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MATHEMATICA!. MODELUNG AND NUMERICAt ANALYSIS
MOOÉUSATTOH MATHÉMATIQUE I T ANALYSE NUMÉRIQUE

(Vol 26, n° 7, 1992, p 893 à 912)

RESOLUTION OF A FIXED POINT PROBLEM
BY AN INCREMENTAL METHOD AND APPLICATION

IN NONLINEAR ELASTICITY (*)

by R. NZENGWA (*)

Commumcated by P G CIARLET

Abstract — In this paper, we solve a fixed point problem by proving that the solution is the
value at the point 1 of the solution of an appropnate ordinary differential équation This
approach is applied m nonlmear elasticity to the pure traction boundary-value problem with
live lood An incrémental method is then used in approximating the solution The number of
successive linearizations is considerably reduced as compared to that used in [19]

Résumé — Dans cet article, nous résolvons un problème de point fixe en montrant que la
solution est la valeur au point 1 de la solution d'une équation différentielle appropriée Cette
approche est alors appliquée en élasticité non linéaire au problème de traction pure avec charge
vive La solution est approchée par une méthode incrémentale Le nombre de linéarisations
successives est considérablement réduit comparativement à la méthode présentée dans [19]

NOTATIONS

We shall use the followmg notations

: a smooth bounded domain in U3,
: the closure of a set B,
: the boundary of 12,

; usual partial derivatives,

: unit outer normal vector to the boundary of a
domam,

A = (AtJ ) : matrix with element Al} {i = row index, j = column
index),

n
B

r

«M :

V =

3

= dtU

(*) Manuscript received July 1991
C) Département de Génie Civil, École Nationale Supérieure Polytechnique, B P. 8390,

Yaoundé, Cameroun
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894 R NZENGWA

gradient of a mapping $ : O ç IR3 -• R3,
set of all matrices of order 3,
set of skew-symmetric matrices of order 3,
set of symmetrie matrices of order 3,
set of positive orthogonal matrices,
first Piola-Kirchhoff stress,
divergence of a tensor field T : fl e IR3 -> F

= (Wn-JP(i2 ))3 for some integer w ^ 0 and p ^ 1,

i i
m-- , p / m--,p

p ^ w p (

skew
sym
O\
I
divT =

,p \ 3

(Dj ,
0) = O, Y

4= ^ + 1"?'P, J 6+ f 1 = 0 ,

I — (è, l ) a loading operator,

k(l ) = è ® * + z<g)xeM3,
Ja Jr ~

Lp= {/ e L,*(Z) e sym},

Skew = {/ e L, k(l) e skew},

0', 0" : first and second Frechet derivatives of an operator 0 : X -• 7,
0'(jt) e L(X, F), 6>"(x) G L2(X, 7), X and 7 being two normed
vector spaces,

|| . || : norm s of vectors in the different spaces or norm s of operators.
We shall use the repeated index convention and dénote by C, any constant

which is independent of the various functions found in a given inequality.

INTRODUCTION

Solutions to an important class of nonlinear équations are obtained via the
fixed point theorem. The solution x satisfies an équation of the form

x= iff(x). (0.1)

The séquence xn + l = iff (xn), n — 0, 1, ..., TV tends to x as TV -• oo. Each term
xn of the above séquence is the solution of a nonlinear équation which can be
solved by an M-step incrémental method [19], [5] if <Apossesses the adequate
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INCREMENTAL METHOD IN NONLINEAR ELASTICITY 895

properties. In this case MN linearizations are necessary. This number may be
very important and the approximation very expensive.

In this paper we study the case where

tf, = G- l o F (0.2)

for some nonlinear operators G and F. The solution then satisfies the
équation

G(x) = F(x). (0.3)

Under some hypotheses which will be specified in Section 1, we consider the
problem of finding a curve (x(y\ y(A )) such that

G(x(A))-Ay(A) = 0 (0.4)

F(x(A)) -y(A) = 0 (0.5)

for A e [0, AM]. The curve (JC(A ), v(A )) is the solution of the differential
équation

( 0 6 )

(0.7)

It is shown that AM = 1 and one has

G(x(l)) = F (x ( l ) ) . (0.8)

It suffices therefore to apply to the differential équations (0.6)-(0.7), Euler's
approximation which is nothing but the incrémental method. The number of
linearizations is therefore reduced to M instead of MN.

Solutions to the successive linear problems obtained in the Euler's scheme
can be computed easily if the matrix on the left of (0.6) is well conditioned
(for example has a dominant diagonal). This shows the importance of the
operator G. These conditions also hold even if G' — I (G(x) = x - x0). In
this case the norm of the operator F ' = $ ' must be bounded by 0.5 as shown
further in relation (1.35). This leads to a greater restriction on the class of
operators ^ unlike the case where F' ^ I may give a greater bound.

In Section 1 we specify conditions on the operators G ajid F and prove the
existence of an intégral curve (x(A ), y(A )) for A e [0, 1 ].

vol. 26, n° 1, 1992



896 R NZENGWA

In Section 2 we consider the traction boundary-value problem in nonhnear
elasticity with live load descnbed by the équations

-diy f =

Tv = T{$) on T , (0 10)

detV<£>0 in Ö , (0 11)

T(x) = q(x, ?£(*)), (0 12)

a ( j c , A ) Ë i i x M 3 ^ y 3 , (0 13)

f i?(<£) + f l
Ja Jr

(0 14)

The constitutive law q of the first Piola-Kirchhoff stress tensor T satisfies the

pnnciple of mateiial frame-indifference,

Q(x, QA) = Qq(x, A)9 Qe O\ (0 15)

Assuming the constitutive law i s a C œ matnx-valued function, the problem
is equivalent to finding in a neighborhood of $ = id, the solution of the
équation

ê ( é ) = ( - d i y a ( . , ¥ $ { . ) ) ) , q { . , Y < è K - ) z ) = U é ) ( 0 1 6 )

where the nonhnear operators 9 and ! map the function space Wm + 2 p into
L for some integer m s* 0 and p > 3

In [19], R Nzengwa proved the existence of a solution, via the fixed point
theorem provided the loading operator l_ is Lipschitz-continuous, L(id) =

l0 IS a load in Le without axis of equihbrium and det k([0) > 0 Approxima-
tion consisted in solving using incrémental methods the séquence of dead
load traction boundary-value problem

«(*») = I ( * « - i ) = 6«-i (0 17)

A solution of the dead load problem consists in finding the rotation
QQe) such that

j = G(/.)K(*f*eN, le = R(hfh (0 18)

where N is the image of 0, ö is the restriction of 0 in Csym,

Rib) = k(h)[k(h)Tk{h)Ym , (0 19)

M2 AN Modélisation mathématique et Analyse numérique
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INCREMENTAL METHOD IN NONUNEAR ELASTICITY 897

and by solving

! ( ? ) = (• (0.20)

The solution <j> is

$ =RQT <p . (0.21)

The existence of this solution is essentially based on Chillingworth-
Marsden-Wan's approach which considers the load /e as an argument [16].

The rotation Q and the solution <p are computed respectively by an M-step
incrémental method [19]. Therefore the necessary number of linearizations is
2 M for each <£ n of the séquence and 2 NM when N terms are considered.

In [19] it was also proved that one has

UN-é\\*C {N+
A

1} (0.22)

where <j>N is the approximation computed by an incrémental method. One
concludes that convergence of the method is guaranteed only if M >
N + l. Therefore at least 2 7V3 linearizations are needed to obtain a

— 1 error estimate.
The novelty in this paper is to consider the load le and the rotation

Q(ie) as arguments and to approximate simultaneously le, Qile) and
<p in order to calculate the fixed point

<j> = R Q T <p . (0.23)

We obtain this resuit by considering a differential équation on (Q,
<Pi Le)- We prove that the solution is defined in [0, 1]. Euler's method is then
applied to approximate the solution.

In order to make this paper self-contained we shall recall without further
proofs some results in [19].

1. APPROXIMATION OF A FIXED POINT

We consider two Banach spaces X and Y and three operators i// :
X -» X, G : X -• Y and F : X -• Y. We suppose that in a bounded neighbor-
hood of a point XOJ a bail B (JC0, p ) for example, there exists a fixed point for
the operator \\f. We next suppose that G is a diffeomorphism in B (x0, p ) such
that

^ = G ~ 1 o F . (1.1)

vol. 26, n° 7, 1992



898 R NZENGWA

Then if x is the fixed point of ̂ ,

x = * ( j c ) (1.2)

is equivalent to

G(x) = F(x). (1.3)

The usual method for solving équation (1.2) consists in considering the
séquence (xn\ n = 1, ..., N

and by approximating each xn by an M-step incrémental method as defined in
[5]. One has to compute NM successive linearizations if N terms are
considered. In order to reduce the number of linearizations we prove, under
hypotheses which will be specified below, that there exists a curve
x(A ), A G [0, 1] which is the solution of an appropriate differential
équation, and

x(l) = x. (1.5)

We begin by pro ving some theorems which will be useful in the sequel.

THEOREM 1 : Let the operator G be twice differentiable between the
spaces X and Y (G e C2(X, Y)) and have locally bounded derivatives. We
assume G'(x0) is an isomorphism, (G'(x0) e /som(X, Y)). Then there exist
positive real numbers p, yp and Lp such that

Gf(x) is invertible in the bail B(x0, p), (1.6)

\ \ { G ' ( x ) } - l \ \ ^ y p , (1.7)

and

Proof : We deduce from the mean-value theorem that in a bail
B C*o> P )> P >• 0 there exists x such that

G'(x) - G'(x0) = GWOC)(JC - xö). (1.9)

ant Mp > 0 such that

G'(x)-G'(xo)\\ ^PMP. (1.10)

Then there exists a constant Mp > 0 such that

We al s o have

G'Cx) = G'(*„)(ƒ-G'Otor1 (G'(xo)-G'(*))). (1.11)

M2 AN Modélisation mathématique et Analyse numénque
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INCREMENTAL METHOD IN NONLINEAR ELASTICITY 8 9 9

Let

r o = ll^'Cxo)-1!! - d - 1 2 )
Then there exists a number p0 > 0 such that

< l (1.13)

since the function pMp is non decreasing in [0, + oo ). It follows from (1.9)-
(1.11) that G'(x) is invertible for each x e B(x0, p), p «= p 0 and one has

(1.14)

We deduce that

WG'(xyl\\ < i y-h = r P < + oo . (1.15)
1 - pMp r 0

 p

We can also write

rr(y)~l (1.16)

and deduce from (1.15) and the mean-value theorem the existence of
Lp > 0 such that

l\\ *Lp\\x-y\\ . • (1.17)

THEOREM 2 : Lef Aj(x) a«^ A2(y) be such that A — (Au A2) be an
isomorphism between X x Y and Y xY for each (x, y) e B(x0, px) x
B(y0, p2). Let the operator B = (5^,62) ö

in B(x0, PO x fl(yOf p 2 ) , w/tere

r(p l f P 2)= sup I IA- 1 ^,} ' ) ! ! , (1.19)

f/ze operator A + B is also an isomorphism for each (JC, y ) in
B(xOf px) xB(y0, p2).

Proof : It suffices to write

A+5 =A(I +A~lB) (1.20)

and deduce from (1.18) that (ƒ + A~l B) is invertible. •

vol. 26, n° 7, 1992



900 R. N2ENGWA

THEOREM 3 : We consider the family of operators

Â(À) = A(À) + J?(À), A e [0,1] (1.21)

where each operator A(X) satisfies the conditions of theorem 2 and

\ \ B ( A ) \ \ ^ - L , r P = sup | |CAr* I I •
JP (A,x ,y)e [0, l)xB(Xo,yo, p)

Then A (A ) is an isomorphism between X x Y and Y x Y for each
A e [0, 1]. •

THEOREM 4 : Let the operator A (A, JC, y) = A (A, x, y ) + B (A, x, y) satis-
fy the conditions of theorem 3, in the bail B(x0, Pi) x B(y0, p2) for each
A e [0, 1 ]. Then the solution to the differential équation

j t =Â(A,X)- 1 ( / (A,X)) (1.23)

X(0) = Xo (1.24)

X=(x,y) (1.25)

is definedfor ail A e [0, 1 ] if f (A, X) # 0, locally Lipschitz-continuous and

l p=min(p,,p2) . (1.26)

Proof : We consider the autonomous differentiai équation associated to
(1.23M1.25)

^ = Â ( A , X ) - 1 ( / (A,X)) (1.27)
as
Q- = 1 (1.28)
ds

X(0) - X o , A(0) = 0 . (L29)

The vector field

V ( À , X ) = ( I C A , ^ ) - 1 (f(A,X)), 1) (1.30)

is Lipschitz-continuous in the bail B(xQi p{) x B(y0, p2) x [0, 1]. The
existence and uniqueness of a maximal solution of the differential équation
for 0 «s A as AM is classical (see [9]). But one deduces from (1.26) that

M)~X0\\^p (1.3D

and consequently a maximal solution is global, therefore defined for ail
0*s A *s 1. •

M2 AN Modélisation mathématique et Analyse numérique
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We now consider the équation (1.3) and suppose the operator G satisfies in
a neighborhood of x0 the conditions of theorem 1. Then there exists a bail
B(x0, Po) m which G'(x) is an isomorphism for each x. We suppose F is
twice differentiable and has ail its derivatives bounded in this bail.

THEOREM 5 : Let G satisfy the hypotheses of theorem 1 in the bail
H (Y n \ -î O
D \XQ, P i )•) l . C ,

sup HG'Oc)-1!! *=yPi (1.32)
> P 1 )

and

Gr(x0) = 0 . (1.33)

Let Bx(x) = F'(x) be such that

f3 = sup \\Bx(x)\\ (1.34)
XEB(X0, P l )

and

P^ î — j . (1.35)

Let

r ~ " x ^ A l (1.36)

a= sup \\A~lB\\ (1.37)
e [0, 1]

and

P2 = sup ||F(x)||<min (P I , Pi / ~ " ) • (1.38)

Then there exists a curve x(À ), 0 =s A ̂  1 such that

G(x(l)) = F(;t(l)) (1.39)

and x(l ) is the fixed point.

Proof : It cornes from theorem 1 that A is invertible in the bail
B (x0, p x ) for A e [0, 1 ] and one has

sup \\A-l\\^yPi+\ . (1.40)

xeB(x0, pj), A e [0, 1]

vol. 26, n° 7, 1992



902 R. NZENGWA

Then using (1.35) we deduce that Â = A + B is invertible and

y _j_ 1

sup \\A-l\\^-^ . (1.41)
" " 1 — a

xeB(xo,PlX A e [0, 1]

We can therefore consider the solution of the differential équation

O ^ A ^ l (1.42)

X = (x, y), X(0) = (x0, F (x0)), (1.43)

which is well defined in [0, 1] x B(x0, px) x #(jo> P2) an(^ n a s a global
solution because of (1.38) according to theorems 3, and 4. Then one has

, dy

consequently

) = 0 , (1.45)

= 0 . (1.46)

Therefore for each A in [0, 1] one has

G(je(A))-Ay(A) = G(je(0)) = 0 , (1.47)

F ( j c ( A ) ) - y ( A ) = 0 , (1.48)

and finally

• (1.49)
We can therefore approximate the point x = x ( l ) by applying Euler's

method on the differential équation (1.42)-(1.43). The fixed point x is
approximated by an N-step incrémental method as follows : let there be given
a regular partition

0 = A ° < A 1 < . . . < A W = 1

of the interval [0, 1], i.e.,

A« + 1 - A " = l . (1.50)

M2 AN Modélisation mathématique et Analyse numénque
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INCREMENTAL METHOD IN NONLINEAR ELASTICITY 903

Welet

x° = x0 and y° = y0, (1.51)

then assuming x" and yn known, we solve the linear problem

and compute the (n + l)-st approximate term xrt + 1, yn + l by

x« + l = xn + ôxn , yn + l =yn+ôyn. (1.53)

The approximate fixed point is

xN=xN. (1.54)

One has

I l j c - ^ H * ^ (1.55)

for a certain constant C. Therefore we only have to compute N successive

linearizations to have a 01 — ) error estimate.
V N )

We shall apply this approach to the live load traction boundary-value
problem in nonlinear elasticity.

2. THE PURE TRACTION BOUNDARY VALUE PROBLEM WITH LIVE LOAD

The problem is described by the équations :

-div T=b(<£) in n , (2.1)

Tv = lié) on F , (2.2)
det V(J>0 in 12 , (2.3)

T(x) = q(x, V^(x)), (2.4)

a : (x, F ) e n x M3 - Ml3 (2.5)

and

f f = 0. (2.6)f £(<£)+ f r
J/2 Jr

In the above équations we assume the following hypotheses on the datas as in
[19],

vol. 26, n° 7, 1992



904 R. NZENGWA

• The constitutive law of the first Piola-Kirchhoff tensor T, defined by

a : Ö x M3 -> M3 is of classC™ , (2.7)

• the principe of material frame indifférence is satisfied i.e.

QiQF ) = Qq(F ), for Q in O\ , (2.8)

• the référence configuration is a natura! state, i.e.

g(/) = 0, (2.9)

• letting Ç = dAq (I ), there exists a real number /3 >- 0 such that

Cljklel}ekl^p el3ekl (2.10)

where e = (etJ ) is a symmetrie matrix. •

In hypotheses (2.8)-(2.10) we have volontarily omitted the dependence on
x. From these hypotheses we deduce that the équations (2.1)-(2.6) are
equivalent to sol ving in a neighborhood of id the équation

= U<è) (2.11)

where the nonlinear operators 6 and L are defined by

ö : < £ e W " + 2 ^ ( - d i v g ( . , ¥ £ ( . ) ) , „ 1 0 ,
"-* (2.12)

( Y 4 ( ) ) ) L
r ( « ) ) e L (2.13)

for some integer m^O and real number p > 3. The above spaces have been
defined in the notations. The nonlinear operator ö is a well defined
C°° mapping because of hypothesis (2.7) and all its derivatives are bounded
[13], [26]. We deduce from (2.8) that

(2.14)

and from (2.9) that

0(id) = 0. (2.15)

In order to eliminate indéterminations due to rigid body motions we restrict
the operator to the set Csym. We therefore consider the second operator

Q:<peCsym^0(<p)eL (2.16)

M2 AN Modélisation mathématique et Analyse numérique
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whose derivative at id is

ê'(id):veÇsym^ (- diy C e (v), Ç e (v) v) e Le , (2.17)

2ev(g)=(»1 > y + o, i7). (2.18)

It is a classical resuit in linear elasticity, because of the strong ellipticity

(2.10) [24], [6] that Q'(id) is an isomorphism between Çsym and Le and

consequently in a neighborhood of id the image of 0 is a C00 submanifold N

in L [12], [6]. This submanifold is in f act the graph of the function

G : / e e U <=Le->nê{ne g } " 1 (/,) e Skew , (2.19)

where U is a neighborhood of O in Le, say a bail 5(O, p0) for simplicity, 77
and 77e are the canonical projections of L onto Skew and Le respectively [19].
One als o has

G(O) = 0 and G'(O) = 0 . (2.20)

It is clear that there exists a neighborhood B (id, p0) of id in Csym in which
the operator

is a diffeomorphism.
Let j lies in N, then

f = gJ1(£e). L = tfe( (2.22)

satisfies

g ( f ) = I (2.23)

and is therefore the solution to the pure traction boundary-value problem with
the dead load /.

Let us recall the following définition. A load { in Le is without axis of
equilibrium if the following equivalent conditions are satisfied

det (*( /)- t r / fc( /) / )#O (2.24)

or the mapping

w e Skew -* k(l) w + wk([) e Skew (2.25)

is an isomorphism.

vol. 26, n° 7, 1992



906 R. NZENGWA

This équivalence has been established in [6], Let /0 = / (ld) E U <r Le be
without axis of equilibrium, the following results have been proved in [6],
[19]:

there exists a neighborhood of j 0 , O0 cz U = B (0, P ) in which for each
load l 6 ö 0 there exists a unique rotation Q in a neighborhood Vj of I in
O\ such that Ql e N. The rotation Q is the value at the point 1 of the implicit
équation

# ( A , Ö ( A ) , i ) = 0, O ^ A ^ l , 0 ( 0 ) = / (2.26)

H: (A, Ö, D e [0, l]xOl * he -> 77g/ - -G(\neQlJ E Skew . (2.27)
A

Letting

g = exp w , g E Vj and <o E VO (2.28)

where Vo = B (0, a ) is a neighborhood of the matrix 0 in skew, the implicit
équation is defined by the function

//(À, <o, / ) = 7/(A, expw, / ) , (2.29)

which is such that

— (A, w, / ) is an isomorphism for
OW

(A, w, ije [0, 1 ] X V 0 X O 0 . (2.30)

Therefore for each load l E O0, there exists a rotation Q(l) = exp w(l ) such
that Q(l) l E N, where w (A ) is the solution of the implicit équation

//(À, <u(A), / ) = 0 , O ^ A ^ l , Û>(0) = 0 . (2.31)

A solution to the traction problem then satisfies the équation

èe(<p) = neexpw(l)l (2.32)

or equivalently

(l)Z . (2.33)

In [19], the rotation Q = exp w(l) and the solution <p were computed
separately by applying incrémental methods on the implicit équation (2.31)
and next to a differential équation equivalent to (2.32) in which the rotation
Q = exp w ( l ) was replaced by its approximated value.

M2 AN Modélisation mathématique et Analyse numérique
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INCREMENTAL METHOD IN NONLINEAR ELASTICITY 907

In the present approach we consider simultaneously the équation

H(\, w, Z) = 0 ,

0 e (ç(A))-Ai7 e expw(A)/ = 0 ,

w(0) = 0 , <p (0) = id , O s A s l .

For a live load l_ we consider the équations

#(A, w(A), /(A)) = 0

Öe(? (A )) - Ane exp w(A ) / (A ) = 0

l ( ç (A) ) - expw(A) / (A) = 0

w ( 0 ) = 0 , l(0)= lo = L(id),

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

9(0) = id9 0=s=A=sl. (2.40)

It is clear from (2.14), (2.15), (2.32) and (2.33) that if a curve (w(A),
?(A), 1(A)), O^A ^ 1 is the solution of the équation (2.37)-(2.40), then
necessary <p(l) is a solution of the problem

(2.41)

In order to prove the existence of an intégral curve to (2.37)-(2.40) we
assume the following hypotheses on the loading operator /..

We assume that the loading operator i is at least Cl with V Lipschitz-
continuous in B(id, p0) and /0 = l(id) is a load in O0 without axis of
equilibrium.

If an intégral curve (w (A ), <p (A ), / (A )) exists for 0 ^ A =s A m, then it is at
least C1 and satisfies the équations

Ô'AÇ ) JÏ - ne exp w/(A ) - A exp' w ^ / (À ) -

dl
- A/7eexpvt>—= 0 (2.43)

b A

- ^ = 0 (2.44)

vol. 26, n° 7, 1992
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Using (2.20), we consider a second order Taylor expansion of H,

H(A, w, ƒ) = /7expvW-^G"(0)(i7 eexpw/)2 +A2r(w, /) (2.46)

and define

0

0

o 77exp

- exp w

(2.47)

O O - AG"(0)(/7eexpvW, 77 e expw( . )) + •

- A e x p ' w ( . ) / O O
- exp' w ( . ) l V O

/)

(2.48)

, X) = | - (2.49)

where

X= ( w , ç , / ) • (2.50)

The operator A, B and F are defined in Vo x B(id, pQ) x OQ. Let us recall
ei ff

that in this domain — , 6„ and exp w are all isomorphisms for each
dw ~

A G [0, 1]. It is easy to conclude that A(À,X) is invertible for all
(A,X)e [0, l ] x K 0 x B ( 4 P o ) x 0 0 , V 0 = fi(0, a ), ö 0 = 5(/0 , j8 '). Let

y(a f po.

There exists a constant C such that

and

sup

HF(\,X)\\*C\\L\\.

(2.51)

(2.52)

(2.53)
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We can choose the neighborhood U = B (0, (3 ), (O0 = B ( ƒ 0, /3 ' ) c U ) such
that

p =min (a, p0, 0 r ) . (2.54)

We assume the loading operator is such that

C £ + | | l ' | | < y - 1 < a , P o . 0 ' ) . (2.55)

It is clear that F(A, X) # 0 in B(0, a ) xB(id> p0) x _ N!W, ,_ ,.
We can now prove the existence of a solution to the pure traction

boundary-value problem with a live load.

THEOREM 6 : Under the additional hypotheses (2.54) and (2.55), the pure
traction boundary-value problem (2.11) has at least one solution.

Proof : It suffices to prove the existence of an intégral curve defined in
[0, 1 ] for équations (2.37)-(2.40) or equivalently a solution to the differential
équation

[A(A, X) + £(A, X)] ~ = F (A, X), (2.56)
dk

X(0)= (0 f id f io)-

The operator A (A, X) and B(A, X) satisfy the conditions of theorems 3 and
4. We also deduce from (2.54)-(2,55) that the operator F (À, X) satisfies the
condition in theorem 4.

Consequently the existence of an intégral curve in [0, 1 ] is guaranteed and
équation (2.41) is satisfied. We have thus proved the existence of a solution
of (2.11)inÇsym. •

We can therefore apply Euler's method to the differential équation

£ =Â(A7XT1 F(A,X), O ^ ^ ^ l (2,58)
as

X(0) = (w(0), g(0), /(0)) = (0, id, io), A (0) = 0 (2.60)

Â(A,X) = A(A,X) + B(A,X) (2.61)

for A, B and F defined respectively by (2.47), (2.48) and (2.49).
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Let the integer N be the number of steps and JC* = (wN, <pN, [N) the Af-th
approximate term, then the re exists a constant C such that

C l (2.62)

C ^ (2.63)

| | « c l . (2.64)

This result is classical.

Remark : Only N linearizations are necessary to obtain a 0 ( — j error

estimate. In [19], 2N3 linearizations were needed when N terms of the
séquence converging to the fixed point were considered. This considérable
gain is due to the fact that the loading operator l_ is assumed to be
C1 with a Lipschitz-continuous, V unlike in [19] where it was only assumed
to be Lipschitz-continuous.

Practically a second order truncated Taylor expansion

H2 = /7exp w l - y G"(0)(77e exp vW, Ue exp wij (2.65)

of H is préférable. Indeed unlike H, the expression of H2 is deduced from
linear elasticity and can be computed [18], [6]. In this case we still have the
same A (A, X). The expressions of B (A, X) and F (A, X) become simple and
siiil satisfy the conditioris of theorerns 3 and 4 which guarantee the existence
of an intégral curve X2(A ) = (w2(A ), <p2(*)> Lii*))* 0 «= A ̂  1.

An A -̂step incrémental method can still be applied to approximate
X2(l). The equivalent équations to (2.42)-(2.45) on the curve X2(A) are
obtained by substituting H2, w2, <p^ and l2 to H9 w, <p, l respectively. By

substracting both sets of équations and by using the mean-value theorem we
deduce easily that there exists a constant C such that

\\X2(l)-X(l)\\^C[T] (2.66)

where
[H = sup | | r ( w f / ) | | . (2.67)

(w, / ) € V0xO0

It therefore follows that if <p2 is the N-th approximate of <p2(l) and
g>(l) the real solution, then there exists a constant C such that

| | | | c l + m (2.68)

hence the smaller is [T], the better is the approximation.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



INCREMENTAL METHOD IN NONLINEAR ELASTICITY 911

We can therefore approximate équation (2.11) by an incrémental method

applied on équivalent équations to (2.58)-(2.53) obtained from the second

order truncated Taylor expansion H2.

In theorem 6 we proved the existence of a solution in Çsym to the pure
traction boundary-value problem with live load (2.11). In fact the solution is
also that of a pure traction problem with the dead load l_(<p (1 )). There exists
at least four solutions [6], each being deduced from the other by applying an
appropriate rotation. If we assume as in [20], [23] that the loading operator
L satisfies the condition

l(Q4) = QL(é), QeOl , (2.69)

then we can deduce ail the solutions of (2.11) from that of (2.41).
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