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CONTROL/FICTITIOUS DOMAIN METHOD FOR SOLVING
OPTIMAL SHAPE DESIGN PROBLEMS (*)

by J. HASLINGER (•), K.-H. HOFFMANN (2) and M. KOCVARA (3)

Communicated by O. PIRONNEAU

Abstract. — Combining a fictitious domain and an optimal control approach, we present a
new method for the numerical realization of optimal shape design problems. This approach
enables us to perform ail calculations on a fixed domain with a fixed grid. Finite element
approximation is studied.

Résumé. — On présente une méthode nouvelle pour la résolution numérique des problèmes
de Voptimisation de la forme. Cette méthode est basée sur la combinaison d'une méthode des
domaines fictifs avec une méthode de contrôle optimal. L'avantage de cette approche est le fait
qu'on peut réaliser tous les calculs sur un domaine et un maillage fixe.

Shapc opiimization is a branch of the optimal control theory, in which the
control variable is connectée with the geometry of the problem. Mathematical
analysis, including the approximation theory and the numerical realization,
has been widely discussed in [4, 7]. The numerical realization of optimal
shape design problems has spécifie features. One of them is the fact that the
state problem is solved many times on the domain, changing during the
computation. For domains with complicated shapes this requires the use of
mesh generators. Moreover, data, defining the finite dimensional approxi-
mation (stiffness matrix, etc.) have to be recomputed again and again. As a
resuit, the whole procedure is time consuming and hence expensive.

To overcome this difficulty, the control/fictitious domain method is
proposed. The method has been used in [1] for the numerical solution of the
Helmholtz équation. Nevertheless, the same approach can be used in the
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tram ol the shape optimization. Introducing the new control variable on the
right-hand side of the state problem, one can transform the original optimal
shape design problem into a new one, in which the state problem is
formulated and solved on a given, fixed domain Û with the same differential
operators. The advantage of this approach is obvious : choosing the simple
shape of Û, the construction of triangulation of Û is elementary and what is
more important, ail computations are realized with the same stiffness matrix
A. Using the factorization of A, one can solve very efficiently the
corresponding System of algebraic équations. An alternative approach, based
on the control on the boundary is suggested in [9].

The present paper deals with the mathematical analysis and the approxi-
mation of the control/fictitious method for the numerical solution of the
optimal shape design problems, with the state given by the homogeneous
Dirichlet problem in the first part. The second part of the paper deals with the
numerical realization of the method. For the sake of simplicity, numerical
experiments are performed for the state, given by an ordinary differential
équation. I ne experiments tor partial ditterential équations, as well as the
mathematical analysis of the control/fictitious method for the state, given by
variational inequalities, will be presented in subséquent papers.

1. INTRODUCTION

Lei /2 (a ) er S32 be a bounded domain, defined as follows :

&(<*)= {[xux2]e R 2 |O<x 1 <a(x 2 ) , x2 e (0, 1)} ,

a is a design variable, belonging to the set C/ad, where

Uad= {a e C a i ( [ 0 , l ] ) | 0 < C 0 * a ( * 2 ) * î C l f

| a ' (x 2 ) | ^ C 2 a . e . in (0, 1), meas fl (a) = C3} .

Co, ..., C 3 are given positive constants such that Uàd=£0. Let
Û = (0, 2 Cj) x (0, 1). Note that Ù => Ü (a ) Va E J7ad.

On any H (a ), a e f/ad, we shall consider the following homogeneous
Dirichlet boundary value problem :

l-Au(a) = f in fl(a)
1 u(a) = 0 in dI2(a) K }

or in the meak form

fFind u = u(a) e Vi(a) such that
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CONTROL/PICTITIOUS DOMAIN METHOD 159

Hère Vx(a ) = H]
0(O (a )), f G L2{Û) and ( . , . ) n { a ) stands for the usual

scalar product in L2(O (a )).
Let ƒ : [a , y] -> R1, a e f/ad, y e Hl{O{a)\ be a cost functional. The

optimal shape design problem is defined as follows :

(Find a * G */ad such that

with w(a) G Vx(a) being the solution of
In order to guarantee the existence of a solution of (P), we make the

following assumption.
J is lower semicontinuous in the following sense :

[<*„=> a (uniformly)in [0, 1 ], an, a G C/ad|
< . > => (1-2)
[y» -^ J (weakly ) i n V , j „ ^ e V j

=> lim i

Here and in what follows V = Hl(O) and f2n^ ü (an).

PROPOSITION 1.1 : If (1.2) is satisfied, then there exists at least one
solution of (P) {see [4]).

2. METHOD OF FICTITIOUS DOMAINS USED FOR THE SOLUTION OF (P)

Let

where

r(a)= {[*!, x2] G U2\xx = a (JC2), x2 G (0, 1)} , a G t/ad .

RecaUthat Vj(a) = i /à(/2(a)), V = / / â ( / 2 ) . Symboles \\.\\Vl{ay Il-llv2(«)

and ||.||^ stand for norms in ^ ^ a ) , V2(a) and y , respectively. The

corresponding dual spaces are denoted by V[{a ), V2{^ ) and V'. The duality

pairings between V2(a) and V 2( aX V"' and V" are denoted by ( . , . ) a ,

( . , . ) , respectively, and || ̂  || * a stands for the dual norm of <o G V2(a ).

