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MODÉUSATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 27, n° 5, 1993, p. 515 à 534)

DECISION TREE DESIGN BY SIMULATED ANNEALING (*)

by R. S. BUCY (0 and R. S. DIESPOSTI (2)

Communicated by R. TEMAM

Abstract. — In this research the simulated annealing algorithm is applied to design efficient
classification and décision trees. Simulated annealing is a random search optimization
algorithm. Other researcher s have used the algorithm on similar types of combinatorial
problems. For simple cost criteria, designs are obtained which match or improve upon those of
an Information Theory greedy algorithm. Optimal solutions for several different cost functions
are demonstrated along with cost efficient, robust designs that handle misclassification error.

Résumé. —Dans ce travail, l'algorithme du recuit simulé est appliqué à la recherche de
classifications et d'arbres de décisions efficaces. La méthode du recuit simulé est un algorithme
d'optimisation par recherche aléatoire. D'autres auteurs ont utilisé cet algorithme pour des
problèmes combinatoires du même type. Pour des critères de coût simples, on obtient des
algorithmes équivalents ou supérieurs à ceux qui reposent sur la théorie de V information. On
présente des solutions optimales pour différents choix de fonctions de coût, ainsi que des
algorithmes robustes et efficaces pour traiter les erreurs de classification.

1. INTRODUCTION

In a binary identification problem, a set of binary tests, or questions with
yesino answers, are applied to identify an object. A finite set of objects is
described by specifying the test outcomes (yes or no) for each test for each
object (t). The tree design problem then consists of the construction of an
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(t) This information can be stored in tabular form as an incidence matrix.
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516 R. S. BUCY, R. S. DIESPOSTI

efficient testing procedure for identifying some unknown object belonging to
the set.

Mathematically, the binary décision problem can be described as follows.
A finite set of objects, O = {Ol9 O2, ..., ON} is represented by the answers
to a finite set of binary questions or tests, Q = {Qu Q2, ..., QM} • Each
object belongs to a class, the set of classes being C = {Cu C2, ..,
CK}, where K^N. In gênerai, several objects may belong to each class.
Using this information, construct an efficient testing procedure (or classifi-
cation tree). Given an unknown object belonging to O, apply the testing
procedure to détermine which class contains that object. Only the class
information is the desired output from the procedure, the actual identity of
the object is immaterial. This problem reduces to a binary object identifi-
cation problem [9] when there is a one-to-one correspondence between the
set of objects and the set of classes.

Results of this research can be applied in such areas as diagnostic Systems
design, species identification, the design of data processing algorithms,
pattern récognition, and expert Systems design [9], [15], [11], since these
problems can often be represented by the previous mathematical model.

An optimal tree is one that minimizes some performance criterion. For
example, the design criterion for a real-time expert System may be average
central processing unit (CPU) time or probability of an erroneous décision.
For a diagnostic System, the criterion may be average testing time to identify
the faulty part. For the design of data processing algorithms, the criterion
may be storage required to code the testing procedure. Some robust designs
may seek to incorporate two or more of these criteria.

Though algorithms exist for the design of décision trees, no practical one
guarantees optimality for problems of significant size. Simulated annealing
is a numerical optimization algorithm [13]. In 1953 Metropolis et ai [14]
defined and implemented an early version of this algorithm. In metallurgy,
annealing is the process whereby a métal is first liquified then slowly cooled.
As the métal cools, the atoms form a lattice, a minimum energy configur-
ation.

The objective is to apply the simulated annealing algorithm to find a tree
that minimizes a specified cost criterion for some specified décision
problem. In the tree design problem, a tree may be considered a function of
the question configuration, i.e. the questions specified at its nodes. The
algorithm searches for a minimum by a random walk over the configuration
space, in our case by randomly reassigning questions to the nodes of a tree.
Simulated annealing has been successfully applied to such combinatorial
problems as the traveling salesman problem [13], [1], communication code
design [7], and computer circuit design [13].

Since the construction of optimal décision trees is an NP-complete
problem [12], a more feasible objective for large problems would be to find
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DECISION TREE 517

an efficient near-optimal tree. For some real-world problems, a near-optimal
solution that satisfies other characteristics may even be préférable to an
optimal solution. For example, for real-time application, afast expert System
may be highly désirable, but such a design would be of little practical value if
it exhibits a large error rate.

