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MATWEMATICALMODEUINGANDMUMERICALANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 27, n°4, 1993, p. 481 à 496)

ON THE MAXWELLS SYSTEM IN COMPOSITE MEDIA (*)

by A. OSTER (0 and N. TURBE C1)

Communicated by G. DUVAUT

Abstract. — The Maxwell' s System is considered in a composite medium with a periodic
structure, and the solution is derived by means ofBloch expansion techniques. The behaviour of
the homogenized medium is obtained as a limiting case ofthis solution. Some numerical results
on stratified media are presented.

Résumé. — On considère les équations de Maxwell dans un milieu composite à structure
périodique. La solution est construite au moyen des techniques de développement de Bloch. De
cette expression est déduit le cas statique limite qui fournit le comportement du milieu
homogénéisé. Quelques résultats numériques sur des milieux stratifiés sont présentés.

1. INTRODUCTION

With the increasing use of composite materials in a lot of technological
domains, the studies on periodic structures present a real interest. Optical
media are one of these new materials. Roughly speaking the periodic optical
medium may globally be considered as an homogeneous, anisotropic
material. But to understand the précise nature of electromagnetic wave
propagation, the periodicity of the microstructure has to be taken into
account. In that way, some interesting filtration properties of these media can
be explained. A theoretical tool of investigation is the concept of Bloch
expansion. It was introduced by F. Bloch in the quantum theory of électrons
in crystals [2]. Since then, it has been applied many times, and recently, it
has been used in research on elastic [8] or piezoelectric composites [9].

This paper described the effective dynamical properties of optical media
by means of Bloch expansions. First, the problem is set in an appropriate
functional framework from which existence and uniqueness of the solution
are deduced. The Bloch expansion of the solution is then constructed. As an

(*) Manuscrit reçu le 26 juin 1992.
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application, the macroscopic behaviour of the homogenized medium is
reached when the data are slowly variable functions compared to the period
of the material. This coincide with the results of [7], obtained from a two
scale method. In the last section, some numerical results on stratified media
are presented.

2. STATEMENT OF THE PROBLEM

2.1. Local équations

We consider the Maxwell's System in an unbounded, nonhomogeneous
medium, with a periodic structure. We assume that there are no source tenus.
The electric and magnetic fields E and H, the electric and magnetic
inductions D and B and the electric current J are related by équations (1) (2)
and constitutive laws (3) [3] :

^ + J - r o t H = 0 divD = q (1)
ot

— 4- rot E = 0 div B = 0 (2)
ot

D = r | E B = /iH J = (rE. (3)
The relation div D = q has to be considered as a définition of the electric load

The characteristic coefficients : 77 the dielectric constant, //- the magnetic
permeability and <x the resistivity, are assumed to be bounded functions on
2 TTF, Y = (]0, 1 [)3 (i.e. periodic functions of the variables yk with period
2 7T, [1], [6]), and such that :

0 ^ a ^ rj, fji, a ^ a' a, a' constants . (4)

We also assume that 77 is a regular fonction.
The following initial conditions are given :

E (y, O) = Eo(y) H(y, 0) = H0(y). (5)

Note : The initial condition (5) on H must satisfy div OH 0) = 0. From (2)
this property holds for the solution H(f )> for every time t.

2.2. Global équations

We introducé the following functional spaces :

# l f(R3)(resp.M)= (L2(R3))3

with the inner product (., .)v, with weight 17 (resp. /m) and

V(U3) = {F, F € (L2(R3))3, rot F e (L2(R3))3}.
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The local équations (1) (2) are multiplied by suitable test functions and the
problem can be reformulated :
find (E, H), function of t with values in HV{R3) x //M((R3), such that :

dt

dt
E(O) = EO H(0) = H0 .

(6)

The operators 2, C and D in (6) are respectively defined (where « . »
represents the usual inner product in IR3), by :

. Fdy(E,¥)eHr}(U
3)xHr}(U

3)

(H, F ) e V(R3)x V(U3) (CH, F)„ = - | rot H . F
Ju3

(E, G)e V(R3)x V(R3) (DE

Assuming that :

• o), - f
JR 3

dy

rot E . G dy .

then the hyperbolic system (6) has a solution and only one [3].