With any a G £/ad the following set will be associated :

Q(a)= {v= ( v l f v2)\v1e
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160 J HASLINGER, K-H HOFFMANN, M KOCVARA

and we write

Instead of (1 1), we shall consider the homogeneous Dinchlet boundary

value problem on Û

I- Aü(v) = v ma
1 ü(v) = O on a/2, ( 2 X)

where i? e Q will play the role of the control variable
If we prove that for any a e Uàd there exists v2 e V^i^ ) such that the

restriction on O{a) of the solution ü(v) of (2 1) with v = (ƒ, ü2) solves
( ^ ( a ) ) , the followmg idea anses instead of the state problem ( ^ ( a ) ) ,
which is defined on the variable domain (2 (a ), we shall use (2 1) as the state
problem for a new optimal control problem We shall prove that solutions of
the original optimal shape design problem can be approached by solutions of
the new problem The advantage is obvious The state problem (2 1) is still
solved on the same domam This is of a great importance for the numencal
realization All calculations are performed on a given, fixed domam

Let us introducé some notations and results, which will be useful in what

follows If v e Q(a\ v = (vu v2\ a e Uad and <p E V, we dénote

def

[ü, <p]a= (!>!, <p)n{a)+ <«2. <P)a (22)

For the sake of simphcity of notations, we use the symbol <p on the nght-hand
side of (2 2), instead of <p \ n , . and <p \ CT, , It is readily seen that the formula

<P H-> [v9 <p]a , <p eV , v eQ(a)

dehnes the linear, continuous functional on V', ie Q(a)^V' Hence, if
v e Q(a\ a G f/ad, we have

<v, <p) = [v, <p]a \/<p e V

Let v e Q, i e , there exists a e Uad such that v e Q (a ) We shall consider
the weak form of (2 1)

fFind ü (v ) G V such that

' \(yû(v),Vcp)û= [v,<p]a V<peV
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CONTROL/FICTITIOUS DOMAIN METHOD 161

In whai iollows, we establish the continuous dependence of ü with respect
to variations of v e Q, as C/ad. To this end we need :

PROPOSITION 2.1 : Let an, a e Uad be such that an=> a in [0, 1] and let
Vn = (l'«l> Vnl) e Q(an) b e S u c h t h a t :

the séquence { II vnl II } is bounded ; (2.3)

vn — v inVr. (2.4)

Then v e Q(a) and [v, <p ]a ~ lim [vn, <p]an V ^ e V .
n -> oo

Proof : Let <p e <3(f2(a)) be given. Then <p e 2({ln) for n sufficiently
large and

(vn, <p) = [v„ <p]an= (vnl9 <p)nn= (5B l , <p)o(a)^ <v9 <p) . (2.5)

The symbol dénotes the extension of the corresponding function by zero
from its domain of définition on Û. From (2.5) it follows that there exists
V{G L2(n(a)) such that

{) )). (2.6)

Now, let <p e V be given. Then

(vn, <p) = (vaU <p)an+ (vni> <P)*n^ <?>*) -

Taking into account (2.5) and (2.6), we see that

lim (yn2, <P) = (y* <p) — (V\, «?)^(G.).
n - » QO "

i.e., the limit is finite. Hence, the formula

defines the linear functionaï v2 on V2(
öf )• Let us show that v2 e V2{a ), i.e.,

v2 is continuous. Let us assume that we have already proved that the
séquence (||t?n2l|* } ig bounded. As vn e V2(an), then

vn2II._ II<p IIVi(an) *c\W\\Vï(an) O . (2.7)

(') In what follows, the symbol c dénotes a generic positive constant-

vol. 27, n° 2, 1993



162 J. HASLINGER, K.-H. HOFFMANN, M. KOCVARA

Passing to the limit with n —• oo in (2.7), we see that

lim (yn29 (p)
n -*• oo

Let us prove that the norms || vn2 \\, remain bounded. As the family

{S(a), a € C/ad} possesses the uniform extension property, there exists an

extension mapping 7r :V 2 (a ) -»V, the norm of which does not depend on

a e Uad, i.e., if <p e V2(a), the TT<P G V and

TT<P = <p in E (a) ^2.8)

with a constant c >- 0 independent on a e Uad. Let <p e V2(a„). Then there
exists a constant c > 0, which does not depend on n and

- (VnU 7r<P)nn\ ^C\\<p \\V2ian)

making use of (2.3), (2.4) and (2,8 )2. D

PROPOSITION 2.2 : Let an, a s t/ad, vn e Q(an\ v e Q(a) be such that

an=>a in [0, 1 ] ,

vn — v in V' ,

and (2.3) be satisfied. Let ûn e V be solutions of ($(an9 vn)). Then there

exists a subsequence {ûn>} of {wn} such that

àn, — ù inV

and ù solves (&(a, v)).

Proof : The séquence |wrt} is bounded in V. One can find its subsequence,

satisfying (2.9). The fact that ù solves (^(o-, u)) is obvious, taking into

account Proposition 2.1. D
We introducé further notations :

a ) = {v = (vx, v2)sQ(a)\vl = ƒ in 12 (a )} ,

Qf= [J

QL=
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CONTROL/FICTITIOUS DOMAIN METHOD 163

Here C dénotes the positive constant, which does not depend on a G Uad.
Let / : [a, y] -* R1, a e £/ad , y G Hl(O (a )) be a cost functional, satisfy-

ing (1.2).
For any e > 0 we define :

« Jo
Ee(a,v) = J(a, ù(v)\ ) + - (û(v))ldx2,

8 Jo

where u(v)e V is the solution of ( # ( a , u ) ) with t; E Q{ d ( a ). The last

intégral is defined as follows :

P (Û(v)fdx2^ f (ii(»)(a(x2), x2)fdx2.