2. SIMULATED ANNEALING APPLIED TO TREE DESIGN

Simulated annealing is a numerical optimization algorithm that simulâtes
the physical process of annealing (2). The algorithm opérâtes to find a state
or configuration that minimizes some objective or cost function of the state.
The température T is a control parameter in the algorithm, which is usually
adjusted by some systematic cooling schedule. The starting température is
high enough to allow the System to melt, Le. T sufficiently high to allow
jumps over the entire search space.

At each température, the algorithm itérâtes by taking random steps in the
configuration space. Following each step, a décision is made whether to stay
at the current state, or accept the new state. Let AC = Cnew - Ccurrent be the
change in cost due to the random step. If AC =s 0, the new state is always
accepted since it has lower cost. However, if AC :> 0, the new state is

_^£
accepted with probability BA = e T , the Boltzmann acceptance criterion
[13]. Operationally, a uniform random number is generated, Ç e [0, 1]. If
g <BA, then the new state is accepted, otherwise the current state is kept.
This strategy, which allows the acceptance of a higher cost configuration,
enables the process to escape local minima.

Many random steps are taken at each température, and the température is
AC

lowered in an outer loop. At high températures, the quantity e T is usually
close to one for AC > 0. Thus a higher cost state is usually accepted at high
températures. As the température lowers, the system freezes, and higher cost
configurations are accepted with diminishing probability. Also as the
température lowers, the algorithm converges to the optimum or a state whose
cost is close to optimal.

Simulated annealing has provided solutions to some combinatorial optimi-
zation problems that are better than any previously found [7]. When tested on
some ill-conditioned functions of continuous variables, the algorithm gave
improved results (3) over the Nelder and Mead simplex method and an
Adaptive Random Search algorithm [5],

(2) The procedure to drive a physical system, such as steel, into a minimal energy
configuration by first heating to melt, then slowly lowering the température.

(3) Solutions closer to the minimum, in some cases with fewer function évaluations.
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518 R. S. BUCY, R. S. DIESPOSTI

Our simulated annealing algorithm searches over the set of trees of a fixed
length. A tree is specified by an assignment of questions to the tree nodes.
For M questions, full length trees have M questions along each branch, and
2M branches, each corresponding to a different combination of binary
answers. The top node of the tree is associated with the set of all of the
objects. The test Q at the top node splits this set into two disjoint sets : those
objects which test yes for Q and those which test no for Q. These two subsets
are then associated with two nodes at the second level. Questions acting at
these two nodes then further subdivide each corresponding subset. This
splitting opération is continued until single objects are associated with
terminal nodes. Only paths which lead to terminal nodes are retained in the
tree structure. Other branches are deleted. We call this process the pruning of
a complete M question tree.

To decrease time and memory requirements, we can also look at reduced
length trees whose branches have length MR < M. For a given fixed length
tree sometimes an assignment of objects to terminal nodes cannot be found
which satisfies the incidence matrix. This can occur when (1) one object is
defined more than once by different combinations of yes/no answers, (2) the
same combination of answers defines two or more objects from different
classes, or (3) more than MR questions may be needed to separate two objects
from different classes. We assume that the incidence matrix is defined such
that the first two conditions do not occur. However, the last case can occur
for reduced length trees with length MR < M. During processing, when this
happens, the tree is labeled inconsistent since it does not represent a solution,
and it is discarded.

For the décision problem, in which several objects can be associated with
each class, an additional step is required to prune the tree. Recall from the
Introduction that only the class which contains the object is the desired
output of the procedure. Objects of the same class which are associated with
adjacent terminal nodes can be merged (4). This merging opération is
continued until all adjacent terminal nodes are associated with objects from
distinct classes.