3. BLOCH EXPANSION OF THE SOLUTION

3.1. Problems defined on the basic cell

In agreement with the results obtained with other classical operators
(elasticity [8], piezoelectricity [9]), the periodicity of the characteristic
coefficients rjy fx, er, involves that the solution (E, H) of the problem (6)
has the form :

, 0= f ^
JY

, t)= f €^'y

JY

(7)

9 k, t)dk

where the vectors É, H, as functions of y belong to 2 wY. These expressions
lead us to introducé operators, depending on the parameter k, k e Y, defined
on the basic cell 2 TTY.

Interesting properties arise in the following special case :

a = O div (T/E0) = O . (8)

vol. 27, n° 4, 1993



484 A. OSTER, N. TURBE

From équations (1) (2), we obtain a System with one unknown function E :

V 2 - ! + rot (M - l rot E) = 0 div (77E) = 0 . (9)
dt2

Let us introducé the functional space :

VV(U3) = {F, F G (L2(R3))3, rot F G (L2(R3))3, div (77F) = 0}.

Then the problem in E can be written :

E(O)=EO = = ( 0 ) = -
dt

where A dénotes the operator defined by :

(E, F ) G V 7 7 ( R 3 ) X V 7 7 ( R 3 ) , (AE, F\ = f fi~l rot E . FolF dy .
Ju3

From (7), we note that the dérivation 8/8yy on E corresponds to the
opération 3/3y7 + ikj on Ë. So we are led to introducé the following
functional spaces :

Hv = (L2(2 TT7))3

with its defined inner product with weight rj

V„(k) = {E, E G (L2(2 Try))3, rot E G (L2(2 TTF))3,

div (77E) + /77k . E = 0} . (11)
The operators A(k), k G Y, are defined by :

(E, F)GVT?(k)xV77(k)

(A(k)E, F)„ = I fi~ W E + ik A E ) . (rot F + ik A F ) dy . (12)
JlirY

Note : for each k G F, the space Vv(k) is a subspace of (Z/1 (2 TTF))3. The
domain D(A(k)) of the operator A (k), k G F, is made up of éléments E that
belong to (Hl

p(2 TTT))3 and such that n A rot E is antiperiodic. (Hl
p(2 TTT))3

dénotes the space of the function in (//1(2TTF))3 that take equal values at two
opposite points of two opposite sides of the cell 2 wY. n is the outer normal to
3(2 TTY).

3.2. Properties of the operators A(k)

PROPOSITION : The operator A (k) is, for each k G Y, a positive, selfadjoint
operator with compact résolvent ([7]).
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The first two properties immediately result from the définition (12). From
assumption (4), it follows that :

[ I rot E 1 2 -h ( ik A E ) , rot E +
2<nY

+ ro tE . (ikAE)+ |k A E | 2 ] dy

(with fi positive constant). The second and third terms of the intégral are
underestimated, using the identity :

And since k belongs to Y, we have :

|kAE|2=== |E| 2 (norms in IR3) .

Finally, we obtain the inequality :

(A(k)E, E ) , * ! l |rotE||^2(2 i7n)3_^||E||^ (27 ry ) )3 (13)

where /3 is a positive constant that does not depend on k.
Now for any E in D(A(k)\ we have the identity (with E}p = dEj/dyp) :

J2TTY

Indeed, the operator grad E can be split into a symmetrie part e and an
antisymmetric part co and we have :

ejp

Then, using the periodicity of E, we get :

f EJtPËJtPdy = f EJJ Ëptp dy + 2 f <ohp <öj,pdy .
JITTY J2TTY JlirY

The tensor co can be expressed with the help of rot E and it follows that :

<ojp âjp = - |rot E|2. Equality (14) results.

For any EeD(A(k)) and since rj is a regular function :

rj div E + E . grad rj + / 17k . E = 0 .