Jo Jo

In what follows, we analyze the problem

(Find (a *, u*) e £/ad x Q(d(af) such that

We shall prove :

(j) the existence of at least one solution {af, vf) of (P)£ ;

(jj) the mutual relation between (P) and (P)e if e -> 0+ .

P R O P O S I T I O N 2 . 3 : For any e>0 there exists at least one solution

(af,vf)of{i>\.

Proof : Let {an, vn) e U&ó x Q(d{an) be a minimizing séquence of the
problem :

Ee{an, vn)^q= inf Ee(a9v). (2.10)

Taking into account the définition of f/ad and Q{d, we may assume that

JaB=> â in [0, 1]

[ vn — ü in V̂  ' .

Clearly â e f/ad and v = (ü^ ü2) e Q{â) (see Proposition 2.1). The fact that

vl = ƒ in i7(â) and ||ü2||* a ^ ^ is obvious. Hence iJ e Q{d(â). Let us

show that (â, v) is a solution of (P)e. Denoting by ün, ü solutions of

(^(a r t , t>„)), ( ^ ( â , î;)), respectively, we have a subsequence of {un}

(denoted by the same symbol) such that

ün — ü in V .

vol 27, n° 2, 1993



164 J. HASLINGER, K.-H. HOFFMANN, M. KOCVARA

This, (2.11) and (1.2) yield :

lim i n f / ( a n , ûn\n)^J(â, u\ü(5)). (2.12)

Using the similar approach as in [4], Lemma 1.1, one can prove

9 P 7
(ûnY dx2 -• (ù) dx2 .

o Jo

This and (2.12) give the assertion of Proposition. D
In Appendix we prove that for any â G £/ad there exists v e Q^(â) such

that the solution û(v) of (^(â, v)) restricted on f2(â) solves (£P(â~)).
Moreover, v lies in a bail, radius of which dépends solely on || ƒ ||L2(^) (see

Appendix, (A.4)). Next, the constant C appearing in the définition of
<2{d will be greater or equal to the number on the right-hand side of (A.4).
Hence, v with the above mentioned property is the element of ô{d(«).

Next, we analyze the relation between (P) and (P)e if s -» 0+ . To this end,
let {s/c} be a séquence of the penalty parameters tending to zero. By
(P)^ we dénote the problem (P)Ê with s = sk. We show that these problems
are closed in some sensé.

PROPOSITION 2.4 : Let (af, vf) e C/ad x ô{d(<***) be a solution of

(P)^ and û* G V the solution of (£P(af, i?**)). Then there exist subsequences

{<***}, {Vk}> {"**} and e^emenis a* G ^ad' ü * G ö { d ( a * ) and M* G V

satisfying :

^ =̂> a * in [0, 1 ] ,

* — Û * in V ' , (2.13)

* — ù * in V .

Moreover, a * is a solution of (P) and w * | ^ ( a + ) solves

Proof : Let {<xj*}9 {v^} and |û^} be séquences, satisfying (2.13) (their

construction is obvious). On the basis of Proposition 2.2 we know that
M* solves ( # ( a *, Ü*) ) . The définition of (P) t yields ; (Ok = ü (af ))

« £ ( « , » ) V(o, o )g f / a d x ô { d ( a ) . (2.14)
Kj
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Let us fix à e C/ad. According to Proposition A.l (see Appendix), there
exists v e Q{d(a) such that û(v)\a(~* solves ( ^ ( â ) ) and especially

ü(v) = 0 on df2(â) (let us recall that ü(v) with v e <2ad(a) dénotes the
unique solution of ( ^ (a, v ))). Substituting (â, v ) into the right-hand side of
(2.14), we have

E (<*£*, uf ) ^ £: (â, ü) = / ( â ,
*j j j kj

Hence

0*= J' (ÙÇf dx2

At the same time
' i
f {üffdx2^ [ (Ü*)2dx2

Jo Jo

Comparing this with (2.15) we see that M* = 0 on F(a*)9 Le., û*!^

solves
Let a e C/ad be arbitrary and u(â) G V j ( a ) be the solution of

Then there exists v e Q{6(â) such that ù{v)\n = u{a) (see Appendix,

Remark A.l) . Substituting à, v and w ( ^ ) | / 2 ( - ) into the right-hand side of

(2.14), we obtain

Passing to the limit with y -• oo. we finally get

making use of (1.2). As M * ! ^ ^ solves (^ (a*) ) , a * e ( / a d and

â G t/ad is arbitrary, we arrive at the assertion of Proposition. •

Remark 2.1 : We may use an alternative approach. Up to now, we have
considered that v = (vu v2) e Q{d. This means, among others, that vx = ƒ on
O(a) for some a e C/ad. We may regard the previous equality to be the
constraint, which can be treated by a penalty method again.