In our case, the objective function to minimize is some specified, arbitrary
cost function on trees. The cost of a given fixed length tree can be calculated
after it is pruned as described in the preceding paragraphs. The system state
or tree configuration is set by specifying the questions acting at the nodes of a
tree. Random reconfigurations are obtained by switching two questions
chosen at random, or by reconstructing the entire tree or some part of it. In an
outer loop, a new tree is obtained by a random reassignment of questions to
all nodes or by keeping the same séquence of questions on one branch of the
old tree and randomly reassigning the remaining questions. In an inner loop,

(4) This is the inverse opération to splitting.
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DECISION TREE 519

two questions, Qt and Qp chosen at random are switched, i.e. if
Qi (Qj ) is assigned to some node of an old tree, that node of the new tree will
have question ôy(ôi)- Using these two methods of random reconfigurations,
any tree in the complete set having branches of length M questions can be
reached. Question assignment to tree nodes is constrained such that : (1) no
questions are used more than once on a tree branch (5), (2) a question applied
to some node must be chosen to split the object subset at that node.

A tree configuration is pruned by assigning classes to terminal nodes in
agreement with the incidence matrix. A tree constructed in this manner, and
which satisfies any additionally imposed constraints, represents a valid
solution to the classification problem. The décision whether to accept a new
solution is made, using the Boltzmann acceptance criterion, once its cost is
calculated.

Many random tree reconfigurations are performed at each température and
the température is lowered in an outer loop by the relation Tt + i =
aTj where 0.7 ^ a =s 0.99. The number of itérations at each température
required to obtain adequate solutions dépends on the problem size. Asymp-
totic convergence to the set of optimal solutions is guaranteed if an infinité
number of random steps are taken [1].

3. COST CRITERIA

The cost of a décision tree can be determined after the tree is pruned. It
dépends on the prior probabilities of occurrence of the objects. For example,
the average number of questions cost, is given by

N O

e = £ PR, (IL,)
i = 1

where

No is the number of objects
PR/ is the prior probability of object Ot and
IL, is the number of questions on the branch of the pruned tree leading to

object Or (For the décision problem, this is the number of questions required to
identify the class which contains object Oh)

A nother cost criterion of interest is the average testing cost. For each
question Q,, let Tj represent the cost due to applying that test or asking that
question. The average testing cost is given by

(5) This precludes the possibility of asking the same question more than once in some logical
path.
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where the inner sum is over all questions Qj on the tree branch assigned to object
Of. If Tj is the time required to apply test Qr then this cost function is the average
time to classify some unknown object. Also the average testing cost is more
gênerai than the average number of questions since T — Q if T}-. = 1, V/\

For the object identification problem, the probability of misclassification error
can be calculated by applying Bayes' Theorem

Pe= £ P^PR;
i = 1

where
Pe\i is the probability of error given object O{.
For each object Oh assuming independent errors,

^cornetli = I I Cl -/»/-(*! 0 )
keBj

where
the product is over all questions Qk on the tree branch Bt assigned to object

P r (k \ i ) is the probability that the answer to question Qk is in error given
object Of (these values are specified as a matrix of input data).

Then

e l / * — t correct I i •

Designs which are robust with respect to misclassification error can be realized
by adding the error probability to one of the other cost criteria.

4. KNOWN TREE DESIGN PROCEDURES AND BOUNDS

For M questions, the number of distinct binary trees of length M (trees with
a unique assignment of questions) is [15]

NT= f ] (M -i f .
; =o

In the next section, designs are obtained for seven questions (NT =
1.9 x 1027) and for 25 questions (NT= lO7Axi°6). One approach to finding
an optimal tree is to evaluate the cost for each tree in the solution space of
size NT and selecting a tree with minimal cost. However, considering the size
of the set, this is not practical even for small problems.

Several greedy algorithms based on the entropy function of Information
Theory have been developed [15], [11], [3]. Versions are usually cost
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function spécifie. These algorithms design a tree from the top-down. Starting
from the top node, at each node a question is assigned which optimizes some
measure of information. The algorithm itérâtes down the nodes of the tree,
assigning questions to further split the subset of objects until a terminal node
is reached. Terminal nodes are associated with subsets of objects belonging
to the same class. For the object identification problem (the case when the
classes are the objects themselves) and the average number of questions
cost, a very simple greedy algorithm exists [15]. At each node choose that
question which splits the remaining set of objects into two subsets with most
nearly equal probabilities. Though algorithms of this class are suboptimal
[10], they are fast and often produce near-optimal or optimal designs for
simple cost functions. A recent version seems to be applicable to arbitrary
cost functions [16]. We speculate that their ability to incorporate additional
constraints, and still provide near-optimal solutions, is limited.

Algorithms which guarantee an optimal design, such as the Branch and
Bound algorithm [17] and dynamic programming [2] are not practical for
large problems since exécution times and/or storage grow exponentially with
problem size. An elegant approach, which applies to cost criteria with a
preorder relation, is able to find all minimal trees by applying syntactic
optimization to generate irreducible terms [12].

The Huffman algorithm [9] is normally used to design optimal variable-
length codes for messages with unequal probabilities [8], The algorithm
générâtes a code tree which assigns a binary code word to each message.
Since objects of the incidence matrix are already assigned to terminal nodes,
the Huffman tree is already pruned. However, an assignment of questions to
the nodes of the tree, which splits the objects in agreement with the incidence
matrix, may not exist. In contrast to the top-down approach of the greedy
algorithms, the Huffman algorithm constructs a tree from the bottom-up,
which is a characteristic of dynamic programming. Since the Huffman
algorithm générâtes a minimal average number of questions tree, it provides
an absolute lower bound which can be used to gauge the performance of
other rules and design approaches. This bound is guaranteed to be attainable,
however, only if a Huffman tree exists which is consistent with the incidence
matrix.

5. RESULTS

Simulated annealing is applied to design trees for three illustrative
problems. Additional examples and details are given in [4].

5.1. Seven-Segment Digit Récognition Problem

The seven-segment digit display consists of seven diodes arranged in the
pattern shown in figure 1.

vol, 27, n° 5, 1993
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2

5

1

4

7

3

6

Figure 1. — Diode arrangement for the seven-segment digit récognition problem.

By turning on selected diodes, the digits 0-9 can be represented. This
display is typical of that used in a pocket calculator. The objective is to
identify some unknown digit from knowledge of the diode states, each being
either on or off. The classes are the ten digits {0, 1, 2, ..., 9} and the tests are
the seven questions « Is diode number j lit ?, » j = 1,2, ..., 7. The incidence
matrix which spécifies the states of the diodes for each digit follows [3].

Objects

O,

O3

o4
o5
o6
o7
o,
o9
o}0

= 0
- 1
= 2
= 3
- 4
- 5
= 6
- 7
= 8
- 9

Ö,

1
0
1
1
0
1
1
1
1
1

02

1
0
0
0
1
1
1
0
1
1

03

1
1
1
1
1
0
0
1
1
1

Questions
04

0
0
1
1
1
1
1
0
1
1

fis

1
0
1
0
0
0
1
0
1
0

0 6

1
1

0
1
1
1
1
1
1
1

Qi

1
0
1
1
0
1
1
0
1
1

As an example, the digit 1 is represented by turning on diodes 3 and 6
while turning off the remaining diodes. Hence the row corresponding to digit
1 has a 1 (on) in the 3rd and 6th columns and a 0 (off) in the remaining
columns.

Application of the Huffman algorithm gave a lower bound of 3.4 for the
average number of questions cost criterion and equal object probabilities. An
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Information Theory greedy algorithm produced a tree with cost of 3.4, which
is guaranteed to be optimal by the Huffman bound.

Shown in figure 2 is an optimal tree as found by the simulated annealing
algorithm. The initial température was 1.0, the final température was 0.01,
and the geometrie series factor was a = 0.80. At each température, five tree
reconfigurations, derived by switching two questions chosen at random,
were performed in an inner loop, while five outer loop reconfigurations
consisted of a random reassignment of all questions.

Q5 Q7

Q4

Average numfaer of questions = 3.4

Figure 2. — Classification tree designed by simulated annealing for the seven-segment
problem.

5.1.1. Performance Anaiysis

Presented following are Monte Carlo results to assess the performance of
the simulated annealing algorithm as applied to the seven-segment problem.
The numbers of outer loop reconfigurations (IOLL) and inner loop reconfigu-
rations (IILL) at each température were varied parametrically. The initial
température was 1.0, the final température was 0.01, and the cooling
schedule factor was a = 0.75. The statistics are based on 20 Monte Carlo

runs. The percent error is s = _ 100 where the optimal cost is
Q*

g* = 3.4 for the equal probability case. Tabulated following are the average
error and the average time per Monte Carlo run on a DEC 3100 workstation.
Algorithm performance is seen to improve with the number of itérations. For
eight itérations, all 20 of the Monte Carlo runs converged to optimal
solutions.

vol. 27, n° 5» 1993
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IOLL - IILL

1
2
3
4
5
6
7
8

e percent

3.1
1.8
1.5
0.8
0.3
0.6
0.3
0.0

average time per run sec

7.0
14.7
26.5
41.9
66.0
85.7

113.0
145.0

5.1.2. Fault Tolerant Design

To illustrate the effect of error, simulated annealing tree designs are
obtained for a cost function that includes both the average number of
questions cost and the misclassification error. The cost is given by

NO

C = PR,-IL,.

where f3 is a relative weight.
Diode number 2 is assumed to be flickering and thus unreliable in the on

state. To simulate this effect, the error probability matrix is assigned the
values Pr (answer to Q2 in error I object Ot) = 0.10, / = 1, 5, 6, 7, 9, 10,
with all other éléments equal to zero. Optimal tree designs are obtained as the
weight f3 is varied parametrically. For small values of /?, the optimal tree is a
Huffman tree that applies question Q2 first, and which has cost, as a function
of f3, of CH = 3.4 + 0.06 f3. As f3 increases, the algorithm tends to converge
to a tree that uses question Q2 as few times as possible to classify the objects
in the set {Ox, O5, O6, 6>7, O9, Ol0} . Shown in figure 3 is an évolution of the
optimal cost (6) as f3 varies. At f3 = 2 the optimal tree changes from a
Huffman tree to a non-Huffman tree that uses question Q2 only to classify
object O4 (no error contribution since Q2 = 0 for object O4) and object
Ol0. This tree structure remains optimal for f3 > 2 and its cost is given by
CNH = 3.5 + 0.01 f3. Since all six objects in the set {Ol9 O5, O6,
O7, O9, O1Q} contribute an error for the Huffman tree and since only object
Olö contributes an error for the non-Huffman tree, the slope of the optimal
cost versus f3 is six times greater for (3 < 2 than for f3 => 2. Shown in figure 3
are two optimal trees, one for each side of the transition weight.

((1) The trees and the corresponding costs are believed to be optimal based on empirical
results.
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Huffman Tree for 0 s (3 < 2
Q2

A Non Huffman Tree for p > 2

Q7

Ql

9 1 10 5 9 I 10 4 5 2

Figure 3. — Transition from Huffman to non-Huffman tree for flickering diode problem.

It is interesting to note that a similar type of example involving errors for
the seven-segment problem is presented in [3]. In that case, each diode had a
probability of 0.1 of having the erroneous state. Using this error probability,
200 object samples were generated as training data. A greedy algorithm
applied to this random set produced a tree with 3.6 average number of
questions and misclassification error rate of 0.30.

5.1.3 Effect of Criterion Modification

The following cost has application, for example, in the design of data
processing algorithms which have a cycle time constraint. Suppose that in
addition to average number of questions, the sample variance is also a design
concern. The modified cost criterion is taken as

C = Q

where

ö = y PR( ILi is the average number of questions

o-g = y PR( (IL, - Q)2 is the sample variance

of the number of questions .
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The object prior probabilities are chosen as PR = [0.06, 0.06, 0.06, 0.06,
0.06, 0.26, 0.26, 0.06, 0.06, 0.06]. For f3 = 0 the cost reduces to average
number of questions only, and an optimal tree (which is also a Huffman tree)
as found by simulated annealing is shown in figure 4. For f3 e [0, f3 *] , this
Huffman tree is also optimal (6) for the modified criterion, and its cost, as a
function of/3, is given by CH = Q + /3 \/0.9984, where Q = 2.96. However,
when (3^/3* the optimal tree changes to a non-Huffman tree. One such tree
is shown in figure 4, and its cost is given by CNH = Q + j3 \/0.1824, where

Q = 3.24. We have tested values of (3 up to 105, and the optimal tree retains
this same structure. The value of f3 at which the transition occurs is found by

equating the two costs, Cw = C NH => f3 * = —. . . As f3
x /0 .9984- VO.1824

increases above f3 *, it is clear that the cost of the non-Huffman tree becomes
arbitrarily smaller than the Huffman tree cost.

Huffman Tree for
0< p <0.49

Q2

Q5JC

04/ \ Q 7

i/V iAo

X .
\ /

0 5 /
i/\o

Q

vQ4

\

1

3

0

Ao

/
7

^05

\
6

9 1 10 5 3 4 • 8 2

Q5,

Q3

Q 4
A Non Huffman Tree for

P > 0 - 4 9

1 10 5

Figure 4. — Optimal trees for the seven-segment problem with average length plus standard
déviation cost.

5.2. Average Testing Cost Problem

This problem is Example 1 from référence [9]. The cost function is the
average testing cost as defined in Section 3. The incidence matrix is given by
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Objects

o2
o3
o4
o5
o6

o%

PRt

0.05
0.10
0.10
0.05
0.10
0.10
0.40
0.10

45

öi

0
0
1
1
1
1
0
1

150

02

0
0
0
1
0
0
0
0

Question
35

03

0
0
1
1
0
0
0
1

costs
60

04

1
0
0
0
1
0
1
1

25

Q5

1
1
0
0
1
1
0
0

180

06

0
0
0
1
0
0
1
0

10

07

0
0
0
0
0
0
1
0

Above each question Q} is the cost Tj associated with asking that question.
The optimal tree is derived in [9] and is shown in figure 5.

The simulated annealing algorithm, using 10 inner loop and 10 outer loop
reconfigurations at each température, and a geometrie series factor
a = 0.80, converged to this optimal tree.

Q4

1 6 2 4
Figure 5. — Minimal average testing cost example.

5.3. The 5 x 5 Pixel Letter Identification Problem

A letter of the English alphabet is to be identified from the states of a grid
of 5 x 5 pixels. There are 5 x 5 = 25 questions of the form
« Is pixel numberj on ? », j = 1, 2, ..., 25. Shown in figure 6 are the letter
définitions in terms of the 25 pixels states. Also shown are the question
numbers assigned to the pixels. The incidence matrix is derived as shown in
figure 7, where the prior probabilities of the letters were determined based on
the frequencies of occurrence [6].
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5 x 5 Pixel Letter Définitions
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X
X

X
X
X
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X
X
X
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X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X
X
X
X

X

X

X

X

X

X
X
X

X

X

X

X

X

X

X

X

X

X
X

X

X

X
X
X
X

X

X

X

X
X
X
X
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X
X
X
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X
X
X
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X
X
X
X
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X
X
X
X
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X
X
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X
X
X
X
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X
X

X

X

X

X

X.

X

X

X

X

X

X

X
X

X

X
X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X
X
X
X
X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X
X
X
X
X

X

X
X

X

X

X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X

X

X

X
X
X
X
X

X

X

X

X

X
X

X

X

X

X

X

X

pixel

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X
X

X
X
X

X

X

X
X
X
X
X

numbers

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X

X

X

1
6
11
16
21

X

X

X

X

X

X

X

X

X

2
7
12
17
22

X

X

X

X

X

X

X
X
X
X
X

X

3
8
13
18
23

X

X

X

X

X

X

X

X

X

4
9
14
19
24

X

X
X
X
X
X

X

X

X

X

X

5
10
15
20
25

Figure 6. — 5 x 5 pixel letter définitions.

An absolute lower bound can be determined using the Huffman algorithm.
As seen in figure 8, the lower bound for average number of questions is
4.1849. This bound is guaranteed to be tight, however, only if a Huffman
tree consistent with the incidence matrix exists. For this problem, it can be
shown that such a tree does not exist. Therefore this value is an absolute
lower bound which may, however, be achievable by a non-Huffman tree.

Température histories of two simulated annealing runs are shown in
figure 9 along with the costs of an Information Theory design (see next
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Figure 8. — Huffman tree for the letter identification problem.
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Température Histories for the 5 x 5 Pixel Problem

6.0

o
o
W
E

.2

O

E
3

5 .5 -

5 . 0 -

—O— 10=11=10, iime=21 min

- x - 10=11=50; time=5 hrs

Information Theory Design

Huffman Bound

£ 4.5 *

0.10

Température

1.00

F i g u r e 9 . — T e m p é r a t u r e h i s t o r i e s f o r t h e 5 x 5 p ixe l p r o b l e m .

paragraph) and the Huffman bound. Shown is the cost function évolution as
the température decreases from 1.0 to 0.01, according to Ti + l = aTt. The
first run utilized an a of 0.80 and ten outer loop and ten inner loop
reconfigurations at each température. The second run, which considered
trees of reduced length MR = 7, used a - 0.75 and 50 outer and inner loop
reconfigurations, produced a tree with cost of 4.3879 Also shown in the
legend are the processing times on a SUN SPARC station 1.

Shown in figure 10 is the tree as found by simulated annealing, having cost
4.3879. The size of the configuration space is == 10165, which corresponds to
the number of distinct trees of length seven questions, each question chosen
from 25 possible questions. The ratio of the number of trees searched to the
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total number of trees is —'—— = 5 x 10 161. The Information Theory
16516510

algorithm generated the tree shown in figure 11, with cost 4.3989.

left branch = " 1 M

right branch = "0"
Q24

Q5.

Q12

V W H D

U Q . B X M

Average Number of Questions = 4.3879
Figure 10. — 5 x 5 pixel tree designed by information theory.

left branch = " 1 "
right branch = "0 Q22

Q20 flö

Q12

017

F N W M. K X Y

Z J P V

Average Number of Questions = 4.3989
Figure 11. — 5 x 5 pixel tree designed by simulated annealing.
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5.4. Summary of Results

The following table summarizes the performance and applicability of a
greedy Information Theory algorithm, the Huffman algorithm, and simulated
annealing, as applied to the example problems. The codes are : SubOpt -
suboptimal design ; Opt - optimal design ; NA - the implemented algorithm
does not apply directly ; Incon - the Huffman tree is inconsistent with the
incidence matrix ; Opt ? - believed to be optimal based on empirical results ;
Opt ? ? - best solution to date, but not known if optimal.

Summary of algorithm results

Seven-Segment
Problem

Seven-Segment with
Errors

Seven-Segment with
ë + Po-Q Cost

Average Testing
Cost Problem

5 x 5 Pixel
Letter Problem

Greedy
Algorithm

Opt

NA

NA

NA

SubOpt

Huffman
Algorithm

Opt

NA

NA

NA

Incon

Simulated
Annealing

Opt

Opt?

Opt?

Opt

Opt??

The greedy algori thm solution to the 5 x 5 letter problem is known to be sub-
opt imal since simulated annealing found a lower cost tree.

6. CONCLUSIONS AND FUTURE EFFORT

Simulated annealing has been successfully applied to find optimal trees for
the classical seven-segment digit récognition problem and an average testing
cost problem. For the 5 x 5 pixel problem, simulated annealing produced a
lower cost design than an Information Theory greedy algorithm.

The algorithm was also applied to find optimal designs for some non
standard cost functions. In the fault tolerant design, a new cost criterion was
formed by adding the weighted misclassification error probability to the
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average number of questions, This design behaved as expected. As the
weighting on the error probability became large, the algorithm converged to
a tree that minimized the errors at the expense of a larger value of average
number of questions. In the modified cost criterion design, the weighted
Standard déviation was added to the average number of questions cost. Both
of these problems exhibited a transition of optimal tree structures at some
value of the relative weight. We are attempting to characterize this transition
phenomenon.

Recommendations for future effort are as follows. Methods to improve
algorithm efficiency should be explored, such as stratégies to reduce the
search set of trees and methods to speed up the calculation of change in cost
with respect to a randomly perturbed tree. Parallel implementations should
be investigated. Application of the algorithm to expert Systems design should
be studied. It is anticipated that considérations inherent to décision Systems,
such as, constraints on question sequencing, costs due to asking a question,
décision priorities, and penalities for erroneous décisions, can be easily
integrated into the algorithm. Future research should study hybrid algorithms
that merge the speed of the greedy algorithms with the adaptability of the
simulated annealing approach.

The simulated annealing approach présents an effective way to perform a
combinatorial search for optimal solutions and in contrast to fast heuristics
based on Information Theory, has the versatility to accommodate constraints,
arbitrary cost criteria, and other real-world types of considérations. The
advantages of simulated annealing are its simplicity of implementation,
ability to incorporate constraints, and applicability to any computable cost
function on trees. The disadvantage is the computer run time requirement as
problem size increases.
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