Since k E 7, we deduce : (div E)2 =s= y |E | 2 (with y constant, independent of
k). And therefore, for E e D(A(k)) :

I I E I I W «Y)? *s (1 + r ) IIE || \L2{2 vY)f + II rot EII 2
L2(2 vY)f .

vol. 27,-n° 4, 1993



486 A. OSTER, N. TURBE

This relation is injectée! into (12) and we then get :
(A(k)E,E) ,^C 1 | |E | |^ 1 ( 2 7 7 n ) 3-C 2 | |E | |^ ( 2 j r r ) ) 3 (15)

with Ci, C2 positive constants, independent of k.
The embedding of (H1 (2 wY)f into (L2(2 TTF))3 beeing compact, the

overestimate (15) implies that the operator A(k) + C2Id has a compact
inverse ([7]). So :

PROPOSITION : For each k e F, there exists a countable séquence of
eigenvalues : 0 ^ wo

2(k) === <^?(k) ..., with corresponding eigenfunctions
<p°(y, k), ip](y, k).. . of the operator A (k). Moreover, the vectors <pw(y, k)
form an orthonormal basis in Hv(2 TTY).

A similar study can be carried on for the unknown function H. The same
properties hold for the operators which are then introduced : they are just
obtained by changing rj into JUL and reciprocally. We dénote by O^(k) and
\|/w(j, k), me N, the eigenelements of these operators.

3.3. Représentation of the solution in the conservative case

Assuming (8), we use the basis {<pw(y, k)} and {i|/w(y, k)} to define
functions É and H in (7).

Since équation (10) is satisfied by E of the form (7), it follows that
E is solution of :

EI

4 ( ) = 0 (16)
dr

(17)
= o~u dt

Equation (16) is projected on <pm, m e N, and the expression for E follows :

E(y, t)= f eik-y + f Êm(k, t)<pm(y, k) (18)

where the A% (k) are determined from the initial conditions (17). A similar
expression holds true for H (y, O with the help of Z2m(k) and tym(y, k).

3.4. Properties of the solution in the dissipative case

From hère on we won't use assumption (8). In order to use the previous
basis {<pm} and {i|*m}, we introducé the new unknown function F,
F e V^R3) , defined by means of the convolution :

cr

E ( v , 0 = f (y, 0 * F ( v , t ) f ( y , t ) = l - £ / * ' . ( 1 9 )
V
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F has an expression like (18) in the basis {<pm} and, in the same way, H in
the basis {i|/m}. The components Fm(k, t) and Hm(k, t) satisfy :

dFm

dHn

-1f + dnm{t)Fm = O (20)

where the coefficients cmn and dnm are defined by :

[rot i|>„cy, k) + ik A iKCy, k ) ] . <pm(y, k)dy
2 TTY

dnm(t) = f {rot \f(y, t) * <pw(y, k)] +
J2 TTY

+ ik A [f (y, t) * <pw(y, k)] . t|iw(y, k)} dy .

The initial conditions F °m and //^ are defined from the initial conditions on E
and H. An expansion of E is then deduced from (19). System (20) is
obviously a dissipative system since the coefficients dnm depend on
t.

4. HOMOGENIZATION FROM THE BLOCH EXPANSION

4.1. Posing the problem

We assume here that the initial conditions are slowly varying functions.
Let s be a small positive given parameter :

(21)

Compared to the data scale, the period of the medium is very small and,
when e -• 0, an approximation is brought by the homogenized medium [7].
In this problem, two space variables appear : a slowly varying one x
associated with the initial data and a fastly varying one y associated with the
period of the medium. These two quantities are related by : x = ey. Initially
the problem is set up with the variable x. In order to use the previous results,
we do the change of variable : y = x e~l and we take the Laplace transform
of system (6) :

l(Vp + a)É- e"1 rot H = 0

(jULpil + s~ x rot Ê = 0 .

vol. 27, n° 4, 1993
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Previous studies done in elasticity [8] or piezoelectricity [9] suggest, using
the periodicity of the medium, that the solution (E, H) of (22) should be
expanded in the following way, deduced from (7) :

k = eK, x= ey, Ê(x, p) = \ eiK'x e3È(y, sK, p) dK (23)
Jra3

with

e3É = É°(y> K, p) + eÈl(y, K, /?) + ••• (24)

A similar expression is applied for H.
For the solution (Ê, H) we have (22), then the function (e3È, s 3 H)

satisfy :

(vp + cr) e3È- e'^rot (£ 3H) + Ï C K A e3H] = 0

( e 3 É ) + i e K A s3Ê] = 0 .