Let

G a d ( " ) = {v= (Puv2)^Q^)\\\Vi\\n{a)^Cl9 \\v2\\*a^

vol. 21, n° 2, 1993



166 J. HASLINGER, K.-H. HOFFMANN, M KOCVARA

where C u C2 are given positive constants independent on a e t/ad and where
|| . || n r stands for the L2(f2 (a ))-norm Let us define

H \ù(v)fdx2,

where (a, v) G £/ad X ö a d( a ) a n d «00 iS t n e solution of (^*(a, !>))•
We shall consider the following problem .

JFind (a *, ü*) G IJ* x G«i(« *) such that

PROPOSITION 2 . 5 : For an;y £-^0 there exists at least one solution
(a*,v*)of(JL)e.

Proof is almost ïdentical to that of Proposition 2.3. We only have to show
that

ian^a m [0, 1] ( 2 1 6 )

U„ — Ü in V' , Ü„ = (vnl, ü n 2 ) e Ö(«„)> ü = (üi. Ü2)G Ö(«)

imply

hminf I I ^ - Z U ^ B . | | e i - / | | ^ ( a ) . (2.17)
n -> cc

Indeed, from (2.16)2 it follows that

vnl^vl in L2( /2(«)) , (2.18)

where vnl dénotes the function vnl extended by zero outside of 12 n Let
Xn-> X t>e the charactenstic functions of On, 12 (a ), respectively. As a
conséquence of (2.16)j we have

Xn^X mL 2 ( /2) . (2.19)

Now

Hence
liminf 11^-/11^ H h - / | | 2

O ( ( O

taking into account (2.18) and (2.19) D
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Also, the result parallel to Proposition 2.4 can be established. To this end it
is necessary to choose the constant Cl5 appearing in the définition of
ÖadO) greater or equal to \\f\\L2(ny

3. APPROXIMATION OF (P)e

The aim of the present section is to define and to analyze the discretization
(P)e/, of the problem (P)e with s > 0 fixed. As the next step, the relation
between (P)£ and (P)eA for h -> 0+ will be established. Let us note that we are
not able to analyze the simultaneous limit procedure for s, h -+ 0+.

We shall start with notations and définitions of finite dimensional
approximations of sets, introduced in the previous section.

Let {£>/ƒ}, / / ->0 + be a family of partitions of [0, 1 J,
DH :0 = a0^al< ... < aN(H) = 1, such that H ^ jöo/fmm, where p0 > 0
does not depend on

7 7 = m a x \ a l + x - a t \ , H m m = m i n \ a l + 1 - a t \ .
i = 0, , N - 1 i = 0, , N - 1

With any DH, the following set will be associated :

£ / £ = {aHeC([0, l ] ) \ a f f \ a i a i + iePl(alal + l ) , i = Q , - , N - l } n Uad

i.e., U^d contains all functions from t/ad which are piecewise linear on
DH.

By {TJïfc}, h-+0+ we dénote a regular family of triangulations of
/2. With any 7Sft the set of continuons, piecewise linear fonctions on
Û and vanishing on 6/2 will be associated :

Vh = [yheC (Ö)\yh\Ti eP}(Tt) Vr( e ^ yh = 0on 8/2} .

t/fd, V^ are the finite dimensional approximations of t/ad, V\ respectively.
Mesh sizes ^ and H are independent each other, however, we shall assume

that there exist positive constants rl9 r2 such that rx =s h/H ^ r2 . This means
that discrete models can be characterized by one parameter, say h.

Let us recall that

2E (0, 1)} , aHe C/fd .

By Oh(aH) we dénote the set O(aH\ the partition of which is done by the

vol 27, ne 2, 1993



168 J. HASLINGER, K.-H. HOFFMANN, M. KOCVARA

restriction of 7SA on O {aH\ i.e., üh(aH) = int ([^} Tt n D(aH)\ . Simi-

larly, Sh{aH) = int (\J Tj^~S{aH)^ .

Further, let

suchthatT, O 3h(aH)* 0 } ,

i.e., Lh(aH) contains all piecewise constant functions on T5A, restricted on
3h{aH) and set

wA1, >v/ï2)6

If (jp E V and /JLh e Qh(aH), we define

f )XJ / S

Remark 3.1 : Qh{ocH) can be viewed to be the approximation of
g O ) . To see that, let us recall that v = (vu v2) s Q(a) if and only if
vl e L2(f2 (a)) and v2 e V^ia)- The foliowing représentation of v2 is known
(see [5]) : there exist functions f0, fl9 f2 e L2(S(a)) such that

and

<P)Sl«)+t U-J?) V^eV2(«) (3.1)
; = 1 \ ÖXJ f S"(«)

H ( / o . / i . / 2 ) | | ( t l ( S ( a ) ) y l = II «2II . . „ • ( 3 -2 )

In other words, the functions /0 , /1? / 2 characterizing u2
 e ^ i ( a ) through

(3.1) are approximated by means of piecewise constant functions.
Finally, let

fi) = {^h = (v> wh0> wA1, wh2) e Qh(<*H)\v = f in D (aH)}

and

Q{é,h(aH) = {MA = (ƒ, W ô, Whl, Wh2) G

where C > 0 is the constant appearing in the définition of ö{d(a)-
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Instead of the state problem (&(a, v)\ a e [/ad, v e Q{d(a), we consider
its finite dimensional approximation :

Find ük(jJLh) e Vh such that

(Vuh, V<phh = [/*A, <Ph\aH V<Ph e Vh ,

where aH e U^d, fJLhe Q{dj h (aH). For any e > 0 w e define

1 f1
) + -

where ûA(/*/») e V* solves

By the approximation of (P)e, e > 0 fixed, we mean the problem

jFind (a&, /**h)e ^ x öii,*(a 3ï) such that

Concerning the solution of (F)eh we have

PROPOSITION 3.1 : If (1.2) is satisfied, (P)eA ^.y a/ /e^r on^ solution

Proof is parallel to the proof of Proposition 2.3. D
Next, we analyze the mutual relation between (P)E and (P)e/ï, assuming

h -> 0+ . We shall show that under additional assumptions on ƒ, the problems
are closed each other. Before doing that, let us summarize some basic results
needed in what follows.

PROPOSITION 3.2: For any a s £/ad there cxists a séquence {s^-},
aH e U%d such that

aH^>a , / / - > 0 + in [0, 1] . (3.4)

Proof: See [2],

PROPOSITION 3 . 3 : For any yeV there exists a séquence { j ^ } ,

yh e V h such that

yh-+y, h^0+ inV . (3.5)

PROPOSITION 3.4: Let aH=>a in [0,1], aHe U%d, a e t/ad,

Vh e Öii, A(«H) ^ JMCA that

Ph — ju inV'.

Then IJL e Q{d(a).
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170 J. HASLINGER, K.-H. HOFFMANN, M. KOCVARA

Proof : Let fxh = (ƒ, wh0, whU wh2) G Q{d h(aH) and <p G V. Then

l> A» <P ]«H = (f, <P )ï2(aH) + O*0> ^ )sA(«„) + (3.6)

+,?, K i f )..„.,-<"">•
Let the symbol * dénote the extension by zero of the corresponding function
outside of its domain of définition. From the définition of Q{dyh(aH) it
follows that there exist subsequences of {wA0}, {wA1} and {wtó} that
converge weakly in L2{Û ) to functions iv0, w{ and w2. It is easy to see that
wQ = Wj = w2 = 0 on O (a ). Let Wj — w} | ^ , 7 = 0, 1, 2. One can easily
verify that

^ )sA(aw) -* (WO, <P )3(a) '

Hence,

As

H(«)+ X ( w r | 7 ) =

PROPOSITION 3.5 : Lef «#-> 0; /» [0, 1], aH e U%d, & e Udd,

-h ̂  Qld, h(ax) be such that

fu,h — ft inV' .

/ƒ ẑ /7 dénotes the solution of (&(aHj /x;i))^, then there exist a subsequence

{üh} c {ü/ï} 5WC/Ï r t o

ûA. — à irt V (3.7)

awJ w e V solves {é?(ay ja)).

Proof : The construction of a subsequence, satisfying (3.7) is obvious. It
remains to prove that ü solves ( ^ (a, yu )). But this is a direct conséquence of
Propositions 3.3 and 3.4.

PROPOSITION 3.6 : Let a e Uad, ^ E Q(d(a) be given. Then there exist
OLH G U%d and ixh G Q(d}k(aH) such that :

oiH^>a , H^0+ in [0, 1 ] ; (3.8)

ix h -• ix ( s t r o n g l y ) inV' . (3.9)
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Proof : According to Proposition 3.2, there exists aH e U"ó satisfying
(3.8). Let M e Q{d(a) be given,

, <P ] « = ƒ <«) o < ) X ( r T )
y = 1 V oxj / S(a)

with ƒ G L2(l2(a)), w, e L 2 (^(a)) , j = 0, 1, 2. Recall that the symbol
~ stands for the extension of functions by zero from the domain of their
définition on 17. Let qhj = Pïvy, j = 0, 1, 2, where P is the orthogonal
projection of functions from L2 {Û ) on

Lh{Û)=

Then the quadruple

where w ;̂ = qhj \ „ satisfies (3.9). Indeed :

||wA; - w J ^ - ^ 0 , A - > 0 + , j = O, 1, 2 .

The fact that /mh e Q{^h{oiH) is obvious.
In order to establish the mutual relation between (P)e and (P)eh for

&->0+, we shall need, besides of (1.2), the following assumption,
concerning rhe continuity of J :

if aH => a in [0, 1 ], aH G U^d, a e Uad

and
i f y H -* y (strongly) in V, yh e Vk, y e V

=> lim J(aH,yh\nf J = J(a,y\n( J . (3.10)

The main resuit of this section is

PROPOSITION 3.7 : Let (3.10) Z?£ satisfied. If (a*H, ixfh) is a solution of
(P)eA anc/ M*A e Vh is the corresponding solution of (é?{afH, tt*h))h, there
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exist subsequences {afH.} c {<**H}, {&%,} c {/*£}, {«&} C {M*A

éléments a* e Uad, /&* e Q{é{af\ uf e V such that

a*H.=>a?9 H' ^ 0 + , in [0, 1] ;

/ * £ ' — A*.* , ^ ' ^ 0 + , i / i V ' ; ( 3 . 1 1 )

a*, yt* *) solves (P)e a«J M* W r^e solution of {&{af, /u.*)).

Proof : The existence of subsequences satisfying (3.11) is obvious as well
as the fact that a f e J7ad, /** e ö(d(«*) a n d «* solves (^(ae*, ft *)).
Taking into account (1.2), we see that

Ee(a*, M.*)«S lim i n f ^ ( a ^ , M ^ . ) - (3.12)

Let (öF, /Z ) G f/ad x Ö{d(<*) ^e given. According to Proposition 3.6, there
exist âH e f/fd, /ZA G G{df *(«/f) s u c h t h a t

iâH=>â9 H^O in [0, 1]

l
If ŵ  dénotes the solution of (£?(âH, jLh))hJ from Proposition 3.5 and (3.13)2

we obtain

üh^ü (strongly) in V ,

with ü being the solution of (^(ö", /ï)). Now, the définition of (P)eA and
(3.10) yield:

(âH.9 fZk.) = Ee(â9 /Z ) . (3.14)

As (â, /I) e Uad x ö{d(^) ig a n arbitrary element, (3.12) and (3.14) yield
the assertion of Proposition. D

Remark 3,3 : The numerical realization of (P)eh has two great advantages :

1) the state problem is still solved on the fixed domain fï with the fixed
triangulation TSA ;
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2) the stiffness matrix of the state problem {0* (aH, fJLh))h does not change

during the calculations. The right-hand side of the corresponding linear
system is changed, only. This is of a great importance. Using the method of
factorization, one can solve very efficiently the discrete state problem.

4. SENSITIVITY ANALYSIS AND NUMERICAL REALIZATION OF (P\k

Let h > 0 and H > 0 be fixed. The state problem (0 (aH, i^h))h expressed

in the matrix form reads as follows :

where A is a symmetrie, positive definite matrix (stiffness matrix) and
F (OE, |x ) is a right-hand side vector given by

, fJt)X = [Wm<Pi+Whl +Wh2 \

i = 1, .... dim Vk9

with <pt being the (Courant) basis functions of Vh. Hence, the vector F
dépends and the matrix A does not depend on the vector of discrete design
variables ( a , j i ) e R + 1 + ,

a = (a0, al9 ..., aN) , at = aH(at)9 i = 0, 1, ..., N , (4.2)

for (aH, ph) e U%d x Qf
a<Ul(aH\ fxh = (ƒ, wh0, whl, wk2).

Now it is important to notice that the mapping

(4.3)

is not continuously differentiable, in gênerai. This is readily seen from the
following simple example.
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Example 4 1 Consider a one-dimensional boundary-value problem

Fmd ü(v) E V = i/A((O, 1 )) such that
( }f1 f* f

ü(v)f <p' dx = f<pdx+ v<p dx
Jo JO Ja

where a e (0, 1 ), ƒ, t? € L2((0, 1 )), ƒ fixed and f variable Further, consider
a partition of [0, 1 ] The discretization of (4 4) by piecewise linear éléments
leads to an algebraic System

Au(a, w) = F (a, w) ,

where A is the well-known three-diagonal stiffness matrix and
Ça Cl

(F(a,w)\ = fcpldx + w<ptdx
J0 Ja

It is obvious that if w is a piecewise constant approximation of v on (0, 1),
then the function

f1

J a
dx

is not continu ou s ly differentiable at points of discontinuity of w but only
directionally differentiable Thus one can not expect the differentiabihty of
the mapping (4 3) D

Analogously, the mapping a »-» F («, jx) is not differentiable in two-
dimensional situation (and neither the mapping (4 3)), in gênerai However,
the mappmg et »-» F (CL, JJL ) is locally Lipschitz continuous and we are able to
employ methods of nondifferentiable optimization

Re mark 4 1 The nondifferentiably of (4 3) is caused by the type of finite
éléments used When we use C1 éléments for discretization of (^(a, v))
and C° éléments for approximation of functions from Q(a\ the problem
remams differentiable but becomes very complicated and very large D

Now let us assume that the objective functional / is quadratic, for
example Therefore, lts discretization is given by a quadratic function,
determined by a symmetrie, positive definite matrix Ao = A0(a) (for the sake
of simphcity, we assume that the linear and absolute term are equal to zero)
Again, the mappmg OH->A0(CL) IS generally nondifferentiable Let
M = M ( a ) b e a matnx realizmg the penalty intégral (the exact définition will
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be given below). The matrix form E£(a, |x) of the functional E£(aH, fxh) is
given by

E,(o,|ji) = i ( u ,Aou) + =Ï-(u IAfu), (4.5)

where u solves (4.1), the symbol (, ) stands for the scalar product in

corresponding vector spaces and the problem (P)ek reads now as follows :

jFind ( a * , j i * ) e U x Q ( a * ) such that (4 6)

lEÊ(a*,|jL*)^Ee(a?fJL) V (a, |ut) e U x Q(a) ,

where U x Q ( a ) i s a subset of M 1 + , isometrically isomorphic with
^ x 6 { d l ^ / / ) b y ( 4 . 2 ) .

The mapping (ot, jx ) i-> F (a, |x ) is locally Lipschitz continuous over
U x Q(ot) and directionally differentiable, in gênerai. Therefore, there is a
chance for a successfull implementation of some nondifferentiable optimi-
zation (NDO) method for the solution of (4.6). Such methods require
computation of at least one vector (subgradient) f e 6EÊ(ot, jjt) of the
generalized gradient of Ee, at any point (a, p,). Hère and in what follows,
dG(xQ) dénotes the generalized gradient of G at x0 (see e.g. [3]) and
VG(x0) dénotes the gradient of G at x0. As usual, VxG(xl9 . . . , xn) means the
gradient of G with respect to xrvariable.

