ) holds. Clearly <p (C ) is bounded in H2.

For (H2) to hold additional hypotheses are needed. Rather gênerai
conditions are given in [([11]), Theorem (4.1)]. Hère we consider only a
spécifie case :

there exist A < 0 and k >- 0 such that

A \Vu(â)(x)\2 + IAW(<Î)(X) « - k a.e. on O , (3.4)

, bu(à)
and

dn

With (3.4) holding, there exists a constant K such that :

\â — a\L2**K\u(â)— u(a)\ 2 , for ail a G C ,

so that (7/2) holds.

Example 3.3 : Hère we consider the estimation of the coefficient c in :

— Au -h eu = f in O /a c\
u I 9 / 2 = 0 ( 3 * 5 )

where 12 is a bounded domain in R2 or [R3 with smooth boundary
3/2 and ƒ G L2(/2 ). Let :

ac(u, v):H1
0(n)

be the bilinear form defined by :

ac(u,v)= <Vw, W)L2(n)+ (eu, v)û{n),

let c0 be a référence coefficient and K a constant such that :

aCo(u, u)^2K\u\2
Hi for all u G Hl

0(f2).

Due to continuous embedding of HQ({2 ) into L4(/2) there exists y > 0 such
that :

ac(u9u)**K\u\li for ail u G HI(O)

and c with |c - CO|L2 *S r- It follows that (3.4) has a solution u(c) G H[
O(I2 )

for each such c and moreover u G / / 2 Pi HQ [14]. We define :

C = te G L2(Q ) : |c — co|L2 =s y, c = unknown const on

vol. 27, n° 5, 1993



546 G. CHAVENT, K. KUNISCH

where /2' is a subdomain of ft with D'aO. A third subdomain
Q " strictly containing 12 ' and strictly contained in £2 will be used :

n ZD nu and nff=> nr.

This hypothesis implies that : restricted to C the norms |c|L2(/2) and

lcL2(/2") a r e equivalent.
In the context of section 2 we define :

E = L2{n% F = H2(f2), G = L2(/2), A = id, and <p (c) = u(c).

Assumption (7/1 ) is clearly satisfied and <p (C ) is bounded in H2(O ), see
([14], p. 189). We turn to (H2) and assume that u(c) satisfies :

u{c)(x) ^k>0 for all x e 12 " . (3.6)

Then we have for any c e C :

(c - c) u(c) = A(M(c) - u{c)) + c(u(c) - u(c)) ,

and by (3.6) there exists a constant k => 0 independent of c e C such that :

This gives (7/2). Note that in the present example the set C has nonempty
interior, compare Remark (3).

Example 3.4 : In the final example we consider the estimation of
(c, T ) in :

I — Au + eu ~ f in 12

Ëi£ + T ( M _ 0 ) = o on 3/2, <3-7)
with a bounded domain in R2 with smooth boundary, feL2(f2) and
g e H{(df2 ). This example is motivated by the practical situation where the
heat transfer coefficient between the body f2 and the outside through the
boundary ( r ) and the latéral side (c) have to be estimated. For simplicity we
put F = d/2. The variational form of (3.7) is given by :

(Vu, W)L2(r})+ (cu, v)L2(n) ( )

] , (3.8)

where y0 dénotes the zero order trace operator. For r0 s= 0 there exists
y => 0 such that the bilinear form :

M2 AN Modélisation mathématique et Analyse numérique
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REGULARIZATION IN STATE SPACE 547

is continuous and coercive for all (c, r) e C, where :

C = {(c, r ) e r ( / ] ) x / / 1 ( r ) : 0 < c f f l ^ W ^

^ cMa.e. on/3, and \r - ^ol f fi ( r )^ ?} •

Hence for each (c, r) e C there exists a unique solution M(C, T) of (3.8).
Moreover u e H2(f2 ) and it satisfies the boundary condition in (3.7) in the
sense of Hm(r). In terms of the notation of section 2 we take :

E = L2(Ü)xL2(r\ F =H2(n\ G = L2(/2), A = id ,

and <p (c, r ) = u(c, r ) .

