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A WAVELET BASED SPACE-TIME ADAPTIVE NUMERICAL METHOD
FOR PARTIAL DIFFERENTIAL EQUATIONS (*)

by E. BACRY (%), S. MALLAT (2) and G. PAPANICOLAOU (?)

Communicated by R TEMAM

Abstract — We describe a space and nme adaptive numerical method based on wavelet
orthonormal bases for solving partial differential equations The multiresolution structure of
wavelet orthonormal bases provides a simple way to adapt computational refinements to the
local regulanity of the solution [11] High resolution computations are performed only in
regions where singularities or sharp transitions occur For many evolution equations it is
necessary to adapt the time steps to the spatial resolution in order to maintain the stability and
precision of the numerical scheme We describe an algorithm that modifies the tme
discretization at each resolution, depending on the structure of the solution The stability of this
space-time adaptive scheme 1s studied for the heat equation and the linear advection equation
We also explain how this algorithm can be used to solve the one-dimensional Burgers equation
with periodic boundary conditions We present numerical results on the accuracy and
complexity of the algorithm

Résumé — Nous présentons un schéma numérique adaptatif en espace et en temps, utilisant
les bases orthonormales d’ ondelettes, pour la résolution d’ équations aux dérivées partielles La
structure de multirésolution sous-jacente aux bases orthonormales d ondelettes permet
d’auduper de fugun puriiculicr emeéni sunple 1 1 ésolution des calewls & la régularité lecale de la
solution Les calculs sont effectués avec une grande résolution uniquement dans les régions on
de fortes singularités apparaissent Pour beaucoup d’ équations d’ évolution, il faut adapter le
pas de temps a la résolution spatiale de facon a mainterir la stabilité et la précision du schéma
Nous présentons un schéma numérique qui, a chaque résolution, adapte le pas de temps a la
structure de la solution La stabilité de ce schéma adaptatif en espace et en temps est étudiée
pour I'équation de la chaleur pwuis pour I'équation d’advection Nous expliquons ensuite
comment ce schéma peut étre utilisé pour la résolution de I'équation de Burgers (en une
dimension) avec conditions aux limites périodiques Nous présentons enfin des résultats
numériques sur la précision et la complexité du schéma
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1. INTRODUCTION

Singulanties and sharp transitions in solutions of partial differential
equations model 1mportant physical phenomena such as beam focusing 1n
nonlinear optics, the formation of shock waves in compressible gas flow, the
formation of vortex sheets 1n high Reynolds number imncompressible flows,
etc A characternistic feature of such phenomena is that the complex behavior
occurs 1n a small region of space and intermittently in time This makes them
particularly hard to simulate numerically by solving the partial differential
equations with conventional numernical methods, prompting the development
of adaptive numerical methods In these methods most of the computational
effort 1s concentrated near regions where singularties or sharp transitions
occur We will study here a numerical method for solving partial differential
equations based on the wavelet transform, which 1s adaptive both in space
and time

Adaptive gnds have been studied extensively in numerical analysis
Adaptive finite element methods have been proposed by Brandt [7] for
elliptic problems, and developed by Bank [1] and others More recently,
Berger and Oliger [4] have studied and implemented an adaptive mesh
refiming method for hyperbolic partial differential equations which has been
successful 1n solving previously intractable problems [3] They use a
sequence of nested grids 1n space that are progressively finer An automatic
error estimation step determines locally whether the current resolution of the
numerical solution 1s sufficient or a finer gnd s necessary The madin
difficulty 1s finding stable and accurate difference approximations of the
differential operators at the interfaces between grids of different sizes

A non-orthogonal hierarchical basis method has been proposed by
Yserentant [18] to adapt the numerical computations to the local regulanty of
the solution Wavelets orthogonal bases are other examples of hierarchical
bases Liandrat and Tchamitchian [11] have shown that the multiresolution
structure of wavelet orthonormal bases 1s a simple and effective framework
for spatial adaptive algornithms Instead of refining the computations through
nested gnds of successively finer meshes, as in the algorithm of Berger and
Oliger [4], wavelet orthonormal bases implement adaptive refinement by
successively adding layers of « details » that mcrease the resolution of the
approximation locally Communication between the different layers of
details 1s regulated automatically by the orthogonality of the basis functions
The order of approximation of this spatial discretization depends upon the
wavelet that 1s used

In Section 2, we review briefly the construction of wavelet orthonormal
bases through multiresolution approximations In Section 3, we describe the
Liandrat-Tchamitchian spatial adaptive scheme for solving partial differential
equations For many evolution problems that are solved numerically with a
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space adaptive scheme, it is necessary to adapt the time discretization to the
spatial resolution. If we use a time step Az, it must be adapted to the highest
resolution that is encountered over the whole spatial domain, even if this
high resolution is maintained over a very small domain. If the spatial
resolution is refined locally, the time step Az must also be refined to maintain
the stability and accuracy of the numerical scheme. This means that a local
spatial refinement, even over a small domain, increases the global numerical
complexity quite substantially. To avoid this problem, Berger and Oliger [4]
have introduced local time steps that are adapted to the local mesh
refinements. For adaptive numerical methods based on wavelets, it is also
important to have a local time discretization. In this paper we present a new
algorithm that adapts the time discretization to the resolution parameter that
appears in a wavelet orthonormal basis. We describe this algorithm in
Section 4, first for the heat equation and then for the linear advection
equation. We have studied numerically the stability of the algorithm in these
two cases. In Section 5 we describe how this algorithm can be applied to the
Burgers equation and we present some numerical results.

2. MULTIRESOLUTION APPROXIMATIONS AND WAVELETS

Wavelet orthonormal bases were introduced by Meyer [14] and Stromberg
[16]. These bases are built from a single function ¢ (x) which is dilated and
translated on uniform grids. Let

b, =2 p@ ) (1)
and
Yy n@) = 4, —27 ). @

Then, for «certain functions ¢ (x), the sequence of functions
(¥, n(xX))n, ;y)ez? 1s an orthonormal basis in L’>(R). A good way to
understand the construction of wavelet orthonormal bases is through the
multiresolution analysis introduced by Meyer [14] and Mallat {13]. The
approximation of a function f (x) € L(R) at the resolution 2 is defined as
the orthogonal projection of f(x) on a space V, of a multiresolution
approximation.

DEFINITION : A multiresolution approximation of L*(R) is a sequence
(V)), ez of closed sub-spaces of L*(R) such that :

1. VjeZV, <V,

+

2. MV, = {0}

J=-w
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796 E. BACRY, S. MALLAT, G. PAPANICOLAOU

3. (M) V, =L*®)
j=—®
4. VfeL’R), VjeZ, f(x)eV, s f2x)eV,,,
5. There exists a function g(x) € V, such that the sequence (g(x — n)),c 2
is a Riesz basis of V.

It can be shown that for any multiresolution approximation there exists a
function ¢ € V,, called scaling function, such that if we denote

¢, () = V2 62 x) ©)
and
¢, ()= b,x—27" n), @)

then at any resolution 2/, the family of functions (¢, ,(x)),ez, i an
orthonormal basis of V,. Let us denote by PV] the orthogonal projection onto
V. Let f(x)e L?(R). The approximation of f(x) at the resolution
2 is the orthogonal projection of f(x) onto V, and thus given by

PVJf(x) = Z <f1 ¢j,n> ¢],n(x) s (5)

n=-—aw

where (, ) denotes the standard inner product in L?(R). Since V,_1c

'v'], each space Vj can be decomposed into

V,=V,_@®W,_,, (6)

where W, _ is the orthogonal complement of V, _, in V,. Let us denote by
PW] the orthogonal projection onto W,. From (6) we see that

Py fx)=Py f@)+Py  fx). (7

This relation indicates that an approximation at a resolution 2/ can be
decomposed into an approximation at a lower resolution 2 ~! plus the
« details » at the resolution 2/ which are given by PW]_1 f ).

It can be shown [14], [12] that for any multiresolution approximation there
exists a wavelet ¢ (x) such that the family of functions (¥, 2(X)) ez 15 an
orthonormal basis of W, at any resolution 2/. As a consequence of (6) and of
property 3 of the multiresolution definition, we have that

+©

LR)= @ W, )]

J=-0
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and all the spaces W, are mutually orthogonal. This implies that when the
resolution index j varies from — oo to + oo, the family of functions
(¥, n*))n, ;ye z2 18 an orthonormal basis of L2(R). Meyer [14] adapted
multiresolution approximations and wavelet orthonormal bases of L2(R) to
the space of functions in L2([0, 2“]) that are 2" periodic. We just need to
periodize each function ¢, , with the summation

G = 3 W, .x—p2h). )

p=-o

The resolution 2/ must be larger than the inverse of the period, which is equal
to 2”1, and the space V_ is the sub-space of functions in L2([0, 2*]) that are

constant. One can show that the family (t/?h,,)] =_L nez is an orthogonal

basis of the orthogonal complement of V_; in L?([0, 2¥]). These periodic
wavelets are particularly useful for problems with periodic boundary
conditions. Wavelets have also been adapted to deal with two-point
boundary value problems by Xu and Shann [17].

In numerical computations, resolution is limited by memory constraints
and computation times. Instead of working with a function f(x) we must
consider its approximation up to a given resolution 2’: Py, f(x). This

approximation can be decomposed into the detail spaces W, for j <1, up to
some fixed coarser resolution 2’ :

I-1

Py f@x)=) Py f(x)+ Py, f(x). (10)

1=7

If we express these projections with an orthogonal basis for each space we
obtain
I-1 4+ + 0
P 1))=Y 3 (ot w00+ 3 {fo sy ¢sabe). (D
J=Jnrn=- n=-c
Figure 1 shows the grid of the wavelet coefficients corresponding to the
decomposition of a function that belongs to V,. An orthogonal wavelet

¢ (x) is generally centered around the abscissa x = 5" Each wavelet function

¥, »(x) is thus centered around the point x = 27/ n + 27/ -1 and the size of
its support is proportional to 27/. At a given resolution 2/, each cross
corresponds to an inner product {f, ¢ ., 20, called a wavelet coefficient. Its
position corresponds to the center of the wavelet function ¢, ,(x). Each row
of crosses corresponds to a layer of detail components that are needed to
increase resolution from 2 to 2/*!. It corresponds to the projection
PW/ f(x). The array of crosses shown in figure 1 corresponds to the

decomposition of a function that belongs to V.

vol. 26, n* 7, 1992



798 E. BACRY, S. MALLAT, G. PAPANICOLAOU

The absolute value of the wavelet coefficient | (f, ¢, ,) | depends upon
the local regularity of f (x) in the neighborhood of the abscissa 27/ n. More
precisely, if 27/ n € la, b[, the decay of | (f, ¢, ,) | when the resolution
2 increases depends upon the Lipschitz regularity of f(x) over the interval
la, b[. Let us suppose that the wavelet ¢ (x) is M times continuously
differentiable and has M + 1 vanishing moments :

+
J X yYyx)de=0 for O<sp=n. (12)
— o
(]
-1
-2
-3 st L LT L L LI LI I LIS SR 22 2 2 A 22 22 IS 2 AR S R S 2 2SS S A R A 2 A R A AR A R L XL
P . . T I e e . T I S D . . R R .
-5t - - - - - - - - - - - - - - » - -
-6 - - - - - - - - -
T - - - - <
-8 | - - -
-9 r- - -1
-10
[+] 100 200 300 400 500

Figure 1.— Grid of wavelet coefficients for a function that belongs to
Vo=W_, P ---® W_, @ V_,. Each cross represents a wavelet coefficient { f, ¢ (nis
0 1 9 [ Ha

- r mrio e B¢ P T\
along the x-axis and j the y-axis).

THEOREM : Let 0 < &« <M be a real number that is not an integer. Let
fx)e L%(R) and [a, b] be an interval. The function f(x) is uniformly
Lipschitz of order a over the interval [a, b] if and only if for any
neZ and j € Z such that 277/ n € la, b|,

| {fr ¥, 0| =0@ @120y, (13)

The proof of this theorem can be found in Meyer’s book [14]. It shows that
the decay of the wavelet coefficients, as the resolution 2/ increases, depends
upon the local smoothness of the function. The larger the Lipschitz constant
«, the faster the decay of the wavelet coefficients. Figure 2(a) shows a
function that belongs to the space V, and has a sharp transition. Figure 2(b)
shows the grid of wavelet coefficients whose absolute value is larger than a
given threshold. We see a pyramid of coefficients that points to the location
of the sharp transition. The width of the pyramid depends on the size of the
wavelet support. The number of wavelet coefficients at each resolution
2 is approximately a constant. Let us set to zero all the wavelet coefficients

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numercal Analysis



A WAVELET BASED NUMERICAL METHOD... 799

below some threshold. Out of 512 wavelet coefficients only 80 are non-zero.
Let f,(x) be the function reconstructed from these wavelet coefficients. Then

\f— £l
2R g6 x 1074 (14)
"f”L?(R)

The function f,(x) is a good approximation of f(x) because we removed
only the wavelet coefficients of small amplitude. The pyramidal grid shown
in figure 2(b) can be viewed as an adaptive grid where the resolution is
adapted locally near the irregularity of the function. In the neighborhood of
the abscissa 100 the function is very smooth and is thus locally approximated
at the resolution 2~ ° whereas at the abscissa 256 the signal has a sharp
transition and we need the full resolution. If the wavelet  (x) has
M + 1 vanishing moments, this pyramid of wavelet coefficients corresponds
to a set of nested grids using finite elements of order M.

o.8 % .
0.6 r -
o4} B
o] ]
o
-0.2 + -
-0.4 | -
-0.6 |- E
-0.8 4
1o 100 200 300 400 Soo
(a)
o
~1 a—
-2 R ey -4
3 PO N
-4 L D I e -
S} - - - - - - - - - - - - - - - -
-6 |- - -* - - - - - -* -
-7 - - - - -
-8} - - -
-9 B
-9, 100 200 300 400 S00

(b)
Figure 2. — (a) Function which belongs to V,. (b) Grid of wavelet coefficients for the function
in figure 2(a). Only the wavelet coefficients larger than 5 x 102 are displayed. The analyzing

wavelet is spline 5.

vol. 26, n° 7, 1992
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If the original function f(x) is given at a fixed resolution 2! by N values
over a uniform grid, then all the wavelet coefficients (f, ¢; ,), for
j < I can be computed with a fast algorithm that requires O (V) operations
[13]. A fast wavelet transform is thus faster than a fast Fourier transform. It is
based on a cascade of convolutions with discrete filters called quadrature
mirror filters [13]. The reconstruction of the original N-point function from
the wavelet coefficients also requires O (V) operations. This fast wavelet
transform algorithm is very effective in computationally intensive appli-
cations.

Some examples of wavelet bases.

The properties of orthogonal wavelets derived from multiresolution
approximations are now well understood [14], [13]. Different types of such
wavelets can be constructed. The simplest possible wavelet is the Shannon
wavelet whose Fourier transform is the indicator function

; _ [l ifr=s|ow|=s27
V(@)= {O otherwise . (13

This wavelet has compact support in the Fourier domain but has a slow decay
in the spatial domain. Meyer showed that one can build wavelets which are
infinitely differentiable and rapidly decreasing functions (Schwartz func-
tions). These wavelets have also compact support in the Fourier domain
while in the spatial domain their asymptotic decay at infinity is O (x™7) for
any p = 0. For many applications the numerical decay of these wavelets is
too slow. Battle [2] and Lemarie [10] have constructed polynomial spline
wavelets with exponential decay that have good numerical properties. In the
following, these wavelets are referred to as spline n, where » indicates that it
is a polynomial spline of order n. Such a wavelet is # — 1 times continuously
differentiable, has n + 1 vanishing moments and decays exponentially in the
spatial domain. Daubechies [8] constructed orthogonal wavelets with
compact support and an arbitrary degree of smoothness. We call such a
compactly supported wavelet with » vanishing moments Daubechies n.
Because of their compact support, the Daubechies wavelets are particularly
useful in numerical applications.

3. SPATIALLY ADAPTIVE WAVELET METHODS FOR PDE’s

The ability of the wavelet transform to compress information by taking
advantage of the local regularity of a function has many applications in signal
processing and numerical analysis. Liandrat and Tchamitchian [11] have
suggested that these properties should be used to do adaptive grid compu-

MZ2AN Modélisation mathématique et Analyse numérique
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tations for PDE’s. In this section, we describe the basic ideas of such
adaptive schemes.
Suppose that we want to solve numerically an evolution equation

ux, t) _ Ku(t, x)
ot (16)
u(0, x) = uy(x)

where K is an operator that acts on the x variable. The three examples that we
study in detail are :

2
1. Diffusion equation : Ku(z, x) = Fut, x) u(t,zx) ’
ox
2. Linear advection equation : Ku (¢, x) = — __au(az, 2 ’
X
3. Burgers equation : Ku (¢, x) = — u(¢, x) _au(at, 2 :
X

For simplicity, we discretize time by a forward Euler scheme

u( + At, x)—u(@, x)
At

= Ku(t, x), 17)

where %(¢, x) is the approximate solution at time 7. This leads to the explicit
scheme

u+ A, x)= A+ At K)n(e, x). (18)

This time discretization has poor stability properties for the linear advection
and the Burgers equation. However, as explained later, we can use an
explicit scheme of higher order in time that is stable for these equations. Let
us for now suppose that (18) is stable.

The basic idea of a wavelet-based spatial adaptive scheme is to express
equation (18) in a wavelet orthonormal basis. For each #, the function
nu(z, x) is represented by its wavelet coefficients. The operator I + Az K is
represented by a matrix in the same wavelet basis in order to compute
directly the wavelet coefficients of &(t + Az, x).

Let us consider the matrix representation of a linear operator O relative to a
wavelet basis. We have

+ +

0= Y Y Py0P,. (19)

J=~© l=-0w®

Beylkin, Coifman and Roklin [6] have shown that if O is a suitable pseudo-
differential operator, each component Py, OPW, can be approximated with
arbitrarily high accuracy by a band matrix. This means that O is represented

vol. 26, n® 7, 1992
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by blocks of band matrices. In actual computations the infinite sums of (19)
are finite. They are limited above by the finest resolution of the solution and
below by the coarsest resolution 2/, as in equation (10). Figure 3 shows how
the operator O acts on the wavelet coefficients of %(x, ). In this example, the
finest resolution 2/ is equal to 27! and the coarsest resolution 2’ is equal to
23, The width of each band depends upon the properties of the operator O
and the size of the wavelet support.

If K is a linear differential (or pseudo-differential) operator, then
O =I+ Az K is represented by band-matrices. If the solution #(z, x) has
isolated sharp transitions, as in figure 2(a), we can set to zero its wavelet
coefficients that are smaller than some threshold value, as in figure 2(d).
Since O is represented by blocks of band matrices, one can easily show that
the domain where the wavelet coefficients of (z + At, x) is non-negligible is
at most equal to the corresponding domain for %(z, x) plus the width of the
bands in the matrix that represents the operator O in the wavelet basis (see
fig. 3). If P is the total number of nonzero wavelet coefficients of
(¢, x), the number of operations required to compute On({¢, x) is
O (P ) [5]. For Burgers equation, the operator K is nonlinear, so the previous
result does not apply to O =1 + Az K. However, Beylkin, Coifman and
Rocklin [6] have shown that the same computational complexity is obtained

"
s

ol

1

Wa

. —

.

.........

Figure 3. — A pseudo-differential operator is represented by blocks of band matrices in a
wavelet basis. When applied to a function that has few nonzero wavelet coefficients (shown by the
grey area), the computational complexity is proportional to the number of nonzero coefficients
and the wavelet coefficients of the result are nonzero in localized domains.
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if O is an n-linear operator. This is the case for Burgers equation since
K(u) = 3,u4%2 can be rewritten as K (1) = 9,B (u, u)/2 where B is the bilinear
form B(u, v) = uv. For the Burgers equation the number of operations
required to compute (I + Az K) %(z, x) is still O (P ), where P is the number
of nonzero wavelet coefficients of %(z, x).

We see therefore how to take advantage of the compressed representation
of u(¢, x) in a wavelet basis in order to reduce the number of operations. Let
us now describe the method suggested by Liandrat and Tchamitchian [11] in
order to adapt in time the spatial wavelet adaptive grid, and to follow singular
structures of the solution. As we already explained, at each time ¢ we keep
the wavelet coefficients which are larger than a given threshold A. In order to
be able to track singularities we also keep the adjacent coefficients. We say
that a wavelet coefficient (&, ¢, ,) is adjacent to another wavelet coefficient
(@, ¢, ) ifandonlyifi =jand |[n—m| <lorj=i+1landl<sn=<I+1
(the apparent asymmetry of the last condition is due to the fact that a wavelet
is centered at x = 1/2 and not at x = 0). In figure 4, the wavelet coefficients
above the threshold A are represented by crosses whereas the wavelet
coefficients that are adjacent to the crosses (i.e., the « border » of the crosses
set) are represented by circles. We denote by ¥, the grid of wavelet
coefficients (crosses and circles) that are kept and represent the approximate
solution at time z. The numerical algorithm is a 3 step loop :

1. In the previous step we have computed the wavelet coefficients of
u(t, x) only at the positions of the grid &, _ ,, ; the other coefficients are set to
zero. We then adjust %, _ ,, by changing into crosses the wavelet coefficients
greater than the threshold and changing into circles their adjacent ones. This
new set of circles and crosses defines the grid 4,.

2. We project %(t, x) on the space corresponding to %,. This means that
we put to zero all the wavelet coefficients of %(¢, x) which do not correspond
to crosses or circles of the new grid ¥,.

3. From equation (18) we compute the wavelet coefficients of (¢ + At, x)
corresponding to crosses and circles of the grid 4,. We then go back to
step 1.

The basic hypothesis behind this algorithm is that during a time At, the
domain of crosses does not move in space and resolution beyond its border of
circles. With such an algorithm the grid of wavelet coefficients is dynami-
cally adapted in time and follows the local structures that appear in the
solution.

The accuracy in the approximation of the adaptive grid of wavelet
coefficients depends only upon the threshold coefficient A. Figure 4 shows
the evolution of the wavelet grid for the solution of the periodic Burgers
equation with initial condition u (0, x) = sin (7x). The solution is uniformly
smooth initially and all the wavelet coefficients are below A at resolutions

vol. 26, n° 7, 1992



E BACRY, S. MALLAT, G PAPANICOLAOU

HINTITAE:

"wrTurT

HITITISIIY)

‘rTTTTTT T T
i

»

.
o.-
e

TT1 V7T

L
o
-
-
-0.-
.-
-2
o
-3
-
-

i
§
i
5
AN

-
-
-
-
-
-

20 ]

]
'
'
]
t
’
]
'
[
'
t
t
]
t
t
‘
1
'
'
'
'
]
]
]
SIS S B T I 8

‘rmrr T T
t
]
]
]

i
i
§
ﬁ
.

(b)
Figure 4. — Evolution of the solution of the periodic Burgers equation. The initial condition
4y (x) = sin (7 x) is shown in (a). The grid of wavelet coefficients is displayed below each graph.

Crosses indicate the wavelet coefficients larger than a given threshold and the circles are along
the « borders » of the crosses.

larger than 2~ . The border of circles corresponds to the coefficients at the
resolution 26, When the discontinuity develops some wavelet coefficients
are no longer negligible at the resolution 2~ (and then part of the border of
circles is at resolution 2~ #). In figures 4(c) and 4(d), we see that the pyramid
builts up progressively as the solution develops a sharper transition.

Wavelet orthonormal bases provide a simple procedure to implement
spatial adaptive grids that are updated dynamically. We now concentrate on
issues related to the discretization of the time parameter. In the next section
we study first the heat equation and then the linear advection equation. In
Section 5, we extend our results to the Burgers equation.
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4. TIME ADAPTIVE RESOLUTION

As we explained at the end of Section 1, in order to have a stable and
accurate numerical scheme, the time discretization must be adapted to the
spatial resolution of the computations. In this section, we explain how to
introduce time adaptivity within the wavelet scheme described above. If we
limit the computations to a resolution 2’ then the time evolution equation

9”%”—) — Ku(t, x) (20)
is replaced by
ou, (x, t)
T=KJ uJ(t, X), (21)
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where the operator K, is defined by
K, =Py KPy . (22)

The operator K, approximates the operator K at the resolution 2/ so that the

solution «, (¢, x) remains in the space V,. The forward Euler discretization of
(21) is

n(r+ AL, x)= 1+ AtK) @, x). (23)
and it is stable if and only if
[T+AtK |f<1. 24)

As a first example, let us study the heat equation in some detail.

4.1. Time Adaptivity for the Heat Equation
For the heat equation
32
== Q .

Since K is a nonpositive, symmetric operator, K, is also a nonpositive
operator and thus equation (24) is equivalent to

At|K, | <2. 25)

We know that there exists a family of functions (¢j,n(x)),,ez, with
$, .) = \/2 & (@ x —n), which is an orthonormal basis of V,. By

expressing the operator K in this basis, we see that there exists a constant C
such that

K[ =C2¥=cCc4. (26)
Thus, the numerical scheme (23) is stable if and only if

2
At:AtjsE4 /. 27

When the spatial resolution is increased by a factor of 2, the upper bound of
the time increment is divided by 4. To compute the solution with a resolution
2/ at the time T = 1 with a time step of Az,, the number of time steps is equal
to 1/Az,. Thus, to minimize the computations we must use a time step
Az, that is as large as possible. The basic idea of the time adaptive algorithm
is to modify the time step Az, at each resolution 2/.
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Let us explain how to implement this idea by comparing the forward Euler
scheme (23) at two successive resolutions 2/ and 2/ ~!. At the resolution
2/, the solution % (¢, x) belongs to V; and the Euler scheme is stable only if
the time step At satisfies At; <2 C ~! 47!, If we approximate the solution at
the lower resolution 2/ ~!, the time step must satisfy A, ;<2 C~1471+!
and so we may choose a time step four times larger, Af, _; = 4 At;. This is
because the solution remains in the smaller space V; _;. We can decompose
the higher resolution solution i (z, x) into its components in the spaces
V,_, and W, _,. It is natural that the component in the space V; _, should be
computed with a time step equal to Af;_; in a stable manner, while the
component in W;_,; should be computed with the smaller time step
Aty.

Let us develop this idea further. At the resolution 2’ ~! the solution at time
t + At; _, is computed from the solution at time ¢ by applying the operator
I+a4_K;_q:

W @+ A, x)= A+ At K, _ )% _ (8, x). (28)

At the resolution 2/, At; is four times smaller so we need 4 iterations to
compute the solution at time ¢ + At; _, :

W+ A, x)=+4A0,x)= T+ A, K iy e, x).  (29)
To relate equation (28) with equation (29), we decompose the operator
K,. By definition
K, =Py KPy, . (30
Since Py, = Py,  + Py, |, we obtain
K, =Py, K _ 1Py, +Py K _ Py +
+Py, K, _ Py +Py K _ Py . (G
The operator K, _, = Py,  KPy, _ updates the components of lower resol-
ution 2/ ! to those of lower resolution 2/ ~!. The operator

T, =Py, K, _ Py, +Py K,_ Py +Py K _ Py  (32)

updates the detail components on themselves and on those of lower
resolution 2/ =1 as well as the low resolution components onto the detail
components. Equation (31) implies that

K[=T1+K1_l (33)
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and using (33) in (29) we get
it +4 A, x)=0+At; T+ A4 K, 1)4 (t, x). (34)

The scheme (28) suggests that the operator K; _, can be updated with a time
step At; _, = 4 At;, instead of A¢;. We thus modify scheme (34) by updating
K; _, with a time step 4 At; while the T; component is updated with a time
step At

W +4Aa,x)= (A+A, T +4A, K, )iy(t, x). (35)

In this scheme, the components at the lower resolution 2/ ~! are updated with
atime step Af; _; = 4 At;, but the components of the higher resolution details
are updated with a time step Af;. The numerical complexity to compute
T, % (¢, x) is proportional to the number of nonzero wavelet coefficients at
the resolution 2/, whereas the complexity to compute K;_; % (t, x) is
proportional to the number of nonzero wavelet coefficients at all resolutions
smaller than 2/, If the solution has isolated sharp transitions, as in figure 2,
there are fewer wavelet coefficients at the resolution 2/ than below this
resolution (see fig. 2(b)). Equation (35) thus requires substantially fewer
computations than equation (34).

The same procedure can be repeated in order to adapt the time step to one
more level of resolution. To compute the solution at ¢ + 4% A¢; we must
iterate 4 times the operator previously defined

W+ 4201, x)= (A + A, T +4 A, K, _ ) (2, x) . 36)

Since we know that the operator K; _, by itself can be incremented by a time
step At; _, = 4% At;, we decompose K; _, into

K, 1=T,_1+K;_, 37

as in (33). We then modify (36) as we did with (35) so that the time step is
adapted to each component K; , and T;_,. We obtain

W@+ A0, x)= ((A+A T +4A4 T, ) + 428K _) (2, x).
(38)

This time adaptivity can now be applied on as many levels as desired. The
general scheme can be formulated as follows. Let 2/ be the finest resolution
of computations, Az; be the time step at that resolution and let p be a positive
integer. To compute the solution at a time z + 4” At; given the solution at
time ¢, the forward Euler scheme based on the finest resolution gives

W+ 4 A1, x) = A+ AL K i@, x) (39)
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If the wavelet transform is computed over p « octaves » (i.e., on p
resolutions), this can be rewritten in the form

W+ A, x)= A +At; T, +At; T, - +
ot AT, + A K )Y i x) . (40)
The time adaptive scheme replaces this scheme by
Wt + 4 Aty, x) = B2 3, (2, x) (41)
with
B2 = (. (A+A; T +4408, T, ) +
v+ ¥AGT P+ ¥ ALK, (42)

In this scheme, (41) represents one iteration of the time adaptive operator
E?. To compute the solution at a certain time 7 we must take 7/ (4° At;) steps

with the operator EZ. If p = 0, we obtain E? = E? = (I + At K, )T/At’
the forward Euler scheme.

which is

Stability for the heat equation.

Let us now discuss the stability of this time adaptive scheme for the heat
equation where K = 8%0x%. From (27) we see that the forward Euler scheme
(23) is stable at resolution 27 if and only if

At < % 4-1, (43)

where the constant C is defined by (26) and the numerical scheme (41) is
stabie if and oniy if

|E?| <1. (44)
For the Shannon wavelet we prove in Appendix 1 that

IBf <1 ar, <24 45)

This means that the time adaptive scheme is stable for the same range of time
steps At; as the nonadaptive forward Euler scheme :
|7 <1< | T+a K| =<1. (46)

For the Shannon wavelet the proof of this result is simple because the
operators T, are diagonal in a Fourier basis. For other wavelets we have no
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mathematical proof but numerical results seem to indicate that property (46)
remains valid We tested different wavelets that belong to the Meyer family
[14], to the polynomial spline family of Battle {2] and Lemarie [10] and to
the compactly supported family of Daubechies [8]

TABLE 1

For each orthogonal wavelet histed n the first column, the second and third
columns give the maximum time increment At; for which the nonadaptive forward
Euler scheme and the time adaptive scheme are stable, respectively These values are
equal which means that both schemes are stable over the same range of time
increments

Forward Euler scheme | Time adaptive scheme
Shannon 9987 x 10~ 9987 x 1073
Meyer 9990 x 103 9990 x 10-3
Spline 3 9988 x 10~3 9988 x 1073
Splhine 5 9 988 x 10~3 9988 x 10~3
Splhine 7 9 988 x 10~ 9988 x 10~°
Sphine 9 9988 x 103 9988 x 103
Daubechres 10 | 10 022 x 10~ 10 022 x 103
Daubechies 14| 9989 x 10~3 9989 x 103
Daubechies 16 | 9990 x 1073 9990 x 10~3
Daubechies 18 | 10 005 x 10~ 10 005 x 10~°

We estimated numerically the stability of the scheme by computing the
maximum At for which the L?>(R) norm of the solution at any time 7 remains
smaller than the norm of the mitial condition u#y(x) This means that the norm
of the operator Ef 1s smaller than 1 This test was done with an 1mual
condition uy(x) equal to the projection on V of the indicator function of an
interval, but the results are independent of the imitial condition To check the
stability, we do not adapt the spatial resolution of the computations and thus
do not apply a threshold to the wavelet coefficients The mnitial solution 18
characterized by 64 wavelet coefficients and the time adaptive scheme 1s
computed over 5 octaves, 1€ p = 5 1 equations (41) and (42) Table 1 gives
the maximum time Az, for the nonadaptive 1in time forward Euler scheme and
for the time adaptive scheme, with different wavelets Since the resolution
2! 1s the same 1n these experiments, the maximum value of At, varies with the
constant C of equation (43), which depends upon the particular wavelet that
1s chosen As expected from the proof in Appendix 1, for the Shannon
wavelet the limit of stability 1s reached at the same maximum time increment
At for the forward Euler scheme and for the time adaptive scheme What 1s
more interesting 1s that this result remains valid for all the other orthogonal
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wavelets that we checked. For the 10 different orthogonal bases given in
Table 1, the maximum time step of the time adaptive scheme given in the last
column is the same as the maximum time step of the nonadaptive in time
scheme. We verified this property by computing the eigenvalues of the
operators E7 and I + A¢; K; and we checked that the maximum of their
absolute value reaches 1 for the same time step Af;. It seems that this
property is independent of the wavelet that is chosen and is a consequence of
the multiresolution structure of wavelet orthonormal bases. We have no
proof for this conjecture, which is motivated and supported by numerical
results.

4.2. Time Adaptivity of the Linear Advection Equation

Before considering the Burgers equation, we introduce the space-time
adaptive scheme for the linear advection equation, K = — v 3/dx, where v is
the constant translation velocity. As in equation (21), the PDE is approxi-
mated at the resolution 2/ by

au—j(x—’i)=l{ u(t, x), “47)
ot 7 %
where the operator K, is defined by
K, = PVJ KPV] . (48)
One can easily prove that
K| =Cc2. (49)

The explicit forward Euler scheme is unstable for a linear advection, so we
use instead the explicit Adams-Bashforih schemc which is defined by
w(t+At, x) =10, x) +

+ At (aK, %, (1, x) + bK, u(t—Ar, x)+cK (t -2 A1, x)), (50)
with a = 23/12, b = — 16/12, ¢ = 5/12. Stability results from using the past
values of % (¢, x) at time ¢ — Az, and # — 2 At,. We denote by ||% (z, x)| the

L2(R) norm of #,(¢, x) in the x variable. One can prove that this scheme is
stable in the sense that

Hft](t + Az, x)” = Max (”th (t, x)

|

at any time ¢ and for any initial condition, if and only if

lﬁj(t — At ), ”I‘j(t — 24z, x)”)

At,<C'277. (51)
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The constant C ' depends only upon the constant C defined by equation (49).
This simple definition of stability enables us to compare more easily the
stability of the time adaptive scheme versus the nonadaptive in time scheme.
¢From the initial condition %, (0, x) = uy(x), we compute the first two steps
u, (At), x) and 7, 2 Az, x) with a forward Euler scheme. If the initial
condition uy(x) is four times continuously differentiable, the error introduced
by the time discretization when computing the solution at T =1 is
o (Ar?).
The Adams-Bashforth scheme (50) can be rewritten in matrix form. Let us
define
i, (t, x)
U@ x)=| u@ - A, x) (52)
w(t -2 Az, x)

and the following matrix of operators

aK, &, (7, x) + bKJ w (t - At x) + cK, th (t-2 Az, X)

K U/(, x)= 0 )
0
(53)
(2, x)
LU (s, x) = (ﬁ](t,x)) s
\ & (34)
0
M, U, x) = 0 .
%t — At,, x) (55)

The operator I plays the role of the identity, as in a forward Euler scheme
(23), but it also updates the first memory component. The memory
component at time ¢ — A¢, is updated by the operator M,. The Adams-
Bashforth equation (50) takes the form

Ut +At,x)=U+Aa K, +M)U (@, x). (56)
It has the same structure as the explicit Euler scheme (23) but includes a
« memory » component which is carried by the operator M,. To obtain a time
adaptive scheme we proceed as we did with the heat equation except for two
important differences :

1. The stability condition (51) implies that the time step can increase by a
factor 2 and not 4 when the resolution decreases from 2/ to 2/~!:
Aty _ =2 Aty

2. We must also have a time adaptive memory component.
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To introduce the time adaptive scheme, as in subsection 4.1, we compare
the Adams-Bashforth scheme at the resolutions 2’ and 2/ ~!. At the resolution
2! and for a time step At,, the Adams-Bashforth scheme requires the storage
of % (¢, x), %, (t — At;, x) and % (¢t — 2 At;, x). At the resolution 2/ ! and for
a time step At¢; _, = 2 A¢,, it requires to keep the solution at #,  — 2 At; and
t — 2% At,. To make the two schemes comparable, we must therefore use a
memory vector that has four components

T'{I (t’ x)
u(t — Aty, x
Ul(t, x) = i ( pX) (57)
u(t — 2 Ay, x)
W (t — 22 Aty x)
Let us recall that the component of the operator K related to the projection of
the solution on the space W, _, is defined

T, =K, -K;_,, (58)
and can also be written as in (32). We define the operator 7} by
aT; u(t, x) + bT; i (t — Ay, x) + ¢T; 54, (¢ — 2 Aty, x)
T} UM, x) = 0

0
0

(59)

It uses the first three components of U] to compute the part of i, (¢ + 4z, x)
which is related to the W, _, space. At the resolution 2/ ~!, the Adams-
Bashforth scheme is computed with the operator K _, :

Kl _, U@t x)=

aK; i, (t, x)+ bK, _, i;(t — 2 Aty, x) + K, _q i, (t — 2% At,, x)

0
. (60
0 (60)
0
Then, the operator / defined in (53) becomes
ﬁl (ts x)
(.
vl x) = ”’(0 *) (61)
0
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The updates of the memory components at the resolutions 2/ and
2/ =1 are respectively given by

0
M UMz, x) = 0 (62)
u(t — Aty, x)

0

0
0
0

Wt — 2 Ay, x)

Mj_, Uj(t, x) = (63)

As 1n the heat equation (35), we obtain a time adaptive Adams-Bashforth
scheme by updating the higher resolution component twice as fast as the
lower resolution one

Ut +2 A8, x) = (' + A, T+ MY + 2 A1, K} + M} _ ) UM, x)
(64)
The memory component at the resolution 2/ 1s updated by the operator
M} whereas M) _, updates the memory component at the resolution
21 -1
Let us now introduce the general time adaptive scheme Let 2! be the finest
resolution of the computation Let p be a positive integer and we suppose that
the wavelet transform 1s computed over p octaves The time adaptive scheme
requires a memory vector with p + 3 components
‘ﬁl (ts -x)
w(t — Aty, x)
Ui(t, x) = u;(t — 2 Aty, x) (65)

W (t— 2PV Aty x)

In the same way as above, the identity plus the update of the first memory
component 1s given by
ﬂl (t, -x)
12[ (t7 x)
P UR@, x) = 0 (66)

0 |
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For any resolution 2/ =%, with k < p, we define the operator
M_ Ui(t, x) =
aT; o (t, x)+ bT;_ 0 (t — 28 Aty x) + T, _, 7y (t — 281 Az, x)
0
0
67)

At the same resolution 2/ % the memory component is updated by the
operator

0
0
ME_ UR(t, x)=| Iyt —2"A1, x) |, (68)
0
0
whose only non-zero element is the (k + 3)? one. At the lowest resolution
2! -7, we use the operator

Kp_, UR(t, %) =

aK;_, (1, x) + bK; _, Uy (t — 2P Aty, x) + K, _, By (t — 2P %1 Az, x)
0

il

0
(69)

At each resolution the time adaptive scheme is then defined naturally, as in
(41), by
US(t + 2PAt;, x) = ER UR (¢, x) (70)

with
Ef = (I +A; T2+ MPY +2A8, 10\ + MD_ ()% +---

vk 2PTNAL TR, A ME V2P ALK+ ME (71)

p p*

Let us note that in order to compute the solution at time 7" we need to apply
this operator 7/(2” At;) times. From the initial condition at ¢t = 0 we can
compute each component of the initial memory vector U?(2P*!At,,
x) with an explicit forward Euler scheme.
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Stability for the advection equation

Let us now discuss the stability of this time adaptive scheme. We say that
the scheme is stable if and only if at any time ¢ and for any initial condition
U? (0, x), all the components of the vector U7 (¢, x) have an L?(R) norm in
the x variable, which is smaller than or equal to the maximum L?(R) norm of
the components of the initial condition U?(0, x). We mentioned in (51) that
the Adams-Bashforth scheme for the advection equation (50) is stable if and
only if

Aty <C' 271, (72)

For the Shannon wavelet (15), we show in Appendix 2 that the numerical
scheme defined by E7 remains stable over the same range of time steps
At; as the nonadaptive in time scheme (50). For this wavelet, the proof is
relatively simple because all the operators involved are diagonalized by the
Fourier transform. As in the case of the heat equation, for other wavelets we
test for the stability of the time adaptive and nonadaptive in time schemes by
computing the maximum time increments for which they remain stable. In
these experiments we do not apply a threshold to the wavelet coefficients
which means that we do not introduce any spatial adaptivity.

This test was done with an initial condition u,(x) equal to the projection on
V, of the indicator function of an interval. The initial solution is characterized
by 64 wavelet coefficients and the time adaptive scheme is compuied over
5 octaves, i.e. p = 5 in equations (70) and (71). Table 2 gives the maximum
time A¢; for which the nonadaptive Adams-Bashforth and the time adaptive
schemes remain stable. This maximum time step is computed with less
accuracy than for the heat equation because of the necessity to compute the
first few steps directly, given the initial condition at z = 0. As expected from
the proof in Appendix 2, when the accuracy of the computation is fixed, the
limit of stability for the Shannon wavelet is reached at the same maximum
time increment Af; for both the Adams-Bashforth and the time adaptive
scheme. For the Meyer wavelet as well as for the spline wavelets of Battle [2]
and Lemarie [10], the maximum time step is the same for the time adaptive
and the nonadaptive in time schemes, with the accuracy of our numerical
computations fixed. On the other hand, this result is not valid for the
Daubechies wavelets, although the values of the maximum time steps remain
close. We do not know why the stability of the scheme is different for the
Daubechies wavelets. The Daubechies wavelets have compact support and
they are neither symmetric nor antisymmetric in contrast to the wavelets of
Meyer and Battle-Lemarie. We note that when the support of the Daubechies
wavelet increases, the difference between the maximum time step of both
schemes decreases but it is not clear why this is happening. We emphasize,

M?2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



A WAVELET BASED NUMERICAL METHOD... 817

TABLE 2

For each orthogonal wavelet listed in the first column, the second and third
columns give the maximum time increment At; for which the Adams-Bashforth
scheme and the time adaptive scheme are stable, respectively.

Adams Bashforth scheme | Time adaptive scheme
Shannon 3.61x10°° 3.61 x 1073
Meyer 5.25 x 10~° 5.25 x 1073
Spline 8 4.99 x 10~° 4.99 x 10~°
Spline 5 4.52 x 103 4.52 x 1073
Spline 7 4.30 x 10~° 4.30 x 103
Spline 9 4.19 X 103 419 x 10-3
Daubechies 10 | 6.27 x 10— 5.48 x 10~3
Daubechies 14 | 5.78 x 10~ 5.39 x 10~
Daubechies 16 | 5.44 x 103 5.21x 1073
Daubechies 18 | 5.48 x 103 5.37 x 103

however, that even in the Daubechies case, the schemes are stable over a
comparable range of time increments.

Complexity estimates for the advection equation

Let us now discuss the numerical complexity of the time and space
adaptive scheme as compared to the space adaptive scheme that is not time
adaptive. Since the linear advection equation just translates the initial
solution, the number of non-negligible wavelet coefficients remains approxi-
mately constant in time. Let 2/ be the finest resolution and suppose that the
wavelet transform is computed over p octaves. The solution is decomposed

ontoV;= @ W,_,®V,_, We denote by N the number of wavelet
J=1{-p+1

coefficients that characterize the projection of the solution in V; (number of

samples). The projection of the solution on V,_, is characterized by

27PN coefficients. Let n, (j <I) be the number of nonzero wavelet

coefficients (after applying a threshold) that characterize the projection of the

solution on W,, _1- The total number of nonzero coefficients in the grid is then

equal to Z n, + 277 N. We thus see that the nonadaptive in time
J=1-p+1
scheme (50) requires

o( 5 n,+z~PN) 3)

j=I-p+1
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operations per time step. The constant depends mostly on the size of the
wavelet support. To compute the solution at time T =1, we need
1/At; time steps and the total number of operations is

1 ! _
O(AT,( y n,+2PN)). (74)

J=1-p+1

For the time adaptive scheme (70), the complexity of computing the action
of each operator 7, on the solution is also O (n,). The time step associated to
the operator T, is Az, = 2/ =7 At,. The total complexity of the scheme to
compute the solution at 7 = 1 is therefore

.0<A—1t;< y 21"n]+2"P2""N)). (75)

J=I-p+1

The constants in (74) and (75) are approximately the same and depend on the
size of the wavelet support. If the solution has fine structures over its whole
support, then there are almost no negligible wavelet coefficients and
n, =~N2 ~1-1 The complexity given by both (74) and (75) is

N
O(E). (76)

We thercfore realize no gain with a time adaptive scheme. This is not
surprising since haif of the waveiet coefficients are at the largest resolution
2/ and the time step at this resolution is the same for both the time adaptive
and the nonadaptive in time schemes. The time adaptive scheme is efficient
only if the spatial adaptive grid has already removed many wavelet
coefficients. This is the case when the solution has only isolated singularities.
If we suppose that the initial solution has isolated sharp variations, as in
figure 2(a), then the nonzero wavelet coefficients belong to pyramids similar
to figure 2(b). Each pyramid corresponds to a particular singularity. At each
resolution level, the number of nonzero wavelet coefficients »,; is approxi-
mately equal to a constant L, which depends upon the size of the wavelet
support. The complexity of the nonadaptive in time scheme given by (50)
becomes

0(—1—(pL+2”"N)) : a7
whereas the complexity of the time-adaptive scheme is
o<—1-(L+2-P2-PN)) . (78)
At,
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If the support of the signal is very large, and the number of wavelet
coefficients L at each resolution is negligible with respect to the remaining
coefficients 277 N, then the gain of the time adaptive scheme is a factor of
2P, Otherwise (277 N = L), the gain is proportional to the number of octaves
p of the wavelet decomposition. Since p is generally of the order of
log, (N ), the complexity gain is approximately log, (N ). Let us emphasize
here that the constants in the complexity estimates (77) and (78) are the same
so that the gain is not lost by the size of the constant factors. On the other
hand, since we use larger time steps at coarser resolutions, it is likely that we
also increase the numerical errors of the scheme. The accuracy of the time-
adaptive scheme is studied in the more interesting case of the Burgers
equation.

5. BURGERS EQUATION

In this section, we compare the stability, accuracy and numerical
complexity of the wavelet based space and time adaptive scheme with a
wavelet based scheme which is space adaptive but not time adaptive. We do
not compare our algorithm with more classical numerical schemes, such as
spectral methods or finite elements, because this type of comparison has
been done by Liandrat and Tchamitchian [11] for the space adaptive wavelet
scheme. With the Burgers equation we want to study specifically the impact
of the time adaptivity on the computed solution.

5.1. Time Adaptive Algorithm

The periodic Burgers equation with small diffusion is given by

du(x, t)

afr
Te

=Ku(s, x), (79)

where K is the nonlinear operator

2
du(t, x) te “u(t, x) ’

Ku(t, x) = —u(t, x) e .~
X

(80)

and the initial solution u (x, 0) = u,(x) is periodic with period 1. For the time
discretization, we use an explicit Adams-Bashforth scheme for the advection
term and an explicit Euler scheme for the diffusion. The time adaptive
scheme we have implemented for the advection term is essentially the same
as the one describe in Section 4. At each resolution 2/ the time step is
At = 2/ =7 At,. In order for the diffusion term to remain in step with the time
adaptivity of the advection term, we use the time increment 2/ =/ A¢, instead
of 4/ =7 At;, at a resolution 2.
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Let us separate the advection and the diffusion terms and define the two
operators

KOf @) = - f 00 L&) (81)
and
2
K f(x) = e%x(z"_). (82)

Let K) = Py K°P, and K] = P, K' P, . We also define T) = K} - K} _,
and T} = K} — K}_ 1- An explicit forward Euler scheme is sufficient for the
diffusion term K°, whereas the nonlinear advection operator K' requires an
Adams-Bashforth scheme. Both components are integrated in a time-
adaptive scheme which is similar to the linear advection, time adaptive
scheme. Let 2/ be the finest resolution of computation. Let p be a positive
integer and we suppose that the wavelet transform is computed over p
octaves. The advection operator K = — 3/8x is replaced by K’ and we
manage the memory component in the same way as in (71). The diffusion
term K! does not use any memory component. As in the linear advection
scheme, the memory vector is defined by

i‘](t, X)
W (t — Aty, x)

1t — 2 Aty x) . (83)

]
~~
ot
=
—
Il
=

~u1(t - 2P+1 Atl, x)

The operators are given by

ﬁl(tr x)

a[(t7 x)

1P Uj(t, x) = 0 ; (84)
0
7 _ Uit x) =
aT9_ iy (t, x) + bYY_, (2 — 2K Aty x) + cTP_, By (¢t — 2K+ 1 Az, x)

+ Tll——ka[(t’ x)

(85)
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0
0
MP_ UR(@, x) = | it — 2F Ay, x) (86)
0
0
where the only nonzero coefficient is the (k + 3)? one, and
Kll’—p W(tv x) =
aK)_, o (t, x) + bK) _, Wy (t — 2° Aty x) + cKJ _, 5 (t — 22+ 1 Aty, x)

+Ki_, %, x)

= 0
0
(87)
The Burgers time adaptive scheme is then defined by
UP(t + 47 Aty, x) = EF UR(t, x) (88)

with
ER= (. +A; T8+ MOV + 2A, T0 _y + MG _ P + -+

e+ P2TVAG T, A ME_, )+ 2P A K+ MY,

The operator Ef adapts the time step at each resolution.

5.2. Numerical Experiments

We compare the stability and accuracy of the space and time adaptive
scheme with the stability of the space adaptive scheme. Comparisons
between the space adaptive scheme and more classical numerical schemes
have been done by Liandrat and Tchamitchian [11] so we shall concentrate
on the consequences of the time adaptivity. The first set of experiments
concerns stability.

Stability for the Burgers equation

To study the impact of the time adaptivity by itself, we do not introduce
any spatial adaptivity and do not apply a threshold to the wavelet
coefficients. We choose the initial condition uy(x) = sin (7x). The finest
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resolution 2/ is normalized to 1 and the finest grid contains 64 coefficients on
the interval [0, 1]. For each scheme there exists a maximum time step
At and the scheme is stable if and only if At; < At,,,. The stability is
tested with the L norm of the solution. We know that the solution of Burgers
equation satisfies [[u(t, x)|| , = [up(x)|| - Thus a scheme is unstable if after

a certain time 7, the computed solution % (T, x) sausfies ||% (7, x)”oo >

E|up(x)||, (Where E is a constant greater than 1). We used a dichotomic

method to compute the Arz_,, for both the time adaptive and the forward
Adams-Bashforth scheme. We set ¢ = 10~ %/ 7, p = 5 (number of octaves, as
1n (88) and (89)), T = 3/7 and E = 15. The time T is chosen large enough so
that derivatives of the solution reach their largest value before T. This test
was repeated for several wavelets. Table 3 compares the maximum time
increment At; for the time adaptive scheme (88) and the corresponding non
time adaptive scheme. Contrary to what happens in the case of the heat
equation and the linear advection equation, as shown in Tables 1 and 2,
Table 3 shows that the maximum time increments are different for the time-
adaptive scheme and the non time adaptive scheme. The differences are more
important for the Daubechies wavelets but the maximum time increments
still remain in the same general range of values for the two schemes.

TABLE 3

For each orthogonal wavelet Iisted in the first column, the second and third
columns give the maximum time increment At, for which the nonadaptive in time
scheme and the time adaptive scheme are stable, respectively, for Burgers equation
Stability 1s with the L, norm of the solution at a given time T

Non Adapt. Time | Time Adapt.
Shannon 5.37x 103 447x 10°°
Meyer 6.91 x 1073 5.24 x 1073
Spline 8 6.41 x 103 4.84x 103
Spline 5 5.95 x 103 4.68 x 10—
Spline 7 5.74 x 103 4.60 x 1073
Spline 9 5.62 x 10~3 4.51x 1073
Daubechies 10 ] 7.78 x 1073 5.63 x 1073
Daubechies 14 | 7.30 x 10~3 5.08 x 10~°
Daubechies 16 | 6.76 x 10~° 4.79 x 1073
Daubechies 18 | 7.00 x 10~3° 5.52 x 102

Complexity and Accuracy for the Burgers equation

If At, is the global time step for the nonadaptive 1n time algorithm, we need
to iterate n = T/At, times in order to compute the solution at = T. Let
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N, be the total number of points that characterize the solution at the
resolution 2/. At time k At;, the number of operations at the resolution
2/ js proportional to the number of nonzero wavelet coefficients n, (k Az;)
(after applying a threshold) that characterize the projection of the solution on
W, _;. Indeed, the number of operations for the operator T, (f) at each time
step k At, is still proportional to the number of coefficients that characterize
the solution in Wj _1, as it is for the linear advection equation. As mentioned
in Section 3, this is because the nonlinear Burgers operator K involves
differential operators and a bilinear operation [6]. The number of wavelet
coefficients n, (k At;) changes with the time factor k because high frequencies
are created as time increases (see fig. 4).

TABLE 4

The first line gives the value of the L,, error of the solutions computed with the
spatial but non time adaptive scheme, the space and time adaptive scheme with a time
factor of 2, and the space and time adaptive scheme with a time factor of

2, respectively. The second line gives the value of the slope at the location of the
shock. The last line gives the computational complexity using (89) and (90).

Ezact | Spatial Time-Spatial | Time-Spatial
ratio : 2 ratio V2
Lo, error | — 23x107° 142x10°  [27x107°
Slope 1.975 | 1.995 1.905 1.978
Complerity | ~ 10° 3 x 101 6 x 104

Let us suppose that the wavelet decomposition is computed on p octaves.
The total number of operations to compute the solution at time T with the
nonadaptive in time scheme is

L
1 Aty T
L o-r
o Y an(kAt,)JrAzIZ N

J=1-p+1 k=1

(89)

For the time adaptive scheme each resolution 2’ has a specific time step

At = 2! =1 At; and thus 2/ =7 % iterations are needed. The total complexity
I

is given by

_’ATT, ,
Y m (2 A+ 2P = 2PN

(90)
k=1 I

o| ¥

J=I-p+1
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The constants for the complexity in (89) and (90) are approximately the
same. In the following numerical experiments, the complexity is computed
by evaluating the summations in (89) and (90).

To compare the complexity and accuracy of the space-time adaptive
scheme and the space adaptive scheme we computed (for both schemes) the
solution of the Burgers equation (with ¢ = 2.5 x 10” %) at time T = 1/7.
In these experiments the wavelet grid has 512 coefficients. The threshold
( =2 x 107%) has been chosen in order to keep errors comparable to those
due to the limitation of the resolution (i.e., ]| up(x) — Py, uT(x)”oo where

ur is the exact solution at time 7). Moreover, the time step Az, (at the
resolution 1) used by both schemes is Azy = 2.5 x 10™#; it is the largest time
step for which both schemes are stable. For each scheme we measured the
L., error, the value of the slope at the location of the shock and the
complexity. These values are displayed in the following table.

Figure 5(a) shows the solution at time T, computed with a spatial adaptive
scheme which is not time adaptive. Figure 6(a) shows the difference between
this computed solution with the exact one. Figure 5(b) shows the solution
computed with the spatial and time adaptive scheme and figure 6(b) shows
the error. Figure 5(d) gives the wavelet adaptive grid at time 7. Out of 512
coefficients only 128 are « active ». Table 4 shows that the time adaptive
algorithm reduces the complexity by a factor 3.3 but introduces more errors.
The numerical experiments were performed with the wavelet spline 7. We
repeated these computations with other spline wavelets and Daubechies
wavelets and the numerical results were similar. In the error of the time-
adaptive algorithm (fig. 6(b)), the relative amplitude of low-frequencies to
high frequencies is much larger than for the nonadaptive in time algorithm.
The increase of low-frequency errors is not a problem since the total error is
dominated by high frequencies. The basic idea of the algorithm is precisely
to have reduction of complexity by introducing more errors at low
frequencies as long as these errors remain smaller than the high frequency
errors. However, in nonlinear equations, such as the Burgers equation, the
different frequency bands are not independent. There is an exchange of
energy between low and high frequencies because of the nonlinearity of the
operator K. This is one of the reasons why an increase of errors at low
frequencies also increases the errors at high frequencies. To decrease the
error in the time adaptive scheme one may simply decrease the time step
At, at the finest resolution. Numerical experiments show that if the time step
is reduced by a factor of 2 (i.e., Aty = 1.25 x 10~ *) the L, error remains
larger than 3 x 10~ 3 and that the slope is not as close to the exact slope as the
one obtained with the space adaptive scheme.

The space-time adaptive scheme that we described has a time step which is
inversely proportional to the resolution 2/ because of the advection term of
the Burgers equation. With this approach we obtain a scheme which is stable
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Figure 5. — Graph (a) is the solution of the Burgers equation computed with the spatial
adaptive scheme that is not time adaptive, at time T = 1/7. Graph (b) is obtained with a space
and time adaptive scheme, with a time ratio of 2 between two consecutive resolution levels :
Aty .= 2" At,. Graph (©) is also computed with a space and time adaptive scheme but with a
different time ratio : A¢;, ,, = 2" At;and A¢,,,, ., = 2" At,. The grid (d) is the adaptive grid of
wavelet coefficients of the solution at 7= 1/7.
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Figure 6. — Error curves computed by subtracting the numerical solutions displayed in
figure S from the exact solution of the Burgers equation. The error curves in (b) and (c¢)
correspond to the solutions 5(b} and 5(c¢) computed with time adaptive schemes. The time
adaptive schemes increase the relative proportion of low-frequency errors but the global
L, error in (c) is approximately the same as the error (a) of the nonadaptive in time scheme.
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for the same range of time steps At;. However, we introduce more errors at
high frequencies due to the exchange of energy between the different
frequency bands. Instead of decreasing the time step At; at the finest
resolution 2!, an alternative is to choose a dilation factor between the time
steps at different resolutions that is smaller than 2. This enables us to
maintain high accuracy at the low frequencies so that we do not increase the
high frequency errors through exchange across frequencies. One can easily
implement a time adaptive algorithm where the time step increases with a
factor of 2 when the resolution is decreased by a factor of 4 (instead of 2). It
is as if we had chosen a time ratio of \/2 across resolution levels. Let us
suppose that the index 7 is even, and that the number of octaves p is also
even. We define a scheme where thel time step at the resolutions

54
2%/ and 2% ~! is the same and equal to 2% ~ Ar;:

2
U‘,’(t+22 At,,x) — B UB(, %) ©1)

with
Bl = (.(UP+0; TR+ A, TY_ + ME+ ME_ ) +
+ 205 T)_,+2A T8 5+ ME_y + MY _3)* + -+

€1 2, 2
"'+22 At17?-p+2+22 AtITYI,—p+1+Mf—p+2+Mf—p+l)
14
+22 ALK+ MY, 92)

The number of operations is given by a formula similar to (90)

I~

I

I
2 - -
ol ¥ (n21<k22 ’Az,) +nz,_1(k22 ’At,)) +
I__E
2

_g T
2 °—2PN]).
+ Az, ) 93)

The complexity, the L, error and the slope of the solution obtained with this
new time adaptive scheme are shown in the « Time-Spatial, ratio \/?
column of Table 4. Figure 5(c) is the graph of the solution computed with
this other space-time adaptive scheme and figure 6(c) displays the error. As
expected, the high-frequency errors are smaller than those of the time
adaptive scheme (88) but the low-frequency errors are still higher than for the
nonadaptive in time scheme. In this case the amplitude of the high frequency
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errors remains approximately the same as for the nonadaptive 1n fime
algonthm We see that the increase of low-frequency errors 1s not enough to
increase substantially the high frequency errors through the exchange of
energy across frequencies Moreover, Table 4 shows that for this new
adaptive scheme the value of the slope computed at the location of the shock
1s as accurate as the result obtained with the space adaptive algorithm In this
case the computational complexity of the time adaptive scheme 1s approxi-
mately half that of the nonadaptive 1n time algonthm These results show that
by adapting the time ratio between the different spatial resolutions we can
keep the same accuracy while decreasing the numerical complexity The
time ratio must not be determined on stability considerations alone We must
also take into account the nonlinear properties of the PDE to maintain a
balance between the sources of error

6 CONCLUSIONS

In this paper we present a wavelet based numerical scheme that adapts the
space and time resolutions to the properties of the PDE and the local structure
of the solution We showed numerically for the heat equation and the linear
advection equation that our time-adaptive scheme 1s stable for time dilations
equal to 4 and 2, respectively We have no general mathematical proof of this
stability although it appears to depend on the multiresolution structure that is
behind the wavelet orthonormal bases Omne can adapt the time factors m
order to keep good accuracy while maintamming stability For Burgers
equation, numerical results indicate that a time factor smaller than 2 does not
increase the L, error of the solution although 1t decreases the numerical
complexity An important 1ssue 1s understanding how to adapt the time
scaling factor depending upon properties of the nonlinear equation

Although'the time adaptive scheme (Eqs (42), (71) and (88)) looks more
complicated than a nonadaptive ime scheme, from a programming point of
view, this increase of software complexaty 1s neglhigible compared to what 1s
needed to implement a spatial adaptive wavelet scheme We did not go into
the details of implementation 1ssues related to the calculation of the different
operator K, and T, in a wavelet basis because we focused on the time
adaptivity 1ssues However, although the numerical complexity for applying
these operators 1s linear 1n the number of nonzero wavelet coefficients, the
constants 1nvolved are not small, especially when the operator 1s nonlinear
This 1s one limitation of wavelet-based numerical schemes and 1t has been
studied by Beylkin [5] Another problem concerns the treatment of bound-
aries No efficient technique has yet been found that includes boundary
condiions However, Meyer [15] as well as Xu and Shann [17] recently
found a way to build orthogonal wavelets on finite domains, which can
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probably help solve these boundary issues. There are still technical
difficulties in implementing efficiently wavelet schemes to solve PDE in
several dimensions, but we believe that these bases provide a novel approach
that will be competitive for PDE like the nonlinear Schroedinger
equation (9), that generate solutions with localized structures in space that
evolve quickly in time.

Appendix 1

Stability of the time adaptive scheme for the heat equation with Shannon
wavelets.

In this Appendix we prove that the operator Ef of the wavelet time adaptive
scheme for the heat equation (42) satisfies

B2l <1< T+ A4 K | <1 (94)

for the Shannon wavelet. The proof is easy because all the operators involved
are diagonalized by the Fourier transform. Let us first characterize the spaces
V, and W, as well as the operators K, and T, for the Shannon wavelet. One
can easily prove that the space V, of the corresponding multiresolution
approximation is the space of all functions whose Fourier transforms have
support in the interval [- 2/ 7, 2 7]. The space W, is the set of functions
whose  Fourier transforms have support in the intervals
[-22@, -2 7]V [2 =, 2 2 7). For any f € L2(R), the Fourier trans-
form of PV/ Fx)is f (w) on(a) ), where x ]O(w ) is the indicator function of the
interval [— 2/ @, 27 7 ]. The Fourier transform of PW] f(x)is f(w ) ,\/)l(w ),
where x Jl is the indicator function of the interval [-2 2 =7, — 2 7] U

2
[2/ 7, 2/ 2 #]. For the heat equation, Kf (x) = Lx(;) Hence, the Fourier
)

transform of K, f(x) is — w?xX () f(w). The Fourier transform of

T, f(x)is —w?xw)f(w).

The identity operator I that appears in the expression of Ef given in (42)
can be replaced by Py since the initial solution belongs to V; and then
remains in V,. Since

I-1
Py, = 3 Py +Py 95)

J=1-p
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the operator Ef becomes

1-1 4 4
E} = ((( 3 PWI+PV1_p+At,T,) +4At,T,_1) +

y=1-p

e+ AT, )+ XA K, (96)

For the Shannon wavelet, one can verify that for any f(x)e L2(R),
T, f(x) € W,. We thus have the following properties

VG, l)eZ?, j#I, T, T, =0, o7
V(G,1)eZ?, j=1I, T,K, =0, (98)
VG, )eZ?, j#l+1, Py T, =0, (99)
V(G,l)eZ?, j=1I, Py K, =0. (100)

As a consequence, since all the operators in equation (96) commute, the
operator Ef simplifies to

E) = (Py,  + AL T + Py, +4A4T, )27 4
Foeee+ (le-p+4p-lAt[ T[-p+1)4+PV1_p+4pAt’K1—P' (101)

Since for different k, the operators Py | + 4k At; T, _, and PV,_,,+

47 At; K; _, act on mutually orthogonal spaces, |E?| <1 if and only if for
any k<p

|Pw, , + 42T, | <1, (102)
and

|Py, ,+#a,K_,|<1. (103)

(From the expression of T, and K, in the Fourier domain, for any
At; and k < p, one can show that

[Py, _, + 4 Az, T,_k" <1 o ”Pvl_p+4J”At, K,_p|| <1
< [T+85K || <1. (104)
We thus obtain

[Eff <1< [T+A4 K| =<1. (105)
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Appendix 2

Stability of the linear advection time-adaptive scheme for the Shannon
wavelet.

In this Appendix we prove that the time adaptive scheme defined by the
operator

EP = (.(+A; T2+ MOV +2A4; T8 |+ ME_\ P +

dee w2V AG TR+ ME_, Y+ 2P A KE L+ MY, (106)

-p

is stable over the same range of time steps At; as the non time adaptive
scheme. Let us first state a few properties of the usual Adams-Bashforth

scheme. For the operator K = % , the Adams-Bashforth scheme is defined
by
u+ At, x)=u(t, x)+ At (aKu(t, x) + bKu(t — At, x) +

+cKu(t — 2 At, x)), (107)

with a = 23/12, b = — 16/12, ¢ = 5/12. If the initial condition uy(x) has a
Fourier transform included in an interval [~ w,,, ,], the scheme is stable if
and only if

w, M <C, (108)

where C is a constant independent of w,. For the Shannon wavelet the
operator K, is a restriction of K to the space V; which corresponds to the
frequency interval [— 20, 2 7 ]. Thus, the numerical scheme

ﬁ,(t + Atl, x) = ﬁ,(t, x) + At,(aKI ﬁl(t, x) +
+ BK, By (t — Aty, x) + cK, 5y (¢ — 2 Aty, x))  (109)

is stable if and only if A¢; < (C/7)2~!. Similarly, the operator T, _, is a
restriction of K to the frequency intervals [— 2/ ~¥+12 7, —2/-k+1 47U
[/ -%+1 7 2I-k+12 77 Thus, the numerical scheme

PWl—k+1 o (t + 2 Aty x) =
= 2K At (@T, _ (1, x) + BT, _, iy (t — 2% Az, x) +
+ Ty (e =2 AL, X))+ Py iy (8, x)  (110)

is stable if and only if Az; < (C/7w)27!. As we shall see, the stability of
E? is based on these properties.
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We decompose each component of Uf(z, x) into the different spaces
W, which correspond to disjoint frequency intervals. We define the operators

Py %y (t, X)

ij ‘i’l[(t — 2 At[, X)

Py Ur(t, x) = : (111)
Py (1 - 27+ 1 Ay, x)
and
Py (1, x)
P, &, (t — 2 Aty, x)
P, U, x)=| T (112)

Py T (t - 22+ 1 ALy, x)

Since the solution % (¢, x) € V;, we have
Ef U@, x)=Ef Py, Ui, x) =

p
= Y B Py, \Ub(t,x)+ Ef Py, UR(t, x). (113)

k=1

The operators involved in Ef are diagonal in the Fourier domain, each
component of the vector Ef Py, _ U7(z, x) remains in W; _, whereas the

components of the vector Ef Py, . Uf (¢, x) remains in V, _,. Recall that the
scheme

UP(t + At, x) = BUE(t, x) (114)

is stable if all the components of the vector U7 (¢, x) have an L? (R) norm
smaller than the maximum L?(R) norm of the components of the initial
condition U7 (0, x). The spaces W;_, and V,_, are orthogonal to one-
another. Hence, the stability of the scheme

UP(t + 27 Aty x) = ES UR(t, x), (115)
is equivalent to the stability of the p + 1 schemes defined by
Up(e +2° At,,x):Ef’PV,_P Ui (e, x), (116)
and forO<=k=<p -1

UB(t + 27 Aty x) = Ef Py, UB(t, x). (117)
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Let us study the stability of the scheme (117). As a consequences of the
properties (97) to (100) and from the expression of E? and Py, .., givenin

(106) and (111) we have

EfPy, = (Gl + MRV + MR _ (Y -+ M) +
+2KAG T A MR P A MR P
M}, Y +M;_ )Py . (118)

One can verify that the scheme (118) is merely a complicated way to express
the scalar Adams-Bashforth scheme over the frequency intervals
[-2f-k+1g 7, —2f-k+lpqu 2I-k*+1 4, 2-%+12 7] The scheme
(117) is thus equivalent to the nonadaptive in time Adams-Bashforth scheme
(110). We saw at the beginning of this appendix that (110) is stable on the
same range of At; as (109), so (117) is stable for the same At; as (109). We
can prove similarly that the scheme (116) is stable for the same range of
Ar; as (109). Since the stability of the time adaptive Adams-Bashforth
scheme is equivalent to the stability of (116) and (117), we see that for the
Shannon wavelet the time adaptive scheme is stable for the same range of
At, as the nonadaptive in time scheme (109).
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