The expansions (24) of e3È and s3 H are injected into (25) and we identify
the terms of the same power of e in these équations.

4.2. Approximation of the solution

Order e"1.

The function Ë° belongs to ^ ^ + ̂ (0) and the function H° to FM(0). So,

É° and H° are solutions of :

rot É° = 0 div [(vp + o- ) Ë°] = 0
(26)

rotH0 = 0 div (/^H0) = 0 .

In the same way as in [1], we introducé the scalar functions W* (vp + o- ) and
* J ( A O (/ = 1> 2, 3) defined uniquely by :

div [(vp + o-)(ej + grad Wj)] = 0 M(Wj) = 0 (27)

div [p. (ej + grad * ' ) ] = 0 M Cr>) = 0 (28)

where e} dénotes thej-th vector of the natura! basis of IR3 (the l-th component
of ej is Sj f) and M (f) is the mean value of the function ƒ on the basic cell
2 TTY. With the notations of (27) (28), (26) implies :

Ë° = ÈJ(ej 4- grad W* ) H° = H7
0(^. + grad X

j).
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From the properties of the functions Wj and \ j , we note that :

In order to détermine the components Êy° and Hj, we use the équations
deduced from the identification of the constants terms of (25).

Order s°.

(VP + er) É° - iK A H° - rot H1 = 0 (30)

/mpÜ° + iK A É° + rot É1 = 0 . (31)

These équations are projected on e^ Let p(cr, 77,77) and q(ju) be the
following matrices :

p'i = 7 ^ 3 I (vp + o-)(8ij + W,)dy (32)
(2 TT) J2nY

(33)

With these notations and using expressions (23) and properties (29), we
prove that the mean value of the approximation (Ê°, H°) is determined from
the system :

p(cr, T7, p)M(Ê0)- rot M (H°) = 0 (34)

pq(fjL ) M(H°) + rot M(Ê°) = 0 . (35)

4.3. Macroscopic constitutive équations

From (34) and (35), we deduce the homogenized behaviour of the
magnetic inductions D and B and the electric current J. Equivalent weak
formulations of the définitions (27), (28) of Wj and xj allow us to recognize
that Wj and xj are the functions which are respectively used in the theory of
homogenization of the two operators 3/8)'/[(*?/? + er) b/dyt] and
d/dyii/uLd/dyi) ([7]). In these conditions, from the coefficients in (34) and
(35), it follows that :

pM(D°); + M(f\ = [(vp + cr)ôij]
hM(E°)j (36)

M(B);= frôijfMQLJ} (37)

where « h » dénotes, as usual, « homogenized » ([7]).
The same result is obtained in [7]. The homogenized behaviours of D and J

in terms of E are given by a convolution product.

vol. 27, n° 4, 1993



490 A. OSTER, N. TURBE

5. BLOCH WAVES IN STRATIFIED MEDIA

5.1. Floquet problem

The eigenvalues co2(k) and eigenfunctions <pn(y;k) of the operator
A(k), k G F, satisfy :

V G D ( A ( R ) )
T/ 'Vot . + /kA.)[/*~1(rot<pn + /k A«pn)] = ü)2

n<pn (38)

div (7/<pn) + iiyk. v" = 0 .

This is the Bloch problem set on the basic cell 2 TTF. The previous theoretical
results were obtained with this formulation of the problem.