Clearly (i/ l) is satisfied and sïnce /2 <z IR2 it can be shown that
<p(C) is bounded in H2{D) ([8]). If w(c, f) satisfies :

u(c, T)(x)~*k>0 for all x e Û , (3.9)

then:

|(c, r ) - (c, T)|L2(i2)xL2(r)*JP|ii(c, r)-u(c, r)\HHny

with ^ independent of (c, r ) G C. Thus (3.8) implies (H2).

4. SECOND ORDER ANALYSIS

4.1 A gênerai resuit for problems with bilinear structure

We give conditions which guarantee positive definiteness of the Hessian
of :

JÀx) = \ \A<p (x)-z\% + ^\<p (x) -z\2
F.

Positive definiteness of the Hessian of Je is the essential assumption
required to guarantee local uniqueness and stability with respect to
(i, z) e F x G of the solutions to (Pe\ see ([1, 4, 5]) and the références
given there. It is also essential for arguing convergence and rate of
convergence results for numerical methods to solve (Pe), compare ([10, 12,
13, 151).

Throughout this section it is assumed that <p : C c E -> F is twice
continuously Fréchet differentiable. The following additional hypotheses
will be used.
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There exist constants ^ > 0 and k2 such that for ail XBC and
heE:

(If 5 ) \<P'(x)h\F^k1\h\E,

(H6) (i) \A<p"(x)(h,h)\G^k2\A<p'(.x)h\G\h\E, and

(ii) \<p"(x)(h,h)\F^k2\<p'(x)h\F \h\E.

Before stating the main resuit of this subsection, the applicability of
(H5 ) and (H6 ) is shown by means of the estimation of c in Examples 3.3 and
3.4. The linear structure in which the unknown coefficient c and the state
variable u appear in (3.5) and (3.7) allows to verify (H6).

Remark 4 : We return to Example 3.3, the problem of identifying c in (3.5)
from data for u. We ask the reader to recall the notation of that example, and
we repeat only that C c= E = L2, F = H2 and G = L2. Hère ail function
spaces are considered over il. For c e C we define A(c) : H1 C\ HQ -> L2 by :

A(c) u = — Au + eu .

One can argue that the mapping <p : C c= L2 -> H2 is twice continuously
Fréchet differentiable with :

and :
<P«{c) (h, h) = -2A- '(c) (hv'(c)h),

for c e C and h e L2. The assumptions on C imply the existence of constants
Kx >> 0 and K2 such that :

t H^Kïl\f\LÏ, (4.1)

and :

\ 2 \ f \ l } . (4.2)

Let us again assume (3.6) to hold. This implies the existence of
y => 0 such that :

u(c)(x) s* £ for ail x G /2 " and ceC f , (4.3)

where :

C^ = {c G L2 : |c — c | 2 *£ r s c = unknown constant on f2 \ /2 '}

and C f c C . This is a conséquence of the fact that cn -* c in L2 with
c„ e C implies that u(cn) -> M(C) in 7/2 and M(C„) -> w(c) in L00.
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We now verify (H5) and (H6) with C chosen to be Ĉ >. Let c e C^ and
h E L2. By (4.1) and (4.3) we find :

which gives (H5), Next we use (4.1) and (4.2) :

\<P"(c){hih)\û^2\A-\c)(h<p'(c)h)\l}^2K2\h\û \<p'(c)h\L2,

so that (H6) (i) holds. Similarly :

\<Pn(c)(h9 h)\tf*2\A

where /sT3 is the embedding constant of H2 into L00, and (7/6) (ii) holds as
well. •

Remark 5 : We turn to the vérification of (H5 ) and (H6 ) for the problem of
identifying c in :

- Au + cu = ƒ in Z2 ( 4 4 )

- ^ + T O ( M - g) = O o n f ,

with /2as in Example 3.4 and r0 e Hl(F\ f e L2(f2\ g e Hl(F) fixed. Let
E = G = L2, F = H2, and :

C = { c G L w ( / 3 ) : 0 < c m ^ c ( x ) ^ c M a.e. on /2 } ,

and assume that (3.9) holds for c, i.e.

u(c)(x) ^ K > 0 on /2 .

Then there exists y > 0 such that :

u(c)(x)^~ on/2 for all C E C ? , (4.5)

where C^= | c E C : | c - c | L 2 ^ r } - The mapping c -+ <p (c ) = u (c ),

c E C, with w(c) the solution of (4.4) is twice continuously differentiable
with (p'(c) h = : rj and <p"{c){h, h) = : £ characterized by :

A(c)7? - ~hu(c) and A(c) ^ = - 2 Ary , (4.6)

where A(c) is defined by

domA(c)= \<p e H2:^+ ro<p =0 on F]
{ dn J
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and :
A(c) <p = - A(p + c<p .

From (4.5) and (4.6) it follows that (H5) holds for c e C ^ . Since
H2 is continuously embeded in L00 it is simple to verify (H6) (ii) and it
remains to consider (//6) (i). We find :

\€\L2 = sup <£, A(c) <p)L2 = sup (A(c) f, <p)L2 = 2(hV, <p)Li ,

where the sup is taken over <p e domA(c) with \A(c) <p \Li = 1. Conse-
quently :

where K is independent of c e C. This is (i/6) (i), and thus we have shown
that (H5), (H6) holds with C = C ̂  Notice that when trying to include the
estimation of r in the framework of this section, one encounters the difficulty
that (c, T)->U(C, T) is not welldefined on L2(f2 ) x L2(F). This can be
circumvented by choosing L2(O ) x H1 (F) for E. Then <p is welldefined and
differentiable for (c, T ) E (L2(/2 ) x H1^)) n C, with C as in Example 3.4
and (//6) (ii) holds. But for (H5) only an estimate of the type :

with (ft, t;) 6 L2(f2) x H1 (F) and appropriately chosen (c, r ) is feasible.
A similar problem arises if one was to consider Example 3.1 without

reparametrization. This issue is addressed in detail in Section 4.2. •

THEOREM 4 . 1 : Let (/ƒ!), (H5) and (H6) hold, and assume that
(p(C) is bounded. Moreover, let x be an state space z-minimum nom:,
solution of the unregularized problem satisfying :

\<p(i)-z\F=min{\<p(x)-z\F: \A9(x) - z\G = distG(z, T )} ,

and define :

If-

t h e n :

J " ( x e ) ( h , h ) ^ 2 \A<P' ( x E ) h\2
G + T k i \ h \ l f ° r a l 1 h e E , ( 4 . 8 )
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and all solutions xe of (Ps) with e2 ~s s2. In particular, ifz is attainable, then
e = 0.

Proof : Using (H6) and (H5) we find for every solution xe of

J':(x*Kh,h)= \A<p'(xE)h\2
G+ (A<p(xc)-z,A<p"(xe)(h,h))G

+ e2\<p'(xc) h\2
p + e2(<p(xc) - z, <p"(x*)(h, h))p

\h\\ = \

We next use (2.4) and (4.7) :

; (X £ ) ( / Ï , A) * I \Acp'(x') h\2
G + ^

distG(z,

which holds for all solutions x£ of (P€) with s2^ s2. This ends the proof.

Remark 6 : The two terms on the right hand side of (4.8) express the
degree of wellposedness. They separate the weak wellposedness which is
present in the problem itself without regularization from the uniform
wellposedness due to regularization.

Let us also compare (4.8) of Theorem (4.1) to analogous estimâtes when
regularization in parameter space is used ([4, 5]). To obtain positivity of the
Hessian in the case of regularization in parameter space the regularization
parameter has to be chosen in an interval, the lower bound of which is zero or
positive depending on whether z is attainable or not. For regularization in
state space there is no upper bound on the regularization parameter. If one
regularizes in parameter space with a term of the form e2\x — xest |

2 where
xest represents an a priori guess to the unknown parameter, then this
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information does not enhance the positivity of the lower bound to the
Hessian. For regularization in state space the rôle of x is — in some sensé —
taken by z. For nonlinear problems the term containg z does not vanish and
z must contain sufficient information — compare (4.7) — to guarantee
positivity of the Hessian.

4.2 Second order analysis for Example 3.1

In section 4,1 we gave conditions guaranting positivity of the Hessian. We
recall that the topology for F has to be fine enough for (7/5 ) to hold and it has
to be sufficiently coarse so that <p allows a second derivative and
(H6 ) (ii) holds. This may lead to difficulties as was seen in Remark (5). If we
consider the mapping a -> <p{a) = u{a) from L2(0, 1 ) to Hl(0, 1), with a
positive and u = u(a) the solution of :

then (H5 ) holds under appropriate conditions on ƒ, but <p " is not even well
defined ([3]). In this subsection we shall show that the reparametrization

a -* - as in (3.1) provides a technique to circumvent this problem and to
b

obtain positivity of the Hessian of the regularized cost functional.
We consider hère the problem :

M(o) = M ( i ) = 7 . (4-9)

with xj *zxj + l9 xe (O, 1 ), f- e R and ö [x) the delta function with impuls at
x = 0. Let 7) = col (77^ ..., 7]j) be such that Ij = (xj - rjj, Xj + rjj) satisfy
Ij n 7y + ! = 0 for y = 1, ..., ƒ - 1, and define :

D , = { i € ^ ( 0 , l):0<=&m^6(jc),

a.e. on (0, 1), | ^ | ^ i ^ 6 M , fc = Z

where Z?y, y = 1, ..., / are unknown constants. Unless indicated otherwise the
function spaces are taken over the interval (0, 1 ) in this subsection. We ask
the reader to recall the définitions of H and Hb of Example 4.1. The following
assumption will be used :

{Hl ) there exist constants 0 < Hm < HM such that :

H (x) -Hb\^HM for all JC e [0, 1 ] and b e Dn .
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In the context of the gênerai theory :

E = G = L2(0, 1 ), F =Hl
0, A = id ,

and :

*>(&) = w(ft) = - I b(y)[H(y)-Hb]dy.
Jo

The mapping <p is twice continuously Fréchet differentiable and for
beDvi heL2

± ) u"(b)(h, A) = 2 ^ 1 1 , - A („' (£ , ) A ) l , ( 4 . 1 1 )

andw h e r e A ( — J : H\ - 7 / " ' is g i v e n b y A [ - ) f = — ( - t ; x J ,

T h e r e g u l a r i z e d c o s t f unc t i ona l is g i v e n b y :

for b e Dv.

THEOREM 4.2 : Assume that (H7) holds, let z e L2, Z e Hl
0, s s M and

dénote by be any solution of :

min \u(b) - z|£2 + e2\u(b) - z | ^ ,

>v/f/ï M(Z>) a solution of (4.9). A^wme r/zar */*e unregularized problem has a
solution and let b be one such solution satisfying :

l = min {\u(b)-z\Hh: \u{b) - z \L% = distL2(z,

where *V = {u(b) : b e Dv} aL2. Then there exist constants #el9 #c2,
K3 => 0 anJ A 4 > 0 independent of K e L2 such that :

\u(b*)—z\Hi^Kl and s s* K2 distL2 (z,

imply :

J"(be)(h, h)z? — A " 1 / — ] ( —
2 \ bE / \ b£
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heL2
c = {he L2:h = hj e Uonlj, j = 1, . . . , ƒ } .

Proof : In the first estimate we utilise two lemmas which are stated and
proved below. We find :

u'{b£)h\2
Hl + e2{u"{bB){h, h),

\b£ / \ bE I x û Jo {bEf

4- £2|K'(&e)fc|?,i + 2 e2

Jo (6£)2 A \ \bE I \b£

We choose constants K5, K6, K7 such that :

\n h ^ _xi ï \

I J o ^2 ~~~ L2' V * /
|Mx(^) ^ |H i ^ x /^7 I^L2 ' f o r a11 b e Dv a n c i ht L2

C ,

see ([3]). Using (4.12) we find :

b° I \be I

(4.12)

+ £2 /C7 | fc |2
j 2-2£2K5K6 | /* |2

j 2 | K O > , ) - Z | ^

Let K 8 = max ( — K2, 2 K5 K6\ , then :
\ K3 I
K3

T
A " â — —

be ! \ be

\u(b°)-z\2
L2

A~'| — ) ( —

X \ Kn - Kf
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Let b satisfy :

Then:

u(b)-z K, :=Tjï I

#0 4 K 8 •

A" M — ] I —
b' ) \b

For /c2 == /<! , and e13= K2distp(z,

A"1 - -

one finds :

2

9 AC7

for all /î G L .̂ Thus the claim holds with AC4 = —- .

Remark 7 : We point out that a less précise estimate than the one used for
the second term in 7"(6£), given by :

(u(b<)-z,u"(be)(h,h))L2*const \u{be)-z\Ll \h\2
L^

would not allow to draw the same conclusion, since in gênerai \u(be) — z\ 2

converges too slowly (e.g. like 0(e), if z e 'V, see Proposition 5).

LEMMA 1: For beDv and heL2, let £ :=u"(b)(h, h). Then g is
characterized as the unique solution of :

Proof : Using (4.11) we find

where F = ~ux, and further :

where P = - - DA l ( — j £>, is considered as a bounded linear operator on

L2 and D dénotes differentiation. It is simple to show that P is a projection,
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-1'with ker P = set of constant functions and (/ - P ) F = F dx. It follows
Jo

r /* i n
that A ( - r ) f = 2 - — w^JxLas desired.

V b I l b Jo b2 }x

LEMMA 2 : Let {Hl) hold. Then there exists a constant K3 :> 0 such that :

\uf(b)h\L2^K

for all b e Dv and h E L2.

Proof : For simplicity of exposition we assume that ƒ = 1, and we write t]
in place of r\x. The gênerai case requires only minor technical modifications.
We choose a e (0, 17 ), and we put O = (0, xx - a ) U (xx + a, 1 ).
Throughout K dénotes a generic constant that is independent of h e Dv and
h e L2. We find :

where the sup is taken over all : <p e HQ (~) H2 with | <p \ Hi n ^2 = 1.

For the inequality we made use of the fact that A ( — ) is an isomorphism

between HQ n / /2 and L2 uniformly in b e Dv ; hère we also used the
assumption that b s H1. We further obtain :

sup

\<P\H20)

where :

Hl(Û) = [<p eH2{O): <p (0) = <p (xx - a ) = <p

Next it will be shown that :

xx + a )

~ a ) =

(4.13)

« ) = 0} .

(4.14)
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The assertion of the lemma then follows directly from (4.13) and (4.14).
To verify (4.14) we first observe that there are constants H1 and
H2 such that :

Hfj^ j/^onff),*!)
b \H2 on (x,, 1 ) .

Further - equals a constant k = k(h, b) on (xx - 17, xx + 17 ). Let
b

<p e HnD H2 with I <p I „1 „2 = 1 be chosen such that :

\\b)
We then find :

'(Mil

We choose functions :

and y2 GHl(xx + « , l ) n T / 2 ^ + a , 1)

such that :

and :

xx - v]= <p\ [O .X! - ! ? ] ,

+ 17, 1] = £ | [X! + 17, 1], + a ) = 0 ,

^ l

Using these functions in (4.15) we obtain :

•v)

<*(IK), « f 1)*

K
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where / /Q(0, XX - oc ) and H\(xx + <*, 1 ) are defined analogously to HQ(/2 ).
This gives (4.14), for an appropriate choice of K, and the proof is finished.

5. NUMERICAL EXPERIMENTS

We describe some numerical experiments for estimating the diffusion
coefficient a in :

. = / 'm (0,1)
M(1) = 0

 ( }

by minimizing the cost functional :

J(a)= \u-zs\l2+e2\ux-~zx\
2

L2 + ^\ax\
2

L2 + K\ax-a
0

x\
2

L2(i), (5.2)

where z8 dénotes noisy data in L2 = L2(0, 1) ; s, f3 and K are constants,
a0 e H1, I is a subset of (0, 1 ) and M is a solution of (5.1). Numerically we
did not use explicit constraints.

For a^>u(a) from C = {a É L 2 ( 0 , 1): 0 < am ^ a(x) ^ aM) <=L2^>Hl

to have a continuous inverse, see condition (H2 ), it is necessary to constrain
the class of admissible coefficients a in neighborhoods of the singular points
of the observations, i.e. in neighborhoods of zeroes of u(â) G C1 and of
discontinuities of u(â)x otherwise, see Example 3.1 and ([3]). This can be
accomplished with K > 0, for example. If a0 = 0 the coefficients are forced
to be almost constant on I. The term / ï 2 !^ !^ can also be thought of as

eliminating underdetermination due to singularities of u(â)x. It is a regulari-
zation term in parameter space which also has the effect of penalizing
oscillations of the coefficient.

The optimization problem was solved by the augmented Lagrangian
technique described in ([9]). The discretization of the state variable u was

r i } 2 N
carried out by linear splines on the grid ] \ , and of the coefficient a

(2N J i = o
f i l* s

by linear splines on the grid \ -~ \ . Noisy data z were produced by
[ N J oo =0

adding uniformly distributed random numbers from the interval ( - Ô, ô ) to
r i ] 2 N - i

the unperturbed observation z = u{â) at the gridpoints \ -— \ . The
[ 2 N J i = i

spécifie choices for the unperturbed observation z° and the « unknown »
coefficient à were made as follows :

Example 5.1 :
z° = u(â) = exp(x) sin (TTX) ,
à — - a r c t a n ( 4 C M ; * ; - - J j + - .
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z°

REGULARIZATION

X

0.65

1 — x
0.35

IN STATE

for x

for x

SPACE

=£0.65

»0.65 ,
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a = Iarctan(40(*-f))+f.

With à and u(a) given, ƒ is calculated from (5.1). We point out that with
these choices for a and z° the resulting inverse problem is (numerically) not a
simple one, since :

(i) the maximum of the slope of à occurs near a singular point of
2° in both examples,

(ii) in our calculations we chose Af = 32, which is a reasonably fine
resolution allowing for many undesirable oscillations,

(iii) absolute, not relative noise was used.
In the numerical results below, the values for e2, fi 2 and K are zero, unless

specified otherwise, and « L2-error » dénotes the L2-distance between the
numerical resuit for the coefficient and à. In all cases, where K > 0, we took
/ = (0.56, 0.64) for Example 5.1 a, d / = (0.61, 0.69) for Example 5.2.

We begin with numerical results for Example 5.1 with noiseless obser-
vations, shown in Table 1. For the last entry in Table 1, a°x was chosen as a
constant function with value equal to the slope of the tangent to
à at —. The graphs of à and the numerical result corresponding to the last

entry in Table 1 are given in Plot 1.
Next we consider the case of noisy observations, shown in Table 2. Here

cPx = 0. For the same spécifications as in the last column but with
z = 0 the L2-error is 0.15. The graph corresponding to the last entry in
Table 2 is included in Plot 2. Note the différence in the behavior of the
numerical solutions of Plot 1 and Plot 2 on the interval / . This is primarily
due to the different choice of a°. The result of the next to last column shows
that the choice of z as the noisy data does (of course) not give a good result.
In f act, z = 0 is préférable, as can be seen from column 3. If one desires to
use the information of the noisy data z8 for the choice of z, then one must
regularize or precondition z3. In the best possible situation one would obtain
the noisefree data z°. The result for z = z° is given in the last column of
Table 2.

Bef ore turning to numerical results for Example 5.2 we point out that the
singular sets of the unperturbed observations in Examples 5.1 and 5.2 are
very different. The unperturbed observation of Example 5.2 has one isolated
singular point at which the derivative is not defined. The coefficient a is
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Table 1.
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Ex 5.1
5 - 0

L2-error

r2

0

= 0

.23

Z •

0.

10"'
= 0

15

F2 =

Z =

0

10"'
= z°

09

s2 =

r = z°,

0

10"
K =

04

3

10

Plot 1

0.9

(K = 10, au = tangent, z = z0)

identifiable from z° in the class of Z/1 functions, but not in the class of
L2-functions. In Example 5.1 the unperturbed observation is such that its
derivative is zero at one point. Moreover z°x is small in its neighborhood,
which causes additional numerical instabilities. In the class of H1 functions,
a is uniquely determined by z°.

We first give the results for noiseless data in Table 3. For the last entry in
Table 3 we chose a°x as a constant function with value equal to the slope of

the tangent to à at - . The graphs for the results of entry one and four a given

in Plot 3 and the graph for the last entry is given in Plot 4. A comparison of
these graphs suggests that there is nonuniqueness (possibly in H~ l for the
infinité dimensional probiem) which is eliminated by K > 0 ; compare also
the numerical resuit for f3 > 0. Additional numerical experiments showed
that the range of successfull numerical results with fi > 0 is enlarged by
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Ex 5.1
S = 0.02

L2-error

F2=0

0.44

s2 = 10"'
z = 0

0.16

^ 2 = i o - 3

z = z\ K = 10

0.74

s 2 = i o - 3

z = z°, K = 10

0.13

Plot 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9

e2 = 0, e2 = 10"3

(K = 10, a° = const., z = z0)

choosing t >• 0. Results with noisy data are given in Table 4. For the last
entry a° is again chosen to be the tangent to à at - .

In Table 3 and 4 some results are given for e2 = 10"3 and others for
£2=10~4 . In all cases the algorithm converges for both choices of
e\ but the results are better for that value of e1 which is shown in the tables.

While the primary importance of the numerical results here is to
demonstrate that regularization in state space is effective, we also carried out
numerical tests with two other cost functionals, which we briefly report
upon. In the first we changed the e2-regularization term and took

Jx{a)= \u-zô\2
Ll+e2\i z2 I2

Z \
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Table 3.
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Ex 5.2
ô =0

L2-error

* 2 = 0

0.166

Ê
2 = io - 4

0.169

e
2=10"4

/?2 = i o - 6

0.03

R 2 = 10"'
Z = Z

0.121

* 2=io- 3

z = z°, /r = io

0.036

Plot 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

, af2c | 0 - . i -

For Example 5.1 with 3 = 0.02, z = 0 and s2 = 10"3 the L2-error is 0.106
(compare Table 2).

For the second cost functional we combine regularization in state- with
regularizations in parameter space. This leads us to consider

K(.)| +0.01

where the £2-term regularizes noise and the /3 2-term regularizes the effects of
small values of | z x ( . ) | . Example 5.1 with s2 = 10"3, £ 2 = IO"7, and
z = 0 (5 = z°) the L2-error is 0.774(0.077), compare Table 2.
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Table 4.

Ex 5.2
8 = 0.02

L2-error

e2=0

0.67

e 2 = 1 0 - 4

0.33

P2= 10"6

0.09

s2= 10-3

l = z°

0.23

£2=10"4

z = O,K=1Q

0.27

*2 = ï o - 3

z = z°, ^ = 10

0.06

Plot 4
2.4

2-2

2

1.8

1.6

1.4

1

0.81

0.6 L
O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r 2 = 1 0 - 3 ,

(K = 10, aü = tangent, z = z0)
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