In our case, the subgradient £ can be computed by Proposition 1.3 from
[6] : If Ee is continuously differentiable as a function of u, A is a regular
matrix and the mapping (ot, |x ) *-> F (ot, §JL ) is locally lipschitz continuous (ail
these assumptions are fulfilled) then Ee is locally Lipschitz continuous as the
implicit function of (ex, ft ) and

(3aF (a, M-X P) + \ ("> 9*Ao(«) u) + - (3aF (a, |i), q) +
ZJ S

+ — (u, V a M(a)u)c 9aEe(a, »JU). (4.7)

(V^F (a, |JLX P) + \ (V^F (a, fx), q) e B^E^a, | i) , (4.8)

where p, q solve the adjoint équations

Ap = Ao u , Aq = Mu . (4.9)

If we assume that Ao does not depend on a (as in [9]), the formula (4.7)
becomes more simple :

( 3 ^ (a, |i), p) + ^ (3aF(a,jJi),q) +

+ ^ ( u , VaM(a)u)c=aaEÊ(c t, |JL), (4.7a)
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Thus, computing of a subgradient f e 3E£ requires

(i) solving of the adjoint équations (4 9) with the matrix A which is
independent of (<*, JJI ) and which has been factonzed at the beginning of the
computation once for all ,

(n) computation of a subgradient from 9aF (a, |JL ) and the gradients
V^F (ot, IJL) and VJlf (a)

The latter will be the subject of the rest of this section
To this end, let us assume that the triangulation 75 is constructed as

follows first we divide Û mto rectangles

RtJ = 0 + x [/*,(/ + 1 ) * ] . k>0

and then each RtJ will be divided into two triangles We shall also assume
that nodes of the partition DH are given by a} = jk, j = 0, , N, i e , nodes
of 15 and vertices of aH e £/fd lie on the same lines, parallel with
;q-axe The triangulation 75 can be splitted mto two parts

(i) T>o contaimng triangles Tt cz 12 (aH) and Tt cz E {aH) ,

(ii) 75a// contaimng triangles « cutted » by aH, i e , lying partly m

O (aH) and partly in S

aH

aH

Figure 4 1

Some examples of triangles from 7Sâ  are depicted on figure 4 1
For a particular triangle Tt e ^aH, see figure 4 2, we shall show how one

can compute the element nght-hand side vector F1, the element matrix
Ml and corresponding gradients

The element nght-hand side vector is given as the sum of intégrais of the
type

l Pj dx , (4 10)
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h b2 (j + l)k

Figure 4.2.

or

where

T] =

£ = 1 , 2 = 1 , 2 , 3 , / = 1, 2 (4.10)'

3{aH)

and (p} are the (linear) basis functions corresponding to nodes 1 ,2 ,3 (or their
derivatives — this case is trivial). Suppose that w is constant on
Tt. Then for <p = <pp j fixed, the intégral (4.10) can be computed either as

for * =

or as

forifc =

where <pJ are values of <p at points 1, 2, 3, 4, 5, the cartesian coordinates of
which are (x^\ x^). The values <pJ, vol (Tf) depend on è l9 è2, e.g.

1 ((j + Dh-brfh
meas (Jf) =4 2 (b2-b1 + h)
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(here we suppose that h = ky for simplicity) ; other formulae are similar.
Once one has these formulae, the computation of corresponding gradients
will be obvious.

The element matrix Ml is defined as a mass matrix of the segment
r (4) (5)-| •
\x2 , x2 J, ï.e.,

45)-44) /2
M' = 2 / ^

(2 1\
U 2) '6

the « element » penalty part of EE as

(M4, u5)M
l(u4,u5)

T. (4.11)

As M4, u5 dépends on uu u2, w3 and bl9 b2 and x^4\ x^5) dépends on
bu b2, (4.10) can be written as

(ui, u2, M3)M l(ux , u2, u3)
T

with Ml depending on^1? b2. Once we have the formulae for the éléments of

M\ we shall be able to compute the corresponding gradients easily.

5. NUMERICAL EXAMPLE

In this section we shall demonstrate the capability of the presented method
on a simple one-dimensional model example introduced in Example 4.1. For
the sake of simplicity, we shall use linear, nondifferentiable cost functional
and penalty term. In fact, this approach is not quite correct from the
theoretical point of wiev, because the inclusion (4.7) no longer hold.
Nevertheless, in this simple example, the method as well as the used NDO
algorithm work very satisfactorily.

Example 5.1 : Let the state problem be given as in Example 4.1 with
ƒ = 0.1. lts solution û(v) is approximated by means of piecewise linear
functions over an equidistant partition Dh of [0, 1] and the variable right-
hand side by piecewise constant functions over the same partition
Dh. Let U = [0.55, 0.75 ], Q = {w e UN | - 1 ̂  wt ^ 1}, N = l//z. The
discretized cost functional reads as

where ^ = - 0.05 (x - 0.31 f + 0.004805 is the exact solution of (4.4) for
V = HQ((0, 0.62)), uc is the c-th component of the vector u, i.e., the value of
the approximate solution of (4.4) at a node x^ e Dhi lying in interval
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Figure 5.1.

[0, 0.62], i//c = ij/(x{c)) and ua is obtained by linear interpolation of u from
the nodes neighbouring to a. Thus we can expect the optimal value of a to be
<*oPt = O-62 and the optimal value of E to be Eopt = 0. We have computed this
example for two values of the discretization parameter h = 1/10 and
h = 1/100 by the NDO code BT [8], The values of aopt, Eopt are given in
Table 1. Figures 5.1 and 5.2 show the final values of the design variables a,
the « additional » right-hand side w, as well as the solutions of the state
problems.

Figure 5.2.
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Table l

h

1/10
1/100

c

4
31

aopt

0 619836
0 619952

Eo p t

0 4 x 10-6

0 1 x 10 5

APPENDIX

Notation wül be the same as before Let O , v) e £/ad x Q(a) In
Section 2 we have introduced the followmg problem

[Find ù == u(v ) G V such that

| (Vw, V<p)n = [i>, <p]a V<p eV

The aim of this Appendix is to prove

PROPOSITION A 1 For any a G £/ad, there exists v e Q(a) such that
^(^)\n(a) ls tne solutlon of (&(a)\ 1 e , the solution of the homogeneous
Dirichlet boundary value problem on f2 (a )

Proof Let ux eVl(a) be the solution of ( ^ O ) )

As ƒ G L2(f2 (a )), the normal denvative —- G H~ m(F(a )) and the follow-

3/7

ing Green's formula holds

[ Bu, 1
~dn~' ^ J

for any <p G V (a) = {y e// J(/2 (a ))|y = 0 on 9/2 (a ) \ r ( a ) } The symbol

[, ] stands for the correspondmg duality painng Let g = on

jT(a ), î e ,
[g, <p ] = (ƒ, (p )f2(a) ~ (v'Mx, VÇ? )/2(a) V ^ e V ( ( ï ) (A 2)

Let w2 G Hx
0(S(a )) be fixed and y G V2(a ) The family {S{a ), a e Uâd}

has a uniform extension property, ï e , there exists a contmuous extension
mappmg TT from S (a) on /2(a), the norm of which does not depend on
a G t/ad It is easy to see that the formula

<p ) S ( a ) - [g, cp G
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defines the linear, continuons functional on V2(a), i-e., there exists
v2 e V2{<x ) such that

(v2, <p)a^ (Vw2, V<p ) S { a ) - \g9 w<p] . (A.3)

Moreover,

INI..a*
c<ll«2llvl(a>

 + ||/||â) ( | | / | |^ \\f\\û(ù)) (AA)

with a constant c > 0, which does not depend on a. From (A.2) and (A.3) we
see that

(Vttlf V O r ? ) ) û ( a ) + (VK2, Vç>)S ( a )= (ƒ, V9)ù{a)+ (v2, <p)a (A.5)

holds for any <p e F 2 ( a ). As [g, <p ] = 0 for any >̂ e H\(O (a )), (A.5) holds

for any ^ E V . Let

{ ! on O (a )

Then (A.5) is equivalent to

V^),2 = p , <p]a V ^ i / , (A.6)

where

P, 9L = ( f^) /3 ( ö )+(^^)a , <P G y . a

Remark AJ : In fact, we proved more, namely : for any u B Vl(a) being
the solution of {ëP{a)\ there exists veQ(a) such that the solution
ü(v) of (£F(<2, v)) coiiiuides with u on O {a).

REFERENCES

[1] C. ATAMIAN, G. V. DINH, R. GLOWINSKI, JIWEN HE and J. PERIAUX, 1991, On
some imbedding methods applied to fluid dynamics and electro-magnetics,
computer methods in applied mechanics and engineering, 91, 1271-1299.

[2] D. BEGIS and R. GLOWINSKI, 1975, Application de la méthode des éléments finis
à l'approximation d'un problème de domaine optimal. Méthodes de résolution des
problèmes approchés, Appl. Math., 2, 130-169.

[3] F. H. CLARKE, 1983, Optimization and Nonsmooth Analysis, J. Wiley Se Sons,
New York.

vol. 27, n° 2, 1993



182 J. HASLINGER, K.-H. HOFFMANN, M. KOCVARA

[4] J. HASUNGER and P. NEITTAANMÂKI, 1988, Finite Elément Approximation of
Optimal Shape Design : Theory and Applications, J. Wiley & Sons, Chichester-
New York-Brisbane-Toronto-Singapore.

[5] J. NECAS, 1967, Les Méthodes Directes en Théorie des Equations Elliptiques,
Masson, Paris.

[6] J. V. OUTRATA and Z. SCHINDLER, 1986, On using of bundle methods in
nondifferentiable optimal control problems. Prob. Contr. Inf Theory, 15, 275-
286.

[7] O. PIRONNEAU, 1984, Optimal Shape Design for Elliptic Systems, Springer
séries in Computational Physics, Springer-Verlag, New York.

[8] H. SCHRAMM and J. ZOWE, 1988, A combination of the bundle approach and the

trust région concept, Mathematical Research, 45, Akademie-Verlag, Berlin.

[9] D. TIBA, P. NEITTAANMÂKI and R. MÂKINEN, 1991, Controllabihu t\pe

properties for elliptic Systems and applications. To appear in Proceedings of the
« International Conférence on Control and Estimation of Distributed Parameter
Systems », Birkhauser-Verlag.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis


