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MATHEMATICAL MOOELUNG ANO NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 26, n° 7, 1992, p 793 à 834)

A WAVELET BASED SPACE-TIME ADAPTIVE NUMERICAL METHOD
FOR PARTIAL DIFFERENTIAL EQUATIONS (*)

by E. BACRY (2), S. MALLAT O-2) and G. PAPANICOLAOU (2)

Commumcated by R TEMAM

Abstract — We descnbe a space and time adaptive numencal method based on wavelet
orthonormal bases for solving partial dijferential équations The multir e solution structure of
wavelet orthonormal bases provides a simple way to adapt computational refinements to the
local regularity of the solution [11] High resolution computations are performed only in
régions where singulanties or sharp transitions occur For many évolution équations it is
necessary to adapt the time steps to the spatial resolution in order to maintain the stability and
précision of the numencal scheme We descnbe an algorithm that modifies the time
discretization at each resolution, depending on the structure of the solution The stability ofthis
space-time adaptive scheme is studied for the heat équation and the hnear advection équation
We also explain how this algorithm can be used to solve the one-dimenswnal Burgers équation
with penodic boundary conditions We present numencal results on the accuracy and
complexity of the algorithm

Résumé —Nous présentons un schéma numérique adaptatif en espace et en temps, utilisant
les bases orthonormales d'ondelettes, pour la résolution d'équations aux dérivées partielles La
structure de multtrésolution sous-jacente aux bases orthonormales d'ondelettes permet
u'uuupicf Je fuyun pu/ îtCuLèr cmênî Simple la t ésoluîtOrî des calculs CI la régularité locale de la
solution Les calculs sont effectués avec une grande résolution uniquement dans les régions où
de fortes singularités apparaissent Pour beaucoup d'équations d7 évolution, il faut adapter le
pas de temps à la résolution spatiale de façon à maintenir la stabilité et la précision du schéma
Nous présentons un schéma numérique qui, à chaque résolution, adapte le pas de temps à la
structure de la solution La stabilité de ce schéma adaptatif en espace et en temps est étudiée
pour l'équation de la chaleur puis pour l'équation d'advection Nous expliquons ensuite
comment ce schéma peut être utilisé pour la résolution de l'équation de Burgers (en une
dimension) avec conditions aux limites périodiques Nous présentons enfin des résultats
numériques sur la précision et la complexité du schéma
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1. INTRODUCTION

Smgularities and sharp transitions in solutions of partial differential
équations model important physical phenomena such as beam focusing in
nonlmear opties, the formation of shock waves m compressible gas flow, the
formation of vortex sheets m high Reynolds number incompressible flows,
etc A charactenstic feature of such phenomena is that the complex behavior
occurs in a small région of space and intermittently m time This makes them
particularly hard to simulate numencally by solvmg the partial differential
équations with conventional numencal methods, promptmg the development
of adaptive numencal methods In these methods most of the computational
effort is concentrated near régions where singulanties or sharp transitions
occur We will study hère a numerical method for solvmg partial differential
équations based on the wavelet transform, which is adaptive both in space
and time

Adaptive gnds have been studied extensively in numencal analysis
Adaptive finite element methods have been proposed by Brandt [7] for
elhptic problems, and developed by Bank [1] and others More recently,
Berger and Ohger [4] have studied and implemented an adaptive mesh
refming method for hyperbolic partial differential équations which has been
successfui in solvmg previously intractable problems [3] They use a
séquence of nested gnds in space that are progressively finer An automatic
error estimation step détermines locally whether the current resolution of the
numencal solution is saffiCient or a fmer gnd is necessary The mam
difficulty is findmg stable and accurate différence approximations of the
differential operators at the interfaces between gnds of different sizes

A non-orthogonal hierarchical basis method has been proposed by
Yserentant [18] to adapt the numerical computations to the local regulanty of
the solution Wavelets orthogonal bases are other examples of hierarchical
bases Liandrat and Tchamitchian [11] have shown that the multiresolution
structure of wavelet orthonormal bases is a simple and effective framework
for spatial adaptive algonthms Instead of refinmg the computations through
nested gnds of successively fmer meshes, as in the algonthm of Berger and
Ohger [4], wavelet orthonormal bases implement adaptive refinement by
successively addmg layers of « details » that mcrease the resolution of the
approximation locally Communication between the different layers of
details is regulated automatically by the orthogonality of the basis functions
The order of approximation of this spatial discretization dépends upon the
wavelet that is used

In Section 2, we review briefly the construction of wavelet orthonormal
bases through multiresolution approximations In Section 3, we desenbe the
Liandrat-Tchamitchian spatial adaptive scheme for solvmg partial differential
équations For many évolution problems that are solved numencally with a
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A WAVELET BASED NUMERICAL METHOD... 795

space adaptive scheme, it is necessary to adapt the time discretization to the
spatial resolution. If we use a time step At, it must be adapted to the highest
re solution that is encountered over the whole spatial domain, even if this
high resolution is maintained over a very small domain. If the spatial
resolution is refined locally, the time step Ar must also be refined to maintain
the stability and accuracy of the numerical scheme. This means that a local
spatial refinement, even over a small domain, increases the global numerical
complexity quite substantially. To avoid this problem, Berger and Oliger [4]
have introduced local time steps that are adapted to the local mesh
refinements. For adaptive numerical methods based on wavelets, it is also
important to have a local time discretization. In this paper we present a new
algorithm that adapts the time discretization to the resolution parameter that
appears in a wavelet orthonormal basis. We describe this algorithm in
Section 4, first for the heat équation and then for the linear advection
équation. We have studied numerically the stability of the algorithm in these
two cases. In Section 5 we describe how this algorithm can be applied to the
Burgers équation and we present some numerical results.

2. MULTIRESOLUTION APPROXIMATIONS AND WAVELETS

Wavelet orthonormal bases were introduced by Meyer [14] and Stromberg
[16]. These bases are built from a single function *p(x) which is dilated and
translated on uniform grids. Let

, ) (1)

and

^ iW(x)= * , ( jc-2- 'n). (2)

Then, for certain functions &(x), the séquence of functions
(^fn(x))(n,j)6Z2' is a n orthonormal basis in L2(R). A good way to
understand the construction of wavelet orthonormal bases is through the
multiresolution analysis introduced by Meyer [14] and Mallat [13]. The
approximation of a function f (x) e L2(R) at the resolution 2J is defined as
the orthogonal projection of ƒ (x) on a space V; of a multiresolution
approximation.

DÉFINITION : A multiresolution approximation of L2(R) is a séquence
ÇVJ)J ez of closed sub-spaces of L2(R) such that :

1. Vy^Z, Vy . l CV ;

2. H V; = {0}

vol. 26, ne 7, 1992



796 E. BACRY, S. MALLAT, G. PAPANICOLAOU

3. P ) V, =L2(R)

4. V/ E L 2 ( R ) , Vy e Z,f(x)e\Jof(2x)eVJ + l

5. There exists a function g (x) e Vo such that the séquence (g (x - n ))n e z

is a Riesz basis of Vo.

It can be shown that for any multire solution approximation there exists a
function <f> e Vo, called scaling function, such that if we dénote

j <f>(2Jx) (3)

and

4>Jtn(x)= 4>j(x-2-*n), (4)

then at any resolution 27, the family of functions (</>7i„(*))« ez> is a n

orthonormal basis of V;. Let us dénote by Pv the orthogonal projection onto
V r Let /(jc)eL2(R). The approximation of f(x) at the resolution
2J is the orthogonal projection of f{x) onto V̂  and thus given by

n = — oo

where < , ) dénotes the Standard inner product in L 2 ( R ) . Since \ J _ l a

Vy, each space Vy can be decomposed into

Vj=Vj-x®Vrj-i, (6)

where Wy _ x is the orthogonal complement of V; _ x in V;. Let us dénote by
Fw the orthogonal projection onto Wy. From (6) we see that

P ^ / ( x ) = PVy_I/(x) + PWj_ l/(jc). (7)

This relation indicates that an approximation at a re solution 2J can be
decomposed into an approximation at a lower resolution 2J ~! plus the
« details » at the resolution 2J which are given by Pw lf{x).

It can be shown [14], [12] that for any multiresolution approximation there
exists a wavelet ^(x) such that the family of functions (^Jt„(x))neZ is an
orthonormal basis of Wy at any resolution 2J. As a conséquence of (6) and of
property 3 of the multiresolution définition, we have that

+ 00

L2(R)= 0 W, , (8)
J = - o o

M2AN Modélisation mathématique et Analyse numérique
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and all the spaces W7 are mutually orthogonal. This implies that when the
resolution index j varies from — GO to +00, the family of functions
(tffjtK(x)\nj)eZ2 is an orthonormal basis of L2(R). Meyer [14] adapted
multiresolution approximations and wavelet orthonormal bases of L2(R) to
the space of functions in L2([0, 2L]) that are 2L periodic. We just need to
periodize each function t//jn with the summation

^,«(*>= +f *j.n(x-p2L)- (9)
P = ~ 00

The resolution 2J must be larger than the inverse of the period, which is equal
to 2~L, and the space V_L is the sub-space of functions in L2( [0, 2L] ) that are
constant. One can show that the family (^y> „),>_£, nez i s a n orthogonal
basis of the orthogonal complement of V_L in L2([0, 2L]). These periodic
wavelets are particularly useful for problems with periodic boundary
conditions. Wavelets have also been adapted to deal with two-point
boundary value problems by Xu and Shann [17].

In numerical computations, resolution is limited by memory constraints
and computation times. Instead of working with a function ƒ (x) we must
consider its approximation up to a given resolution 21 :PVf f(x). This

approximation can be decomposed into the detail spaces W, for j <: ƒ, up to
some fixed coarser resolution 2J :

pv, ƒ « = l pw, ƒ<*) + Pv, ƒ(*) • (10)

If we express these projections with an orthogonal basis for each space we
obtain

PV| ƒ ( * ) = £ I ( / " , * J , , ) f J , , W + + f <ƒ, <Pj,n) 4>J, „ (*)• ( H )
j — J n = — oo « = — 00

Figure 1 shows the grid of the wavelet coefficients corresponding to the
décomposition of a function that belongs to Vo. An orthogonal wavelet

*l/(x) is generally centered around the abscissa x — - . Each wavelet function

*l*j n(x) is thus centered around the point x = 2~J n + 2~J ~l and the size of
its support is proportional to 2~j'. At a given resolution 2J, each cross
corresponds to an inner product (ƒ, ^Jt„)9 called a wavelet coefficient. Its
position corresponds to the center of the wavelet function t/̂  n(x). Each row
of crosses corresponds to a layer of detail components that are needed to
increase resolution from 2J to 2J + l. It corresponds to the projection
*V ƒ (*)• The array of crosses shown in figure 1 corresponds to the
décomposition of a function that belongs to Vo.

vol. 26, n° 1, 1992



798 E. BACRY, S. MALLAT, G. PAPANICOLAOU

The absolute value of the wavelet coefficient j (ƒ, $h n) \ dépends upon
the local regularity of/(JC) in the neighborhood of the abscissa 2~3 n. More
precisely, if 2~} n e ]a, b[, the decay of | (ƒ, &Jin) | when the resolution
2J increases dépends upon the Lipschitz regularity of f(x) over the interval
]ö, b[. Let us suppose that the wavelet tff(x) is M times continuously
differentiable and has M + 1 vanishing moments :

[• $(x)dx = 0 for ö^p^n. (12)

Figure 1. — Grid of wavelet coefficients for a fonction that belongs to
Vo = W_j S * * * S W_9 @ V_9. Each cross represents a wavelet coefficient ^ / , «AJtfl> O îs
aïong the A'-axis and / the

THEOREM : Let 0 <= a <: M be a real number that is not an integer. Let
ƒ (x) e L2(R) and [a, b] be an interval. The function f(x) is uniformly
Lipschitz of order a over the interval [a, b] if and only if for any
nel. and j e Z such that 2~J n G ]a, b[,

I <ƒ.*;.»>! = O ( 2 - ^ + 1 / 2 ^ ) . (13)

The proof of this theorem can be found in Meyer's book [14]. It shows that
the decay of the wavelet coefficients, as the resolution 2J increases, dépends
upon the local smoothness of the function. The larger the Lipschitz constant
a, the f aster the decay of the wavelet coefficients. Figure 2(a) shows a
function that belongs to the space Vo and has a sharp transition. Figure 2(b)
shows the grid of wavelet coefficients whose absolute value is larger than a
given threshold. We see a pyramid of coefficients that points to the location
of the sharp transition. The width of the pyramid dépends on the size of the
wavelet support. The number of wavelet coefficients at each resolution
2J is approximately a constant. Let us set to zero all the wavelet coefficients

M2AN Modélisation mathématique et Analyse numérique
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below some threshold. Out of 512 wavelet coefficients only 80 are non-zero.
Let ft(x) be the function reconstructed from these wavelet coefficients. Then

11/-ƒ,1
II/IIL»

= 8.6 x 10- 4 (14)

The function ft(x) is a good approximation of ƒ (x) because we removed
only the wavelet coefficients of small amplitude. The pyramidal grid shown
in figure 2{b) can be viewed as an adaptive grid where the resolution is
adapted locally near the irregularity of the function. In the neighborhood of
the abscissa 100 the function is very smooth and is thus locally approximated
at the resolution 2~5 whereas at the abscissa 256 the signal has a sharp
transition and we need the full resolution. If the wavelet <A(x) has
M + 1 vanishing moments, this pyramid of wavelet coefficients corresponds
to a set of nested grids using finite éléments of order M.

Figure 2. — (a) Function which belongs to Vo. (b) Grid of wavelet coefficients for the function
in figure 2(à). Only the wavelet coefficients larger than 5 x 10"3 are display éd. The analyzing
wavelet is spline 5.

vol. 26, n° 7, 1992



800 E. BACRY, S. MALLAT, G. PAPANICOLAOU

If the original function ƒ (x) is given at a fixed resolution 21 by Af values
over a uniform grid, then all the wavelet coefficients <ƒ, ^ , „ ) , for
j < I can be computed with a fast algorithm that requires O (N ) opérations
[13]. A fast wavelet transform is thus faster than a fast Fourier transform. It is
based on a cascade of convolutions with discrete filters called quadrature
mirror filters [13]. The reconstruction of the original TV-point function from
the wavelet coefficients also requires O(N) opérations. This fast wavelet
transform algorithm is very effective in computationally intensive appli-
cations.

Some examples of wavelet bases.

The properties of orthogonal wavelets derived from multiresolution
approximations are now well understood [14], [13]. Different types of such
wavelets can be constructed. The simplest possible wavelet is the Shannon
wavelet whose Fourier transform is the indicator function

1 i f TT ^ I O> I ^ 2 7T /1 C\

, .' ' (15)
O otherwise.

This wavelet has compact support in the Fourier domain but has a slow decay
in the spatial domain. Meyer showed that one can build wavelets which are
infinitely differentiable and rapidly decreasing functions (Schwartz func-
tions). These wavelets have also compact support in the Fourier domain
while in the spatial domain their asymptotic decay at infinity is O(x~p) for
any p > 0. For many applications the numerical decay of these wavelets is
too slow. Battle [2] and Lemarie [10] have constructed polynomial spline
wavelets with exponential decay that have good numerical properties. In the
following, these wavelets are referred to as spline n, where n indicates that it
is a polynomial spline of order n. Such a wavelet is n — 1 times continuously
differentiable, has n + 1 vanishing moments and decay s exponentially in the
spatial domain. Daubechies [8] constructed orthogonal wavelets with
compact support and an arbitrary degree of smoothness. We call such a
compactly supported wavelet with n vanishing moments Daubechies n.
Because of their compact support, the Daubechies wavelets are particularly
useful in numerical applications.

3. SPATIALLY AÖAPTIVE WAVELET METHODS FOR PDE's

The ability of the wavelet transform to compress information by taking
advantage of the local regularity of a function has many applications in signal
processing and numerical analysis. Liandrat and Tchamitchian [11] have
suggested that these properties should be used to do adaptive grid compu-

M2AN Modélisation mathématique et Analyse numérique
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tations for PDE's. In this section, we describe the basic ideas of such
adaptive schemes.

Suppose that we want to solve numerically an évolution équation

w(0, x) = uo(x)

where K is an operator that acts on the x variable. The three examples that we
study in detail are :

1. Diffusion équation : Ku(t, x) = ^—- ,
dx2

2. Linear advection équation : Kw(f, x) = ——-,
dx

3. Burgers équation : Ku(t, x) = - u(t, x) ' X'.
dx

For simplicity, we discretize time by a forward Euler scheme

u(t + Af, x) - ïï(t, x)
At (17)

where u{t, x) is the approximate solution at time t. This leads to the explicit
scheme

u(f + Af, x) = (I + Af K) u(t, x). (18)

This time discretization has poor stability properties for the linear advection
and the Burgers équation. However, as explained later, we can use an
explicit scheme of higher order in time that is stable for these équations. Let
us for now suppose that (18) is stable.

The basic idea of a wavelet-based spatial adaptive scheme is to express
équation (18) in a wavelet orthonormal basis. For each t, the function
ït(t, x) is represented by its wavelet coefficients. The operator I + A£ K is
represented by a matrix in the same wavelet basis in order to compute
directly the wavelet coefficients of u(t + Ar, x).

Let us consider the matrix représentation of a linear operator O relative to a
wavelet basis. We have

+00

° = I S *w,OPWj. (19)
j = - ao / = - oo

Beylkin, Coifman and Roklin [6] have shown that if O is a suitable pseudo-
differential operator, each component PW} OPW can be approximated with
arbitrarily high accuracy by a band matrix. This means that O is represented

vol. 26, n° 7, 1992



802 E. BACRY, S. MALLAT, G. PAPANICOLAOU

by blocks of band matrices. In actual computations the infinité sums of (19)
are finite. They are limited above by the finest resolution of the solution and
below by the coarsest resolution 2\ as in équation (10). Figure 3 shows how
the operator O acts on the wavelet coefficients of ü(x, t ). In this example, the
finest resolution 21 is equal to 2"l and the coarsest resolution 2J is equal to
2~3. The width of each band dépends upon the properties of the operator O
and the size of the wavelet support.

If K is a linear differential (or pseudo-differential) operator, then
O = I 4- At K is represented by band-matrices. If the solution ü(t, x) has
isolated sharp transitions, as in figure 2(a), we can set to zero its wavelet
coefficients that are smaller than some threshold value, as in figure 2{b),
Since O is represented by blocks of band matrices, one can easily show that
the domain where the wavelet coefficients of ït(t + At, x) is non-negligible is
at most equal to the corresponding domain for ïi{t, x) plus the width of the
bands in the matrix that represents the operator O in the wavelet basis (see
fig. 5), If P is the total number of nonzero wavelet coefficients of
u(t, x)9 the number of opérations required to compute Ou(t, x) is
O(P) [5], For Burgers équation, the operator K is nonlinear, so the previous
result does not apply to O = I + àt K. However, Beylkin, Coifman and
Rocklin [6] have shown that the same computational complexity is obtained

w.

W, Mi ^ . : \ : \ i \ m W,

W,

V-3

Figure 3. — A pseudo-differential operator is represented by blocks of band matrices in a
wavelet basis. When applied to a functioiï that has few nonzero waveîet coefficients (shown by the
grey area), the computational complexity is proportional to the number of nonzero coefficients
and the wavelet coefficients of the result are nonzero in localized domains.

M2AN Modélisation mathématique et Analyse numérique
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if O is an «-linear operator. This is the case for Burgers équation since
K(u) = Bxu

2/2 can be rewritten as K(«) = 9xB(u, u)/2 where B is the bilinear
form B(M, V) = UV. For the Burgers équation the number of opérations
required to compute (I + àt K) u(t, x) is still O(P ), where P is the number
of nonzero wavelet coefficients of ü(tf x).

We see therefore how to take advantage of the compressed représentation
of u(tf x) in a wavelet basis in order to reduce the number of opérations. Let
us now describe the method suggested by Liandrat and Tchamitchian [11] in
order to adapt in time the spatial wavelet adaptive grid, and to follow singular
structures of the solution. As we already explained, at each time t we keep
the wavelet coefficients which are larger than a given threshold A. In order to
be able to track singularities we also keep the adjacent coefficients. We say
that a wavelet coefficient (w, ^ „) is adjacent to another wavelet coefficient
(ü, tfft i} if and only if i — j and | n — m | =s= 1 oxj = i + 1 and / ^ n =s l + 1
(the apparent asymmetry of the last condition is due to the fact that a wavelet
is centered at x - 1/2 and not at x — 0). In figure 4, the wavelet coefficients
above the threshold A are represented by crosses whereas the wavelet
coefficients that are adjacent to the crosses (Le., the « border » of the crosses
set) are represented by circles. We dénote by <ët the grid of wavelet
coefficients (crosses and circles) that are kept and represent the approximate
solution at time r. The numerical algorithm is a 3 step loop :

1. In the previous step we have computed the wavelet coefficients of
uit, x) only at the positions of the grid <£t _ àt ; the other coefficients are set to
zero. We then adjust *£t _ Af by changing into crosses the wavelet coefficients
greater than the threshold and changing into circles their adjacent ones. This
new set of circles and crosses defines the grid <êv

2. We project u{t, x) on the space corresponding to &t. This means that
we put to zero all the wavelet coefficients of ïi(t, x) which do not correspond
to crosses or circles of the new grid @t.

3. From équation (18) we compute the wavelet coefficients of u(t + at, x)
corresponding to crosses and circles of the grid *§t. We then go back to
step 1.

The basic hypothesis behind this algorithm is that during a time àt, the
domain of crosses does not move in space and resolution beyond its border of
circles. With such an algorithm the grid of wavelet coefficients is dynami-
cally adapted in time and follows the local structures that appear in the
solution.

The accuracy in the approximation of the adaptive grid of wavelet
coefficients dépends only upon the threshold coefficient A. Figure 4 shows
the évolution of the wavelet grid for the solution of the periodic Burgers
équation with initial condition w(0» x) - sin (wx). The solution is uniformly
smooth initially and all the wavelet coefficients are below A at resolutions

vol. 26, n° 7, 1992



804 E BACRY» S. MALLAT, G PAPANICOLAOU

(b)
Figure 4. — Evolution of the solution of the periodic Burgers équation. The initial condition

u^Or) = sin {irx) is shown in (a). The grid of wavelet coefficients is displayed below each graph.
Crosses indicate the wavelet coefficients larger than a given threshold and the cirdes are along
the « borders » of the crosses.

larger than 2 1\ The border of circles corresponds to the coefficients at the
resolution 2~ 6. When the discontinuity develops some wavelet coefficients
are no longer negligible at the resolution 2"5 (and then part of the border of
circles is at resolution 2~4). In figures 4(c) and 4(d), we see that the pyramid
builts up progressively as the solution develops a sharper transition.

Wavelet orthonormal bases provide a simple procedure to implement
spatial adaptive grids that are updated dynamically. We now concentrate on
issues related to the discretization of the time parameter. In the next section
we study first the heat équation and then the linear advection équation. In
Section 5, we extend our results to the Burgers équation.

M2AN Modélisation mathématique et Analyse numérique
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-

E> JLÔO

-

- -

_ ^ _ -g-

So" «oc»

-

-

(c)

4. TIME ADAPTIVE RESOLUTION

As we explained at the end of Section 1, in order to have a stable and
accurate numerical scheme, the time discretization must be adapted to the
spatial resolution of the computations. In this section, we explain how to
introducé time adaptivity within the wavelet scheme described above. If we
limit the computations to a resolution 2} then the time évolution équation

àu(x, t)
dt = Ku(t,x)

is replaced by
t)

= K, Uj(t,x),

(20)

(21)

vol. 26, n° 1, 1992
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where the operator K, is defined by

K, = PVj KPV . (22)

The operator Ky approximates the operator K at the resolution 2J so that the
solution Uj (r, x) remains in the space V r The forward Euler discretization of
(21) is

Uj(t + Ar, x) - (I + Ar K ;) w/r, x). (23)

and it is stable if and only if

||I + A f K j « 1 . (24)

As a first example, let us study the heat équation in some detail.

4.1. Time Adaptivity for the Heat Equation

For the heat équation

Since K is a nonpositive, symmetrie operator, K, is also a nonpositive
operator and thus équation (24) is equivalent to

At || K, || as 2 . (25)

We know that there exists a family of functions (^.„OOXiez»
<f>jn(x) = \/2J<f>(2Jx-n)i which is an orthonormal basis of Vy. By
expressing the operator K, in this basis, we see that there exists a constant C
such that

|| KJ =C22j = C 4* . (26)

Thus, the numerical scheme (23) is stable if and only if

Ar = Ar, ^ 4 - ' . (27)

When the spatial resolution is increased by a factor of 2, the upper bound of
the time incrément is divided by 4. To compute the solution with a resolution
2J at the time T = 1 with a time step of Ar;, the number of time steps is equal
to 1/Ary. Thus, to minimize the computations we must use a time step
Ary that is as large as possible. The basic idea of the time adaptive algonthm
is to modify the time step Ar; at each resolution 2}.
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Let us explain how to implement this idea by comparing the forward Euler
scheme (23) at two successive resolutions 2l and 2 7" 1 . At the resolution
27, the solution %(r, x) belongs to YF and the Euler scheme is stable only if
the time step àtr satisfies àtf === 2 C " ! 4"7 . If we approximate the solution at
the lower resolution 21 " l

9 the time step must satisfy àtI_l^2C~14~I + l

and so we may choose a time step four times larger, àtI_1 = 4 Af7. This is
because the solution remains in the smaller space V7 _ {. We can décompose
the higher resolution solution ûf(t, x) into its components in the spaces
V] „ j and W7 _ x. It is natural that the component in the space V; _ x should be
computed with a time step equal to àtj _ l in a stable manner, while the
component in W7 _ t should be computed with the smaller time step
Ar,.

Let us develop this idea further. At the resolution 2! l the solution at time
t -f àtj „ i is computed from the solution at time t by applying the operator
I + Af/ _ i K7 „ j :

S / , i ( f + **ƒ_!, Jt)= (I + A o . j K ^ O B / . i a . x ) . (28)

At the resolution 27, Af7 is four times smaller so we need 4 itérations to
compute the solution at time t + Atj __ j :

Uj{t + A^_ l 5 x) = %(f + 4 A^, x) = (I + A*/ K7)4 57(f, je) . (29)

To relate équation (28) with équation (29), we décompose the operator
K/. By définition

Kj = ¥Vi KP F / . (30)

Since ¥Vf = PV/ _i + ¥Wf_l9 we obtain

+ P V | . 1 K / _ 1 P W / . 1 + P W / _ I K / . 1 P W / _ 1 . (31)

The operator Kf _ 2 = P¥ / i KPF/ i updates the components of lower resol-
ution 21'1 to those of lower resolution 21 ~l. The operator

updates the detail components on themselves and on those of lower
resolution 2 7 " 1 as well as the low resolution components onto the detail
components. Equation (31) implies that

KI = TI + KI_1 (33)
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and using (33) in (29) we get

Uj{t + 4 àth x) = (I + Atj Tf + Atj Kj _ j)4 uj(t, x) . (34)

The scheme (28) suggests that the operator K7 _ x can be updated with a time
step Atj _ j — 4 Atj, instead of Ar;. We thus modify scheme (34) by updating
Kj _ i with a time step 4 Atj while the T7 component is updated with a time
step Atj

u,(t + 4 Ar„ x) = ((I + Af, T>)4 + 4 Af7 K, _!>«/(*, x) . (35)

In this scheme, the components at the lower resolution 2l ~ l are updated with
a time step Atj _ x = 4 Atj, but the components of the higher resolution details
are updated with a time step Atj. The numerical complexity to compute
T/ Uj (f, x) is proportional to the number of nonzero wavelet coefficients at
the resolution 27, whereas the complexity to compute ILj_lul{t, x) is
proportional to the number of nonzero wavelet coefficients at all resolutions
smaller than 21. If the solution has isolated sharp transitions, as in figure 2,
there are fewer wavelet coefficients at the resolution 21 than below this
resolution (see fig. 2(b)). Equation (35) thus requires substantially fewer
computations than équation (34).

The same procedure can be repeated in order to adapt the time step to one
more level of resolution. To compute the solution at t -4- 42 Atj we must
iterate 4 times the operator previously defined

uj(t + 42 Atj, x) = ((I + At} Ttf + 4 Ar, K , ^ ) 4 S/(f, x). (36)

Since we know that the operator K7 _ 2 by itself can be incremented by a time
step A£7 _ 2 = 42 Atj, we décompose K/ _ t into

K^-T^+K^ (37)

as in (33). We then modify (36) as we did with (35) so that the time step is
adapted to each component K7_2 and TI_1. We obtain

üj(t + 42 Atj, x) = (((I + A/7 T7)4 + 4 Atj Tj.O4 + 42 Atj KF_2) üj(t, x).
(38)

This time adaptivity can now be applied on as many levels as desired. The
gênerai scheme can be formulated as foliows. Let 21 be the finest resolution
of computations, At} be the time step at that resolution and let/? be a positive
integer. To compute the solution at a time t + 4P Atj given the solution at
time t, the forward Euler scheme based on the finest resolution gives

Uj (t + 4p AtIf * ) = (I + Atj Kjf uj{t, x) . (39)
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If the wavelet transform is computed over p « octaves » (Le., on p
resolutions), this can be rewritten in the form

ïtj (t + 4? Atj, x) = (I 4- Atj Tf + Atj Tj _ 1 +

+ . . . + Atj Tj _p+ ! + Atj Ki-Pf ui(*> * ) . (40)

The time adaptive scheme replaces this scheme by

uI(t + 4PAti,x) = EÇuI(t,x) (41)

with

E? = ( . . . ( ( I + Atj Ttf + 4 Atj Tj _ J ) 4 +

+ • • • + 4P' l Mt Tf _p_ xf + 4P Ar7 K, _p . (42)

In this scheme, (41) represents one itération of the time adaptive operator
Ef. To compute the solution at a certain time T we must take TI(4F Ar7) steps
with the operator Ef If p = 0, we obtain Epj = E°j = (I + Atj Kf)

T/àtl which is
the forward Euler scheme.

Stability for the heat équation.

Let us now discuss the stability of this time adaptive scheme for the heat
équation where K = 92/3x2. From (27) we see that the forward Euler scheme
(23) is stable at resolution 21, if and only if

A ' / ^ 4 ~ / ' ( 4 3 )

where the constant C is defined by (26) and the numerical scheme (41) is
stable if and onîy if

HE?H « s i . ( 4 4 )

For the Shannon wavelet we prove in Appendix 1 that

loAf,^4-'. (45)

This means that the time adaptive scheme is stable for the same range of time
steps Atj as the nonadaptive forward Euler scheme :

l o \\I + A t j K j \ \ ^ l . (46)

For the Shannon wavelet the proof of this resuit is simple because the
operators T, are diagonal in a Fourier basis. For other wavelets we have no
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mathematical proof but numeneal results seem to mdicate that property (46)
remains valid We tested different wavelets that belong to the Meyer family
[14], to the polynomial splme family of Battle [2] and Lemane [10] and to
the compactly supported family of Daubeehies [8]

TABLE 1

For each orthogonal wavelet listed in the first column, the second and third
columns give the maximum time incrément Atj for which the nonadaptive forward
Euler scheme and the time adaptive scheme are stable, respectively These values are
equal which means that both schemes are stable over the same range of time
incréments

Shannon
Meyer
Sphne 3
Sphne 5
Splme 7
Sphne 9
Daubechtes 10
Daubechtes 14
Daubeehies 16
Daubechtes 18

Forward Euler scheme
9 987 x 10"3

9 990 x 1(T3

9 988 x 10"3

9 988 x IO-3

9 988 x KT3

9 988 X KT3

10 022 x IO-3

9 989 X IQ"3

9 990 X 10"3

10 005 X 10"3

Ttme adaptive scheme
9 987 x 10~3

9 990 x 10~3

9 988 x 10~3

9 988 x 10~3

9 988 x 10~3

9 988 x lu"3

10 022 x IO-3

9 989 x IQ"3

9 990 x 10~3

10 005 x IQ"*3

We estimated numencally the stability of the scheme by computing the
maximum Ar; for which the L2(R) norm of the solution at any time t remams
smaller than the norm of the initial condition uo(x) This means that the norm
of the operator Ef is smaller than 1 This test was done with an initial
condition uö(x) equal to the projection on Vo of the indicator fonction of an
interval, but the results are independent of the initial condition To check the
stability, we do not adapt the spatial resolution of the computations and thus
do not apply a threshold to the wavelet coefficients The initial solution is
charactenzed by 64 wavelet coefficients and the time adaptive scheme is
computed over 5 octaves, 1 e p = 5 in équations (41) and (42) Table 1 gives
the maximum time Atr for the nonadaptive m time forward Euler scheme and
for the time adaptive scheme, with different wavelets Smce the resolution
2! is the same in these expenments, the maximum value of Ar7 varies with the
constant C of équation (43), which dépends upon the particular wavelet that
is chosen As expected from the proof m Appendix 1, for the Shannon
wavelet the limit of stability is reached at the same maximum time incrément
àtj for the forward Euler scheme and for the time adaptive scheme What is
more mterestmg is that this result remams valid for all the other orthogonal
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wavelets that we checked. For the 10 different orthogonal bases given in
Table 1, the maximum time step of the time adaptive scheme given in the last
column is the same as the maximum time step of the nonadaptive in time
scheme. We verified this property by computing the eigenvalues of the
operators E^ and I + Atj K7 and we checked that the maximum of their
absolute value reaches 1 for the same time step Ar7. It seems that this
property is independent of the wavelet that is chosen and is a conséquence of
the multiresolution structure of wavelet orthonormal bases. We have no
proof for this conjecture, which is motivated and supported by numerical
results.

4.2. Time Adaptivity of the Linear Advection Equation

Before considering the Burgers équation, we introducé the space-time
adaptive scheme for the linear advection équation, K = — v d/dx, where v is
the constant translation velocity. As in équation (21), the PDE is approxi-
mated at the resolution 2J by

duAx, t)
3 ^ =KjUj(t,x), (47)

where the operator K; is defined by

K, = PVj KPV . (48)

One can easily prove that

| |KJ =C2 . (49)

The explicit forward Euler scheme is unstable for a linear advection, so we
use instead the expiick Adanib-Bashforth scheme which is defined by

üj(t + Atp x) = Uj(t9 x) +

4- àtj(aKj üj(t, x) + bKj u}(t - A^, x) + cK; u}(t - 2 Ar,, JC)) , (50)

with a = 23/12, b = - 16/12, c - 5/12. Stability results from using the past
values of ïi}(?, x) at time t — Ar; and t — 2 Atj. We dénote by || 1A}(t, x)\\ the
L2(R) norm of u}(t, JC) in the x variable. One can prove that this scheme is
stable in the sense that

| | y y | | | |S/r, JC)||, ||a,(r - Atp x) | | , | |u^t - 2 Atp x)\\ )

at any time t and for any initial condition, if and only if

Ar, «s C" 2 " ' . (51)
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The constant C ' dépends only upon the constant C defined by équation (49).
This simple définition of stability enables us to compare more easily the
stability of the time adaptive scheme versus the nonadaptive in time scheme.
^From the initial condition 2^(0, x) = uö(xX we compute the first two steps
ùj(Atr x) and u}{2Atpx) with a forward Euler scheme. If the initial
condition uo(x) is four times continuously differentiable, the error introduced
by the time discretization when computing the solution at T — 1 is

The Adams-Bashforth scheme (50) can be rewritten in matrix form. Let us
define

(52)

ïïJ(t~2àtJ,x)

and the following matrix of operators

IaKj üj(t,.

Kj Uj(ux) =

- Mp x) + cKj Uj(t~2 Atp x)\

O
O

fUj(t,x)\

rJj(t,x) - [ Uj(t,x) ,
n /
M /

o
M, U,(t,x)= | O

(53)

(54)

(55)

The operator / plays the role of the identity, as in a forward Euler scheme
(23), but it also updates the first memory component The memory
component at time t — àtj is updated by the operator My The Adams-
Bashforth équation (50) takes the form

Uj(t + Atp x) = (/ + Af, K} + Ai,) Uj(t9 x). (56)

It has the same structure as the explicit Euler scheme (23) but includes a
« memory » component which is carried by the operator M}. To obtain a time
adaptive scheme we proceed as we did with the heat équation except for two
important différences :

1. The stability condition (51) implies that the time step can increase by a
factor 2 and not 4 when the resolution decreases from 21 to 21 ~~l :
àt

f _
= 2

2. We must also have a time adaptive memory component.
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To introducé the time adaptive scheme, as in subsection 4.1, we compare
the Adams-Bashforth scheme at the resolutions 27 and 21 ~ l. At the resolution
2! and for a time step Atf, the Adams-Bashforth scheme requires the storage
of Uj(t, x), Uj(t - Af7, JC) and w7(r - 2 Atj, JC). At the resolution 2l ~ l and for
a time step Atl_l =2 Atj, it requires to keep the solution at t, t — 2 Atj and
t — 22 Atj. To make the two scheme s comparable, we must therefore use a
memory vector that has four components

- At„ x)

- 2 At„ x)

\ù,(t-22Atr,x)l

(57)

Let us recall that the component of the operator K related to the projection of
the solution on the space W7 _ x is defined

(58)

and can also be written as in (32). We define the operator T] by

x)

T}U}(t,x) =

üj(t - Atj, x)

0
0
0

ü}(t -2 Atl9 x)\

(59)

It uses the first three components of U) to compute the part of ur(t + At}, x)
which is related to the WI_X space. At the resolution 27"1 , the Adams-
Bashforth scheme is computed with the operator K} _ i :

£/_i ûj(t - 2 Atj, x)
0
0
0

Then, the operator I defined in (53) becomes

IlU){tyx) =

- 22 At[y x)\

. (60)

(61)
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The updates of the memory components at the resolutions 27 and
21 ~ l are respectively given by

0
0

x)
(62)

0
0
o

(63)

As m the heat équation (35), we obtam a time adaptive Adams-Bashforth
scheme by updating the higher resolution component twice as fast as the
lower re solution one

U}(t + 2 Af/f x) = ((I1 + Af, T) + M)f + 2 Ar, K1
I_l+M]_l) U}(t, x)

(64)

The memory component at the resolution 21 is updated by the operator
M] whereas Mj __ j updates the memory component at the resolution
2/-i

Let us now introducé the gênerai time adaptive scheme Let 21 be the fin est
resolution of the computation Letp be a positive integer and we suppose that
the wavelet transform is computed over/? octaves The time adaptive scheme
requires a memory vector with p + 3 components

x) =

/ u}(t, x) \

uj(t - Ath x)

üI(t-2Athx) (65)

In the same way as above, the identity plus the update of the first memory
component is given by

IpU]l(f,x) =

t, X)\

t, x)

\

O

O

(66)
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define the operator

815

For any resolution 2I~k, with k<p, we

,(t, x) + bT{_kü,(t - 2k At„ x)
0

0

__ k ïij (t - 2k +

r, x

(67)

At the same resolution 2!~k, the memory component is updated by the
operator

0

0

0

0

(68)

whose only non-zero element is the (k + 3 )d one. At the lowest resolution
21 ~p, we use the operator

t,x) =

faK, _p u,(t, x) + bK, _p u,(t - 2p At„ x)
0

0

_p
j, x)\

(69)

At each resolution the time adaptive scheme is then defined naturally, as in
(41), by

Ui (f + 2pA/7, JC) = E", Upj{t, x) (70)

with

T?

M"1_p_ {f + 2? At, K$_p + MÇ _p . (71)

Let us note that in order to compute the solution at time T we need to apply
this operator T/(2P At,) times. From the initial condition at t = 0 we can
compute each component of the initial memory vector Up, (2P +1 Atn

x) with an explicit forward Euler scheme.
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Stability for the advection équation

Let us now discuss the stability of this time adaptive scheme. We say that
the scheme is stable if and only if at any time t and for any initial condition
Uf(O, x), all the components of the vector f/f (f, x) have an L2(R) norm in
the x variable, which is smaller than or equal to the maximum L2 (R) norm of
the components of the initial condition U^(0, x). We mentioned in (51) that
the Adams-Bashforth scheme for the advection équation (50) is stable if and
only if

btj^C'2-1. (72)

For the Shannon wavelet (15), we show in Appendix 2 that the numerical
scheme defined by 2sf rernains stable over the same range of time steps
Atj as the nonadaptive in time scheme (50). For this wavelet, the proof is
relatively simple because all the operators involved are diagonalized by the
Fourier transform. As in the case of the heat équation, for other wavelets we
test for the stability of the time adaptive and nonadaptive in time schemes by
computing the maximum time incréments for which they remain stable. In
these experiments we do not apply a threshold to the wavelet coefficients
which means that we do not introducé any spatial adaptivity.

This test was done with an initial condition uo(x) equal to the projection on
Vo of the indicator function of an interval. The initial solution is characterized
>>y 54 wavelet coefficients and the time adaptive scheme is computed over
5 octaves, Le. p = 5 in équations (70) and (71). Table 2 gives the maximum
time Atj for which the nonadaptive Adams-Bashforth and the time adaptive
schemes remain stable, This maximum time step is computed with less
accuracy than for the heat équation because of the necessity to compute the
first few steps directly, given the initial condition at t = 0. As expected from
the proof in Appendix 2, when the accuracy of the computation is fixed» the
limit of stability for the Shannon wavelet is reached at the same maximum
time incrément Atj for both the Adams-Bashforth and the time adaptive
scheme. For the Meyer wavelet as well as for the spline wavelets of Battle [2]
and Lemarie [10], the maximum time step is the same for the time adaptive
and the nonadaptive in time schemes, with the accuracy of our numerical
eomputations fixed. On the other hand, this result is not valid for the
Daubechies wavelets, although the values of the maximum time steps remain
close. We do not know why the stability of the scheme is different for the
Daubechies wavelets. The Daubechies wavelets have compact support and
they are neither symmetrie nor antisymmetric in contrast to the wavelets of
Meyer and Battle-Lemarie. We note that when the support of the Daubechies
wavelet increases, the différence between the maximum time step of both
schemes decreases but it is not clear why this is happening. We emphasize,
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TABLE 2

817

For each orthogonal wavelet listed in the first column, the second and third
columns give the maximum time incrément Atj for which the Adams-Bashforth
scheme and the time adaptive scheme are stable, respectively.

Shannon
Meyer
Spline 3
Spline 5
Spline 7
Spline 9
Daubechies
Daubechies
Daubechies
Daubechies

10
U
16
18

Adams
3.61 x
5.25 x
4.99 X
4.52 x
4.30 x
4.19 X
6.27 x
5.78 x
5.44 x
5.48 X

Bashfortk scheme
io-3

io-3

io-3

10~3

io-3

io-3

io-3

10~3

io-3

10~3

Time adaptive scheme
3.61 x 10"J

5.25 x IO-3

4.99 x 10"3

4.52 x IO-3

4.30 x IO-3

4.19 x IO-3

5.48 x 10"3

5.39 x 10"3

5.21 x 10"3

5.37 x IO-3

however, that even in the Daubechies case, the schemes are stable over a
comparable range of time incréments.

Complexity estimâtes for the advection équation

Let us now discus s the numerical complexity of the time and space
adaptive scheme as compared to the space adaptive scheme that is not time
adaptive. Since the linear advection équation just translates the initial
solution, the number of non-negligible wavelet coefficients remains approxi-
mately constant in time. Let 21 be the finest resolution and suppose that the
wavelet transform is computed over p octaves. The solution is decomposed

onto V, = © W
, _

$t _ ». We dénote by N the number of wavelet

coefficients that characterize the projection of the solution in Vf (number of
samples). The projection of the solution on V7_p is characterized by
2~PN coefficients. Let n} ( ƒ < ƒ ) be the number of nonzero wavelet
coefficients (after applying a threshold) that characterize the projection of the
solution o n W , ] . The total number of nonzero coefficients in the grid is then

equal to £ n}-\-
rl"pN. We thus see that the nonadaptive in time

j=I-p+l

scheme (50) requires

O z
= 1 -p + 1

rij +T pN (73)
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opérations per time step. The constant dépends mostly on the size of the
waveiet support. To compute the solution at time 7 = 1 , we need

time steps and the total number of opérations is

O

For the time adaptive scheme (70), the complexity of computing the action
of each operator T; on the solution is also O (n; ). The time step associated to
the operator T} is àtj = 21 ~J àtj. The total complexity of the scheme to
compute the solution at T = 1 is therefore

(75)
j=i~p+i

The constants in (74) and (75) are approximately the same and depend on the
size of the waveiet support. If the solution has fine structures over its whole
support, then there are almost no negligible waveiet coefficients and
n} =- N2J ~1"1. The complexity given by both (74) and (75) is

(76)

We therefore realize no gain with a time adaptive scheme. This is not
surprising since half of the waveiet coefficients are at the largest resolution
21 and the time step at this resolution is the same for both the time adaptive
and the nonadaptive in time schemes. The time adaptive scheme is efficient
only if the spatial adaptive grid has already removed many waveiet
coefficients. This is the case when the solution has only isolated singularities.
If we suppose that the initial solution has isolated sharp variations, as in
figure 2(a), then the nonzero waveiet coefficients belong to pyramids similar
to figure 2(5). Each pyramid corresponds to a particular singularity. At each
resolution level, the number of nonzero waveiet coefficients nk is approxi-
mately equal to a constant L, which dépends upon the size of the waveiet
support. The complexity of the nonadaptive in time scheme given by (50)
becomes

whereas the complexity of the time-adaptive scheme is

(78)
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If the support of the signal is very large, and the number of wavelet
coefficients L dit each resolution is negligible with respect to the remaining
coefficients 2~p N, then the gain of the time adaptive scheme is a factor of
1P. Otherwise (2~p N =* L), the gain is proportional to the number of octaves
p of the wavelet décomposition. Since p is generally of the order of
log2 (N ), the complexity gain is approximately log2 (N ). Let us emphasize
here that the constants in the complexity estimâtes (77) and (78) are the same
so that the gain is not lost by the size of the constant factors. On the other
hand, since we use larger time steps at coarser resolutions, it is likely that we
also increase the numerical errors of the scheme. The accuracy of the time-
adaptive scheme is studied in the more interesting case of the Burgers
équation.

5. BURGERS EQUATION

In this section, we compare the stability, accuracy and numerical
complexity of the wavelet based space and time adaptive scheme with a
wavelet based scheme which is space adaptive but not time adaptive. We do
not compare our algorithm with more classical numerical schemes, such as
spectral methods or finite éléments, because this type of comparison has
been done by Liandrat and Tchamitchian [11] for the space adaptive wavelet
scheme. With the Burgers équation we want to study specifically the impact
of the time adaptivity on the computed solution.

5.1. Time Adaptive Algorithm

The periodic Burgers équation with small diffusion is given by

fr ), (79)

where K is the nonlinear operator

Ku(t,x) = -u(t,x) \' J + e 4 - ^ , (80)

and the initial solution w(x, 0) = uo(x) is periodic with period 1. For the time
discretization, we use an explicit Adams-Bashforth scheme for the advection
term and an explicit Euler scheme for the diffusion. The time adaptive
scheme we have implemented for the advection term is essentially the same
as the one describe in Section 4. At each resolution 2J the time step is
Atj = 21 ~J At f. In order for the diffusion term to remain in step with the time
adaptivity of the advection term, we use the time incrément 21 ~J Atj instead
of 41 ~J Atf, at a resolution 2J.
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Let us separate the advection and the diffusion terms and define the two
operators

and

K° ƒ(•*) = - ƒ ( * )
dx

(81)

(82)

Let K° = Pv K° FVj and K,1 = PVj K
1 PK/ We also define T° = K;° - Ky°_ 1

and Tj = K.j — K.j _ x. An explicit forward Euler scheme is sufficient for the
diffusion term K°, whereas the nonlinear advection operator K1 requires an
Adams-Bashforth scheme. Both components are integrated in a time-
adaptive scheme which is similar to the linear advection, time adaptive
scheme. Let 21 be the finest resolution of computation. Let p be a positive
integer and we suppose that the wavelet transform is computed over p
octaves. The advection operator K = — 6/8x is replaced by K° and we
manage the memory component in the same way as in (71). The diffusion
term K1 does not use any memory component. As in the linear advection
scheme, the memory vector is defined by

r) =

The operators are given by

P Uf(t, x) =

Uj(t, X) \

(f - Ar7, x)

> - 2 Ai„ x)

lUjif, X)\

u,(t,x)
0

(83)

\ 0

(84)

, x) + bT°,_k u,(t - 2k At„ x)

+ T1
I_küI(t,x)

0

O

-2k+

(85)
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o
- 2 * Ai

O

O

where the only nonzero coefficient is the (k + 3 )d one, and

Kp_pU
p(t,x) =

taK^_p ïijit, x) + bK^_p Uj(t - 2p Atf, x) + cK?_p Uj(t -

•KJ.pWt'X)
0

0

The Burgers time adaptive scheme is then defined by

U]l(t + 4PAtl9x) = E

with

2AtïT
p_l+Mp_

(86)

) \

(87)

(88)

. .. + 2p-lAtj T}_p_x + M ? ^ . , ) 2 + 2? Af, ü?_p + Mf . p .

The operator £"ƒ adapts the time step at each resolution.

5.2. Numerical Experiments

We compare the stability and accuracy of the space and time adaptive
scheme with the stability of the space adaptive scheme. Comparisons
between the space adaptive scheme and more classical numerical schemes
have been done by Liandrat and Tchamitchian [11] so we shall concentrate
on the conséquences of the time adaptivity. The first set of experiments
concerns stability.

Stability for the Burgers équation

To study the impact of the time adaptivity by itself, we do not introducé
any spatial adaptivity and do not apply a threshold to the wavelet
coefficients. We choose the initial condition uo(x) = sin (TTX). The finest
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resolution 21 is normalized to 1 and the finest grid contains 64 coefficients on
the interval [0, 1], For each scheme there exists a maximum time step
Atmax a n d t n e scheme is stable if and only if At} ^ A£max. The stability is
tested with the L^ norm of the solution. We know that the solution of Burgers
équation satisfies ||u(t, x) \\ œ ^ || MO(JC)|| . Thus a scheme is unstable if after
a certain time T, the computed solution Uj(T, x) satisfies ||M/(!T, X) | | 2=
E \\uo(x)\\^ (where E is a constant greater than 1). We used a dichotomie
method to compute the A?max for both the time adaptive and the forward
Adams-Bashforth scheme. We set s = 10" 2 /TT, p = 5 (number of octaves, as
m (88) and (89)), T = 3/TT and E = 15. The time T is chosen large enough so
that derivatives of the solution reach their largest value before 7\ This test
was repeated for several wavelets. Table 3 compares the maximum time
incrément Atf for the time adaptive scheme (88) and the corresponding non
time adaptive scheme. Contrary to what happens in the case of the heat
équation and the linear advection équation, as shown in Tables 1 and 2,
Table 3 shows that the maximum time incréments are different for the time-
adaptive scheme and the non time adaptive scheme. The différences are more
important for the Daubechies wavelets but the maximum time incréments
still remain in the same genera! range of values for the two schemes.

TABLE 3

For each orthogonal wavelet hsted in the first column, the second and third
columns give the maximum time incrément Atj for which the nonadaptive in time
scheme and the time adaptive scheme are stable, respectively, for Burgers équation
Stability is with the L^ norm of the solution at a given time T

Shannon
Meyer
Spline 3
Spline 5
Spline 7
Spline 9
Daubechies
Daubechtes
Daubechies
Daubechies

10

U
16
18

Non
5.37
6.91
6.41
5.95
5.74
5.62
7.78
7.30
6.76
7.00

Adapt. Time
xlO"3

X10"3

x l O - 3

x 10-*5

x 10~3

x 10-3

x 10~J

x 10"3

x 10"3

x 10"3

Time
4.47 x
5.24 x
4.84 x
4.68 x
4.60 X
4.51 X
5.63 X
5.08 x
4,79 x
5.52 x

Adapt
10~3

10"3

10"3

io-3

io-3

io-3

io-3

10"3

io-3

io-3

Complexity and Accuracy for the Burgers équation

If Atf is the global time step for the nonadaptive in time algorithm, we need
to iterate n = TIAll times in order to compute the solution at / = T. Let
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Nj be the total number of points that characterize the solution at the
resolution 2l. At time k Atf, the number of opérations at the resolution
2} is proportional to the number of nonzero wavelet coefficients n}{k Atj)
(after applying a threshold) that characterize the projection of the solution on
W; _ !. Indeed, the number of opérations for the operator Tj(f ) at each time
step k Atj is still proportional to the number of coefficients that characterize
the solution inW ; _ l 5 as it is for the linear advection équation. As mentioned
in Section 3, this is because the nonlinear Burgers operator K involves
differential operators and a bilinear opération [6]. The number of wavelet
coefficients n} (k Atj ) changes with the time factor k because high frequencies
are created as time increases (see fig. 4).

TA'BLE 4

The first Une gives the value of the Lm error of the solutions computed with the
spatial but non time adaptive scheme, the space and time adaptive scheme with a time
factor of 2, and the space and time adaptive scheme with a time factor of
\ / 2 , respectively. The second line gives the value of the slope at the location of the
shock. The last line gives the computational complexity using (89) and (90).

Loo error
Slope
Complexity

Exact

1.975
-

Spatial

2.3 x 10"3

1.995
105

Time-Spatial
ratio : 2
4.2 x 10"3

1.905
3xlO 4

Time-Spatial
ratio >H
2.7 x 10~3

1.978
6x lO 4

Let us suppose that the wavelet décomposition is computed on p octaves.
The total number of opérations to compute the solution at time T with the
nonadaptive in time scheme is

(89)

For the time adaptive scheme each resolution 2J has a spécifie time step
T

At = 21 ~J Atj and thus 2J "J — itérations are needed. The total complexity
•̂  Atj

is given by

O I I
\ ; = f -p+l k= 1

(90)
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The constants for the complexity in (89) and (90) are approximately the
same. In the following numerical experiments, the complexity is computed
by evaluating the summations in (89) and (90).

To compare the complexity and accuracy of the space-time adaptive
scheme and the space adaptive scheme we computed (for both schemes) the
solution of the Burgers équation (with s = 2.5 x 10~3/TT) at time T = 1/TT.

In these experiments the wavelet grid has 512 coefficients. The threshold
( = 2 x 10"2) has been chosen in order to keep errors comparable to those
due to the limitation of the resolution (i.e., ||wr(x) - FVQ UT(X)\\^ where

uT is the exact solution at time T). Moreover, the time step At0 (at the
resolution 1) used by both schemes is At0 = 2.5 x 10" 4 ; it is the largest time
step for which both schemes are stable. For each scheme we measured the
LQQ error, the value of the slope at the location of the shock and the
complexity. These values are displayed in the following table.

Figure 5(a) shows the solution at time T, computed with a spatial adaptive
scheme which is not time adaptive. Figure 6(a) shows the différence between
this computed solution with the exact one. Figure 5(b) shows the solution
computed with the spatial and time adaptive scheme and figure 6(b) shows
the error. Figure 5{d) gives the wavelet adaptive grid at time T. Out of 512
coefficients only 128 are « active », Table 4 shows that the time adaptive
algorithm reduces the complexity by a factor 3.3 but introduces more errors.
The numerical experiments were performed with the wavelet spline 7. We
repeated these computations with other spline wavelets and Daubechies
wavelets and the numerical results were similar. In the error of the time-
adaptive algorithm (fig. 6(&)), the relative amplitude of low-frequencies to
high frequencies is much larger than for the nonadaptive in time algorithm.
The increase of low-frequency errors is not a problem since the total error is
dominated by high frequencies. The basic idea of the algorithm is precisely
to have réduction of complexity by introducing more errors at low
frequencies as long as these errors remain smaller than the high frequency
errors. Ho wever, in nonlinear équations, such as the Burgers équation, the
different frequency bands are not independent. There is an exchange of
energy between low and high frequencies because of the nonlinearity of the
operator K. This is one of the reasons why an increase of errors at low
frequencies also increase s the errors at high frequencies. To decrease the
error in the time adaptive scheme one may simply decrease the time step
àtj at the finest resolution. Numerical experiments show that if the time step
is reduced by a factor of 2 (i.e., A*o = 1.25 x 10"4) the Lm error remains
larger than 3 x 10""3 and that the slope is not as close to the exact slope as the
one obtained with the space adaptive scheme.

The space-time adaptive scheme that we described has a time step which is
inversely proportional to the resolution 2J because of the advection term of
the Burgers équation. With this approach we obtain a scheme which is stable
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Figure 5. — Graph (a) is the solution of the Burgers équation computed with the spatial
adaptive scheme that is not time adaptive, at time T = 1/n. Graph (b) is obtained with a space
and time adaptive scheme, with a time ratio of 2 between two consécutive resolution levels :
At/ + n — 2" A/ r Graph (c) is also computed with a space and time adaptive scheme but with a
different time ratio : Att + 2n= 2" Atf and à>tI + 2n + 1 = 2" Atr The grid (d) is the adaptive grid of
wavelet coefficients of the solution at 7 = 1/TT.
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Figure 6. — Error curves computed by subtracting the numerical solutions displayed in
figure 5 from the exact solution of the Burgers équation. The error curves in (b) and (c)
correspond to the solutions 5(b) and 5(c) computed with time adaptive schemes. The time
adaptive schemes increase the relative proportion of low-frequency errors but the global
Lœ error in (e) is approximately the same as the error (a) of the nonadaptive in time scheme.
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for the same range of time steps Atj, However, we introducé more errors at
high frequencies due to the exchange of energy between the different
frequency bands. Instead of decreasing the time step àtf at the finest
resolution 27, an alternative is to choose a dilation factor between the time
steps at different resolutions that is smaller than 2. This enables us to
maintain high accuracy at the low frequencies so that we do not increase the
high frequency errors through exchange across frequencies. One can easily
implement a time adaptive algorithm where the time step increases with a
factor of 2 when the resolution is decreased by a factor of 4 (instead of 2). It
is as if we had chosen a time ratio of \fl across resolution levels. Let us
suppose that the index I is even, and that the number of octaves p is also
even. We define a scheme where the time step at the resolutions

22j and 22j~l is the same and equal to 22 Atj :

+ 22 Athxj =E?U?(tfx) (91)

with

Ei = ( . . . ( ( /p + Af/7? + Af /T? - ! + M? + M ? _ 1 ) 2 +

+ 2 Af7 iy_2 + 2 Af/7Y_3 + M ? _ 2 + M ? _ 3 ) 2 + ---

. . . + 2 2 A ^ 7 ? _ p + 2 + 2 2 &tlT>l_p + l+M*

+ 22A^_,+Mrp. (92)

The number of opérations is given by a formula similar to (90)

+ 2 2JL.2-PN) . (93)
Af/ /

The complexity, the Lœ error and the slope of the solution obtained with this
new time adaptive scheme are shown in the « Time-Spatial, ratio v 2 "
column of Table 4. Figure 5(c) is the graph of the solution computed with
this other space-time adaptive scheme and figure 6(c) displays the error. As
expected, the high-frequency errors are smaller than those of the time
adaptive scheme (88) but the low-frequency errors are still higher than for the
nonadaptive in time scheme. In this case the amplitude of the high frequency
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errors remains approximately the same as for the nonadaptive in time
algonthm We see that the increase of low-frequency errors is not enough to
mcrease substantially the high frequency errors through the exchange of
energy across frequencies Moreover, Table 4 shows that for this new
adaptive scheme the value of the slope computed at the location of the shock
is as accurate as the result obtamed with the space adaptive algonthm In this
case the computational complexity of the time adaptive scheme is approxi-
mately half that of the nonadaptive m time algonthm These results show that
by adaptmg the time ratio between the different spatial resolutions we can
keep the same accuracy while decreasing the numencal complexity The
time ratio must not be determmed on stabihty considérations alone We must
also take into account the nonhnear properties of the PDE to maintain a
balance between the sources of error

6 CONCLUSIONS

In this paper we present a wavelet based numencal scheme that adapts the
space and time resolutions to the properties of the PDE and the local structure
of the solution We showed numencally for the heat équation and the linear
advection équation that our time-adaptive scheme is stable for time dilations
equal to 4 and 2, respectively We have no gênerai mathematical proof of this
stabihty although it appears to depend on the multiresolution structure that is
behinct tne wavelet orthonormal base;* One can adapt the tirne factors m
order to keep good accuracy while maintaimng stabihty For Burgers
équation, numencal results indicate that a time factor smaller than 2 does not
increase the L^ enor of the solution although it decreases the numencal
complexity An important issue is understanding how to adapt the time
scaling factor depending upon properties of the nonhnear équation

Althoughnhe time adaptive scheme (Eqs (42), (71) and (88)) looks more
complicated than a nonadaptive time scheme, from a programming point of
view, this increase of software complexity is neghgible compared to what is
needed to implement a spatial adaptive wavelet scheme We did not go mto
the details of ïmplementation issues related to the calculation of the different
operator Ky and Ty in a wavelet basis because we focused on the time
adaptivity issues However, although the numencal complexity for applying
these operators is linear in the number of nonzero wavelet coefficients, the
constants involved are not small, especially when the operator is nonhnear
This is one limitation of wavelet-based numencal schemes and it has been
studied by Beylkm [5] Another problem concerns the treatment of bound-
anes No efficient technique has yet been found that mcludes boundary
conditions However, Meyer [15] as well as Xu and Shann [17] recently
found a way to build orthogonal wavelets on fimte domains, which can
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probably help solve these boundary issues. There are still technical
difficulties in implementing efficiently wavelet schemes to solve PDE in
several dimensions, but we believe that these bases provide a novel approach
that will be compétitive for PDE like the nonlinear Schroedinger
équation (9), that generate solutions with localized structures in space that
e volve quickly in time.

Appendix l

Stability of the time adaptive scheme for the heat équation with Shannon
wavelets.

In this Appendix we prove that the operator E? of the wavelet time adaptive
scheme for the heat équation (42) satisfies

| | E f | | < l o ||I + A/,K,|| ^ 1 (94)

for the Shannon wavelet. The proof is easy because all the operators involved
are diagonalized by the Fourier transform. Let us first characterize the spaces
V; and W, as well as the operators K; and Ty for the Shannon wavelet. One
can easily prove that the space V, of the corresponding multiresolution
approximation is the space of all functions whose Fourier transforms have
support in the interval [— 2J TT, 2J TT]. The space Wy is the set of functions
whose Fourier transforms have support in the intervals
[- V 2 TT, - 2J TT] U [2J 77, 2J 2 TT]. For any ƒ e L2(R), the Fourier trans-
form of Py ƒ (x) is ƒ (co ) x^(°> X where xfi*0 ) is the indicator function of the
interval [- 2J w, 2J TT]. The Fourier transform of Pw f(x) is ƒ (<o ) x}(& ),
where xj is the indicator function of the interval [- 2J 2 n, — 2J TT] U

[2J TT, 2J 2 TT], For the heat équation, K/(x) = J V J . Hence, the Fourier
dx2

transform of Kjf(x) is - <o2x?(<*> ) f (<*>). The Fourier transform of

The identity operator I that appears in the expression of Ef given in (42)
can be replaced by Pv since the initial solution belongs to Vz and then
remains in V7. Since

J=I-P
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the operator Ef becomes

+ . . . + AP - l At, T, _p _, )4 + 4P At, K, _p . (96)

For the Shannon wavelet, one can verify that for any / ( x ) e L 2 ( R ) ,
Tj f(x) e Wy. We thus have the following properties

V ( / " , / ) e Z 2 , j * l 9 T,T / = 0 , (97)

V(/\ O e Z 2 , y > / , T ^ K ^ O , (98)

V0', O e Z 2 , y ^ Z + 1 , PH0T / = Of (99)

V(/, O e Z 2 , 7 ^ / , P H O K / = 0 . (100)

As a conséquence, since all the operators in équation (96) commute, the
operator Ef simplifies to

E? = (PW/_ t + Ar7 T7 f + (PW/ 2 + 4 Ar, T7 _ O 4 ^ x +

Since for different k, the operators VWiki + 4k AtjTj _k and PV/ +

4^ &tj Kj _p act on mutually orthogonal spaces, ||Ef || ^ 1 if and only if for

any k < /?

I P ^ ^ + ^ Â ^ T ; . * ! * ! , (102)

and

I I I l . ( 1 0 3 )

the expression of T; and K; in the Fourier domain, for any
At} and k -< /?, one can show that

W / _ t + 4^ Af, T ; , | | | | V / _ p j 7 p | |

o ||I + A?; K7 || ^ 1 . (104)

We thus obtain

| | E f | | « l o Wl + AtjK^^l. (105)
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Appendix 2

Stability of the linear advection time-adaptive scheme for the Shannon
wavelet.

In this Appendix we prove that the time adaptive scheme defined by the
operator

Ei = (...((/ + Af, n + Mff + 2 Ar; 7?_i + Mf „O2 +

+ • • • + 2P-1 Af, 7 ? . , . ! 4- M1_p_x? + 2* Af, ^ _ p + Af?_p (106)

is stable over the same range of time steps Af, as the non time adaptive
scheme. Let us first state a few properties of the usual Adams-Bashforth
scheme. For the operator K = —, the Adams-Bashforth scheme is defined

dx
by
u(t + Af, x) = u(t> x) + At(aKu(t, x) + 6Ku(f - At, x) +

+ C K K ( * - 2 Af, * ) ) , (107)

with a = 23/12, b = - 16/12, c = 5/12. If the initial condition MO(JC) has a
Fourier transform included in an interval [— com, o>m]9 the scheme is stable if
and only if

« M Af*C , (108)

where C is a constant independent of a>m. For the Shannon wavelet the
operator K; is a restriction of K to the space V7 which corresponds to the
frequency interval [— 21 TT, 27 TT]. Thus, the numerical scheme

Uj(t + Af,, x) = uj(t, x) + Ar7(aK, u,(f, x) +

+ &K, 5,(f - Af,, x) + cK, üj(t -2 Af,, je)) (109)

is stable if and only if Af, ^ (C/TT)2~7 . Similarly, the operator Tj_k is a
restriction of K to the frequency intervals [ - 2 / " * + 1 2 T T , -2 / " j f e + 1 7r]U
[2'-*+ 1 TT, 2 /~A + 1 2 TT]. Thus, the numerical scheme

= 2k AtI{arlI_kuI{t, JC) + &T,_^M,(f - 2* Af,, #) +

+ cT,_, a,(r - 2k + l Af„ x)) + P w . t + 1 «,(*, jf) (110)

is stable if and only if Af, =s (C/7r)2~I. AS we shall see, the stability of
JS1^ is based on these properties.
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We décompose each component of U^(t, x) into the different spaces
W, which correspond to disjoint frequency intervals. We define the operators

PwUp(t,x) =

\

(Hl)

and

P„ ü,(t - 2 Atj, x)
(112)

Since the solution w7(f, x) e V,, we have

(113)

The operators involved in Ep
} are diagonal in the Fourier domain, each

component of the vector Ep
t PWikU^(t, x) remains in W7_^ whereas the

components of the vector Epj PV{_ Upj{t, x) remains in V, _r Recall that the
scheme

Up(t + At, x) = BUp(t, x) , (114)

is stable if all the components of the vector Up
f(t, x) have an L2(R) norm

smaller than the maximum L2(R) norm of the components of the initial
condition t/f (0, JC). The spaces Wj_k and V / ^ are orthogonal to one-
another. Hence, the stability of the scheme

Up(t + 2p Atj, x) = Ep Up(t, x), (115)

is equivalent to the stability of the p + 1 schemes defined by

Up(t + 2p Af/, x) = Ep
IPVip Up(t, x) , (116)

and for 0 ^ k =s= p - 1

üf(f + 2p Aih x) = EpPWi_t + i U
p(t,x). (117)
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Let us study the stability of the scheme (117). As a conséquences of the
properties (97) to (100) and from the expression of Ej and Pwf_k + 1 given in
(106) and (111) we have

+ M?_ p_ 1 ) 2+M?_ p ) JP^ / _t + i . (118)

One can verify that the scheme (118) is merely a complicated way to express
the scalar Adams-Bashforth scheme over the frequency intervals
[ _ 2 ' - * + 1 2 T T , - 2 ' - * + 1 TT]U [l1-^1 77, 2 / - * + 1 2 T T ] . The scheme
(117) is thus equivalent to the nonadaptive in time Adams-Bashforth scheme
(110). We saw at the beginning of this appendix that (110) is stable on the
same range of Mf as (109), so (117) is stable for the same Ar7 as (109). We
can prove similarly that the scheme (116) is stable for the same range of
Atj as (109). Since the stability of the time adaptive Adams-Bashforth
scheme is equivalent to the stability of (116) and (117), we see that for the
Shannon wavelet the time adaptive scheme is stable for the same range of
AtI as the nonadaptive in time scheme (109).
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