Let us consider: tyn(y ; k) = ipn(y, k) eik•*, k e F. Then wn
2(k) and

I(JW (y ; k ) are respectively the eigenelements of the problem :

e~ik'y eD(A(k))
rj-lrot (/ii'1 rot V) = U***" (39)

div (vV) = 0 .

This is the Floquet problem set on the basic cell 2 rrY. Numerical results are
obtained with this formulation of the problem.

5.2. Numerical results in a two layered medium

When considering a layered medium, the Floquet problem leads to a
numerical solution of differential équations.

Let us assume that : rj = r\ {yx\ /m = JUL (yx) and Eo = E0(yx) e2,

Then the eigenelements required for the study of the solution may be
written as :

c o 2
n ( k ) = < o 2

n ( k x \ i | i " ( y ; k ) = * n ( y x \ k x ) e 2 .

In the following, we shall dénote them <o2(k) and i//n(yi ; k).
We now consider a stratified medium with a basic period composed of two

homogeneous and isotropic layers with thicknesses a and b :

v^j G ]0, a[ v(y\)=

V?! G ]a, t [

The eigenelements (o2(k) and ^(k), k e 2 7r(a + b)~l are solutions of the
Floquet's problem set on ]0, i [, f = a + b :

-"271'* V y > 6 [ 0 « f l l ( 4 0 )
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= 0 (42)

dyi dyx
K

From équations (40), (41), we obtain with ka = w (rja fj,a)
m and

kb = o (17

= B, e"»* + B2 e
ik"y' .

Let us introducé the following notations :

5 = eiK\ T = eih\ Ta = e"»", Tt = eikb', Z = eikJ,

Ia = (r?a/^J1 /2 , //, = (^./Mfe)1'2 •

The interface conditions (42) and the properties of periodicity (43) imply :

AxS~l +A2S = BlT~l +B2Ta

A, IaS-l-A2IaS = fi, IaT-a
x- B2 Ib Ta

BXTJX +B2Te =AXZ'1 +A2Z

BlIbTf1-B2IbTe=AlIaZ-l-A2IbZ.

This linear, homogeneous system has a non trivial solution if its determinant
is zero valued. This happens (see Naciri's calculations [4]) when :

Z2 + 1 = - ^ - [(1 + a f (ST + S~ l T- ' ) - (1 - a f (ST~ ' + 5" ' T)] (44)
4 a

with a = ljlb. For real values of k, ka, kb, this relation is equivalent to :

cos (*f ) = cos [<oa(va Ha)m + "b(Vb M6)
1/2] -

- ( 1 ~ ° ° 2 sin [a>a(va na)
m] sin [<ob(Vb t*b)

m] • (45)
2 a

Relation (45) implies that co (2 irlt - k) = Ö> (A:). From numerical solution of
(44) and (45), we obtain the following figures :

Figure 1 shows the forbidden frequencies phenomena that characterize
periodic media : there are angular frequencies which are not of the form
<*>n{k) [6]. In these bands, the right hand term of équation (45) is greater than
1 in absolute value, and we shall build a solution of (44) with complex values

vol. 27, n° 4, 1993



492 A. OSTER, N. TURBE
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OMEGA d n
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r o d A ) |

^ ^
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0. 5 1. 0

| kl / 2Pi

Figure 1. — The first three eigenfrequencies for the following data :
a= b = 5 mm, fi a = fi b = /*0, rja = Vo = 3 rç0, rra = <r6 = 0.

a r e vacum's characteristics).

of k. We can note that (on(k) are continuous functions of k, in good
agreement with [6] and [10].

Floquet theory may also be applied to the study of plane waves
propagating normally to the layers [11]. The waves have the form :
E (y ; t) = Re [</> (yx) e{wt "^2>] where cf> is periodic and k = V - ik" and

(44) is the dispersion relation. For each co > 0, this équation does not define
an unique k. If &0 is solution of (44), then kp = k0 + 2/?TT, p e Z are also
solutions of (44). We keep the détermination of k(<o ) which is a continuous
and increasing function of co, which is consistent with the homogeneous case
when Va -» Vb a n d Va -> Vb-
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ON THE MAXWELL'S SYSTEM IN COMPOSITE MEDIA 493

On figures (2) and (3), the dispersion curve, already obtained in [11], is
compared with the homogenization theory. Again we obtain the forbidden
frequencies. They correspond, in figure 1, to a passage from one mode of
transmission to another. For these frequencies k' remains constant and
k" is not zero valued. The waves are sharply attenuated in space, so the
medium becomes opaque for those frequencies, although it does not absorb
energy. Periodic homogenization does not predict this phenomenon, but it is
in very good agreement when klll w < 0.3, i.e. for low frequencies waves.

Equation (44) can also handle the case of dissipative layers (a (yx ) ̂  0). In
that case, k(yx ) is complex valued and the waves are naturally attenuated, the
energy beeing dissipated by Joule's effect.

kl / 2Pi
1. 5

1. 0

0. 5 _

0. 0
I I I I I I I

0. 00E+00

I I | I I 1 l I i i I i

0. 10E+12 0. 20E+12

I O M E G A C e n r a d / s ) I

Figure 2.

Figures 2 and 3. — Dispersion relation with Floquet theory :
— Floquet theory ; ... Homogenization theory.
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1. 0

0. 5 _

0. 0

-0. 5

k"l |

A A

1 1 1 1 1

d. 00E+00

1 i 1 i i i

0. 10E+12

OMEGA

1 1 1 1 1

0. 20E+12

Cgn r o d / s )

Figure 3.

Figure 4 shows the dispersion curves obtained with Floquet theory
(— curves) compared with the ones obtained with periodic homogenization
theory (... curves). We note a very good agreement when : \kî | < 0.5.

The method developed in this paper will be applied to the three
dimensional case. It requires the use of 3 D finite element [5] to solve
Floquet problem.
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3. 5

3. 0 _I

2. 5 _I

2. 0 _I

1. 5 _I

1. 0 _I

0. 5

M
M

kl /2pi and k"l

/

f
f
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0. 00E+00 0. 10E+11 0. 20E+11

F r é q u e n c e C e n H z )

Figure 4.

REFERENCES

[1] A. BENSOUSSAN, J. L. LIONS, G. PAPANICOLAOU, Asymptotic Analysis for
Periodic Structures, North-Holland, Amsterdam (1978).

[2] F. BLOCH, Uder die Quantenmechanick der Electronen on Kristallgittem, Z.
Phys. 52, 1928, pp. 555-600.

[3] G. DUVAUT, J. L. LIONS, Les inéquations en Mécanique et en Physique, Dunod,
Paris, 1972.

[4] T. NACIRI, Propagation des ondes dans les matériaux hétérogènes périodiques
viscoélastiques, Thèse de l'E.N.P.C, 1990.

[5] J. C. NEDELEC, Mixed Finite Eléments in U\ Numer. Math. 35, 1980, pp. 315-
341.

vol. 27, n° 4, 1993



496 A. OSTER, N. TURBE

[6] J. SANCHEZ-PALENCIA, E. SANCHEZ-PALENCIA, Vibration and Coupling of
Continuous Systems. Asymptotic Method, Springer, Berlin, 1991.

[7] E. SANCHEZ-PALENCIA, Non-homogeneous Media and Vibration Theory,
Springer, Berlin, 1980.

[8] N. TURBE, Applications of Bloch Expansion to Periodic Elastic and Viscoelastic
Media, Math. Meth. in the Appl. Sci. 4, 1982, pp. 433-449.

[9] N. TURBE, G. A. MAUGIN, On the Linear Piezoelectricity of Composite
Materials, Math, in the Appl. Sci. 14, 1991, pp. 403-412.

[10] C. H. WILCOX, Theory of Bloch waves, / . Anal. Math. 33, 1975, pp. 146-167.
[11] P. YEH, A. YARIV, C.S. HONG, Electromagnetic Propagation in Periodic

Stratified Media, / . Opt. Soc. AM 67, 1977, pp. 423-438.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysij


