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H T 7 P 1 MATMEMATICALMOOEUJHGAHOMUMERICALANALYSIS
i M M r i MfJOEUSATlOHMATMÉMATlQOEETAMALYSEHÜMÉRJQÜE

(Vol 26, n° 5, 1992, p 627 à 656)

FINITE ELEMENT APPROXIMATION OF A NON-LIPSCHITZ
NONLINEAR EIGENVALUE PROBLEM (*)

by J. W. BARRETT C)

Commumcated by R TEMAM

Abstract —Given p e (0, 1), we consider the following problem find u # 0, such that

- AM = [uf+ =up in a u = 0 on dO ,

where Q, er IR2 is a C2 1 domain We prove a near optimal Lœ error bound for the Standard
continuous piecewise line ar Galerkin finite element approximation withan acute triangulation In
addition we analyse a more practical approximation us ing numerical intégration on the nonlinear
term, proving a near optimal intenor L °° error bound

Résumé — Étant donné p e (0, 1), considérons le problème suivant trouver u # 0, tel que

~àu=[uf+=up dans f2 u = 0 sur dO ,

où O, cz (R2 est un domaine C2 l Nous montrons Vexistence d'une borne d'erreur L°° quasi-
optimale pour la méthode standard d'approximation de Galerkin par éléments finis continus et
linéaires par morceaux avec une tnangulansation aiguë De plus nous étudions une méthode
d'approximation plus appliquée utilisant une intégration numérique sur le terme non linéaire, qui
montre une borne d'erreur Lœ et quasi optimale à l'intérieur du domaine

1. INTRODUCTION

The finite element approximation of the semilinear elliptic équation :
given A and g s U, find u such that

-Au = Àf(u) in n^U2 (1.1a)
u = g on 8/2 ; (l.lfc)

where ƒ e C l(U) is relatively well understood. The error analysis is based
upon the implicit function theorem in gênerai and hence the need for
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628 J W BARRETT

ƒ to be C\ For a le s s smooth nonlinearity the theory is not so well
developed. We illu strate the situation on s ome model problems.

If the nonlinearity A ƒ is monotonically decreasing then there exists a
unique solution to (1.1). In addition the implicit function theorem can be
avoided and the need for ƒ to be C 1 can be relaxed to being locally
Lipschitz. Under these circumstances it is relatively straightforward to prove
optimal H\ L2 and L °° error bounds for the standard continuous piecewise
linear Galerkin approximation and for a more practical scheme involving
numerical intégration, see Crouzeix and Rappaz (1990). For a non-Lipschitz
nonlinearity it is not so straightforward. For p G M+, let ƒ : R -> R be
defined by

o tVo. <L 2>
If A e IR" and g e R+, (1.1) and (1.2) can be viewed as a model reaction-
diffusion problem. For p s* 1 ƒ is locally Lipschitz and the above theory
yields optimal error bounds. Fox p e (0, 1) ƒ is not locally Lipschitz and the
above theory yields pessimistic error bounds for the standard linear

Galerkin approximation ; hmm{h2p) in H1 and h2pln- in L °°. Barrett and

Shanahan (1991) have recently proved optimal order H1 and L00 error
bounds for the standard linear Galerkin approximation in this case. Their
L °° error analysis is based on a L 1 — L œ duality argument used by Nochetto
(1988) for a reguîarized version of the nonlinearity ƒ. In the présence of
numerical intégration however, Barrett and Shanahan (1991) managed to
prove only an optimal order H1 error bound.

For A f not monotonically decreasing the relationship between u and
A for fixed g is far more complicated. There can be lack of existence and/or
bifurcation can take place. However, if ƒ is C l one can employ the implicit
function theorem to dérive optimal order H1, L2 and L°° error bounds along
regular branches and at simple turning and bifurcation points for the
standard linear Galerkin approximation and for a more practical scheme
involving numerical intégration, see Crouzeix and Rappaz (1990).

For A ƒ not monotonically decreasing and ƒ £ C 1 there appears to be no
error bounds at present in the literature, except for the well-studied
« plasma problem » : given A E R+ , y e U+ , find (g, u) e R x H$(Q) such
that

i n Ü , A f(u-g)= y ; (1.3)
n

where ƒ is given by (1.2) with p= 1 and hence ƒ eC O i l (R) , but
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APPROXIMATION OF A NONLINEAR EIGENVALUE PROBLEM 629

ƒ $ C l(U). Let A2 > A 2 > 0 be the first two eigenvalues of the associated
linear eigenvalue problem : find (À,, <f>J e M x HQ(I2) such that

- A</>t = \ t <j>l i n a . (1.4)

Then one can show that there exists a unique solution to (1.3) for
À e (0, À2) and using the generalised implicit function theorem, see Girault
and Raviart (1982), one can dérive optimal order H\ L2 and L °° error
bounds to (1.3) with A e (0, A2) for the standard linear Galerkin approxi-
mation and for a more practical scheme involving numerical intégration, see
Barrett and Elliott (1989) and Caloz (1991). For a variational approach,
avoiding the generalised implicit function theorem, see Barrett and Elliott
(1991). One can view (1.3) as a free boundary problem since f2+ =
{x s Q : u(x)> g} and F = d/2 + are unknown.

It would be of interest to analyse the finite element approximation of
(1.3) when ƒ is given by (1.2) with p s [0, 1) ; this being a model vortex
problem, see Eydeland and Turkington (1988) for example. In this paper we
analyse the finite element approximation of a simpler problem, the
nonlinear eigenvalue problem (P (A )) : Find (A, u(A )) e U x HQ(S2),

u ^ 0, such that (1.1a) holds, where ƒ is given by (1.2) withp G (0, 1). This
nonlinear eigenvalue problem has a non-Lipschitz nonlinearity with
A ƒ monotonically increasing for A > 0 ; A =£= 0 only yields the trivial
solution u = 0. Therefore it has the same important character as the above
vortex problem. It is simpler though in that the « free boundary » where
u = g = 0 occurs on 8i? and that one can prove for ail A e IR+ there exists a
unique non-trivial solution. However, we believe it to be a useful model to
analyse in order to see what can be achieved and what is required to analyse
the vortex problem.

A simple calculation yields that the generalised implicit function is not
applicable to (P(A)) for p e (0, 1). The monotonicity and maximum
principle approach that we adopt in this paper to analyse the finite element
approximation of (P(A)) has been motivated by some of the techniques
used by Conrad and Cortey-Dumont (1987a, b) to analyse the continuous
piecewise linear finite element approximation of the nonlinear variational
inequality : given A, g e R+ and a nondecreasing C2 function ƒ ( . ),
ƒ (0) > 0 ; find u e K= {v e H^n ) : v ^ g a.e. in 12} such that

j V u . V (v - U ) Ï * \ j f ( u ) ( v ~ u ) V V G K . (1.5)
Jn J a

We stress that our analysis exploits the fact that A/ is monotonically
increasing and is not applicable to the problem studied in Barrett and
Shanahan (1991), where \f is monotonically decreasing. Similarly the
analysis given there is not applicable to (P(A)). The extension of the
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630 J W. BARRETT

present approach to the model vortex problem will be the subject of a
forthcoming paper.

The layout of this paper is as follows. In the next section we study the
continuous problem (P (A )). In section 3 we prove a near optimal
L m error bound for the standard continuous piecewise linear Galerkin finite
element approximation, with an acute triangulation, of (P (A )). Finally in
section 4, we study a more practical approximation using numerical
intégration on the nonlinear term, proving a near optimal interior
L00 error bound. This resuit exploits the fact that the lack of Lipschitz
continuity of f(u) occurs in the vicinity of 3/2.

Throughout this paper we adopt the standard notation Wm'p(f2) for
Sobolev spaces on /2 with norm || - ||m n and semi-norm | . \m n. For
p = 2, we adopt the convention Hm{f2) = Wm'2(/2), \\ . \\m n =

H-IL.2.^ a n d I - L i ^ l - L ^ i r W e se t Hl{n)={vzH\a):
v = 0 on 3/2 }. Finally C dénotes a generic positive constant independent of
h, but possibly dependent on p.

2. ANALYSIS OF THE CONTINUOUS PROBLEM

Let fi be a bounded domain in U2 with a boundary 3/2 of class
C 2 ' 1 . The problem we wish to study is : CP(A)) given p e (0 ,1) and
A e IR find w(A ) ^ 0 e H^n ) such that

(Vi/, Vu),, = * (ƒ(*) , v)ü Vp E //<](ƒ?) , (2.1)

where ƒ is given by (1.2) and (vl9 v2)D === | ÜJ i?2. This problem has been
JD

studied by Aronson and Peletier (1981) in connection with the long time
behaviour of solutions of the porous medium équation. Below we recall and
extend some of their results.

Firstly we recall versions of the strong and Hopf maximum principles
suitable for our needs, see for example Gilbarg and Trudinger (1983) :
(S.M.P.) if v GH2(f2) with

- Av 2* 0(«= 0) a.e. in ft (2.2a)

tfssOOssO) on dI2 (2.2Ô)

then ü ^ 0 ( ^ 0 ) in Ö . (2.2c)

In addition if v(x) = 0 for some x e O then v = 0 in fï.

(H.M.P.) if v e C2(f2) satisfies (2.2a) with v - 0 on d 12 and v ^ 0 then

— < 0 (>0) on 8/2, (2.3)

where v is the outward unit normal to 3/2.
M2 AN Modélisation mathématique et Analyse numérique
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APPROXIMATION OF A NONLINEAR EIGENVALUE PROBLEM 631

From (S.M.P.) and (H.M.P.) one can prove a non-degeneracy condition ;
(N.D.C.) if v e C2{Ü) satisfies

- Av =* 0 in Ü v = 0 on d!2 (2.4a)

and v ̂  0 then there exist constants a* => 0 and Ct>0 such that for
<r e (0, arj

v(x)^C1dist (x, 3/2) V J G / 2 , (2.4b)

v(x)^C2cr Vxen\na, (2.4c)

where

H„ = { i e / 2 : dist (JC, a il ) -< o-} . (2.4a1)

We note from elliptic regularity, as ƒ e C°'jP((R), that any solution of
(2.1) is such that u G CXP{Ô) and from (S.M.P.) that A === 0 implies that
u = 0. Moreover, it is easily seen that

î

M(À) = À ̂  M ( 1 ) VA E U+ (2.5)

and hence without loss of generality we study (P)= (P (1)) only.
For later use we consider a slightly more gênerai problem than

(P) : (G) givenp e (0, 1) and £ e R\R" find w(£) ei/<}(/2), w ( 0 ) # 0 ,
such that

(Vw, V t ? ) ^ (/(w + f) , t?)n Vüe / /5 ( i3 ) , (2.6)

where ƒ is given by (1.2).
In Theorem 2.1 below we prove existence and uniqueness of a solution to

(Q ) for ail g E IR\IR~, and hence to (P). The proof is an extension of that
given by Aronson and Peletier (1981) for (P ). Firstly we gather together
some results conceming the first eigenpair (Aj, ^j) of (1.4), which will be
useful later.

LEMMA 2.1 : The first eigenpair (Al9 <f>{) of (1.4) are such that

(i) A j :> 0 is simple and </>1 is of one sign (2.7a)

(ii) <f>xsC%T{n), 0 < T < 1 (2.76)

(îii) normalising so that

max { 0 1 ( X ) : J C G Ü } = 1 (2.7c)

vol 26, n° 5, 1992



632 J W BARRETT

itfollows that 4>x satisfies the non-degeneracy conditions (N D C ) for some
constants cr^ and C t

and

Ja <t>l
(iv) ^f"1-^ oo for all a > 0 . (2.1d)

Proof From classical eigenfunction theory we have that (1) holds Elliptic
regulanty yields (11) (111) follows from (1), (11) and (2.7c). For <x sufficiently
small it follows that for all x e D a there exists a unique y (x) E 6/2 such that
dist (JC, BD) = \x-y(x)\, see Gilbarg and Trudinger (1983), p. 355.
Hence it follows from (N.D.C.) that for all a > 0

Ja Jn„ Ja\a

ds
Jdn \ J o /

Therefore (iv) holds. •

Throughout this paper let O be a bounded convex domain in U2 with a
boundary 3/2 of class C 2 ' 1 such that X2 c O Let JAj, # x } be the first

eigeupair io the eigenvaiue problem (1.4) with il replaced by /2. Clearly
they satisfy (2 7) with O replaced by O. In addition we set

p EE inf (<£i(x) • i e / ] } > Ö . (2.8)

T H E O R E M 2 1 : T / i e r e exists a unique solution w to (Q),w e C2 P{Ö) and

C j ^ i ^ i v ^ C ^ ! in /2 , (2 9)

positive constants Cx and C2 depend only on p , O and

O for g sufficiently small

Proof Let w = k<f>x, where k e U+ is such that

/ 2p

k 5= max

1

(2.10a)
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then it follows that

:XX 4>x- (2kf

= 0 . (2.10ft)
2p

Let w> = c<f> !, where c e R + is such that

(2.11a)

then it follows that

- àw - ƒ (w + {) = ckx <f>x - [c<l>x + ÇT

and

vvss w > 0 in O . (2.11c)

Setting wQ = w and w0 = w, we define for i ^ 0

- Aw, + 1 = ƒ (M>4 + g ) in /3 >Pl + 1 = 0 on df2 (2.12a)

and

- Awl + X = f(wt ± £) in /2 vvï + 1 = O on 3/2 . (2.12£>)

Elliptic regularity yields that wn w ( £C 2 s P ( /7) for ail i =s 1. Since
ƒ is monotonically increasing it follows from (S.M.P.) that

wt ^ ... wx ^ wo= w in Ô . (2.13)

Therefore {vv;} g is a pointwise decreasing séquence bounded below by

w and thus it converges pointwise to w :

w ~z w zs w > 0 in f2 . (2.14)

From the continuity of ƒ and elliptic regularity it follows that w e C2'p(f2)
solves (Q).

We now prove uniqueness. Assume the contrary there exist two solutions

vol. 26, n° 5, 1992



634 J W BARRETT

wt i — 1 and 2 to (Q) for a given f. Elliptic regularity yields that
wt e C2>P(Ö) and hence (N.D.C.) holds. From (2.6) we have that

(ƒ (wi + ëX w2)n = (Vwx, Vw2)a = (f(w2 + i), wx)a (2.15a)

and hence that

w, = 0 . (2.156)

Therefore we have, for w2^ wh that there exist points x, y e U such that

^2(x) > w\(x) a nd w^}) > w2(}') (2.16a)

and hence by continuity and (N.D.C.)

y = sup i r > 0 : rw 2 ^ wx in i7\ e (1, oo) . (2.16Z?)

Let z = yw2 — wx G C2'p(f2 ) and hence z ^ 0 in i5. In addition we have

(2.17)

(2.18)

(2.19a)

(2.192?)

= [ ( r -
^ 0 in H ,

+ f y + (y(w2 +
z = 0 on 3/2 .

As z # 0 by (2.16), (S.M.P.) and (H.M.P.) yield that

z :> 0 in O and — < 0 on df2 .

However by the construction of z, (2.16), it follows that either

z(x) = 0 forsome x e Ü

or

— (x) = 0 for some x e dü .

This contradicts (2.18). Hence w2=wx and we have uniqueness. For full
details, see Aronson and Peletier (1981), where uniqueness to (P ) is proved
under the assumption d/2 s C3; but this can be relaxed to C2) l if one uses
the results on the distance function given by Gilbarg and Trudinger (1983),
p. 355, to deduce (2.19b). •

We end this section by proving two results that will be useful later for the
finite element error analysis.

M2 AN Modélisation mathématique et Analyse numénque
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APPROXIMATION OF A NONLINEAR EIGENVALUE PROBLEM 635

LEMMA 2.2 : Let

E —y-—— , (2.20a)

then it follows that

- = M(u)^m(v) Vu e Hl(Ü) (2.20b)
P

and hence

\v\\ ü— (j' (u)v9v)a^ (l — p) \v\\ n Vu e HQ(Ï2) . (2.20c)

Proof : It follows from (2.9) that

C S ÏC0?- 1 =£ƒ'(«) =pup'1^C(f>p~ï . (2.21)

From Sobolev's embedding theorem and (2.1d) we have that for

(2.22)

Therefore from (2.21) and (2.22) it follows that

C \v\la^(f'(u)v,v)n^C \v\2
in VveHà(n) (2.23)

and hence ffîiv) is well-defined on HQ(I2).

From classical eigenfunction theory we have that the first eigenpair
(/*!, ^ 0 of »{. ) ; that is,

*£#(!;) VveHÙ(f2) (2.24a)

is such that

/tt ! :> 0 is simple and ̂  j is of one sign . (2.24&)

In addition any eigenpair (yu,(, ^ ) e R + x HQ(H) satisfy

(V*p Vv)n = fJLt(f'(u) *l% v)n Vi? e / /ok^) (2.25a)

and

(* , ,* , ) f l = 0 î ^ 7 . (2.2S&)

vol 26, ne 5, 1992



636 j W BARRETT

From (2.1) we see that ( - , u\ is an eigenpair of (2.25) and as

u is of one sign it follows that it is the first eigenpair. Therefore
jji, = — and the results (2.202? and c) follow. •

P
LEMMA 2.3 : Given p e (0, 1) and g e U+ the solution w = w(g) to

(Q) and the solution u = w(0) to (P) are such that

(i) w^u^O in H and (ii) \w - u \x n ^ C£ , (2.26)

where C dépends only on p and f2.

Proof: From (2.14), (2.10) and (2.11) the solution w(£) to (Q)
constructed in Theorem 2.1 above satisfies

- Aw = ƒ (w + è ) ^ f M in O w = ö o n o i ] , (2.27a)

wU)^w(ë)^w(0)^ u>0 in O (2.27b)

and

in fl u = 0 on 3/2 . (2.27c)

Therefore the desired result (2.26) (i) follows by the construction given in
the proof of Theorem 2.1.

From (2.1), (2.6) and the fact that ƒ ' ( . ) is strictly decreasing on
!R+ we obtain that

* (ƒ'(M)(W + f - M), w - w)i2 • (2.28)

Combining (2.28) with (2.20c) yields

(1 _ p) |W _ u |2 ^ ^ f (ƒ'(M), w - u ) . (2.29)

The desired result (2.26) (ii) follows from (2.29), (2.21), Sobolev's
embedding theorem and (2.1d). •

In the next section we consider the continuous piecewise linear finite
element approximation of (P).

3. FINITE ELEMENT APPROXIMATION

Let O h be a polygonal approximation to f2 defined by f2h = \^J r, where
rsTh

Th is a quasi-uniform triangulation consisting of acute-angled triangles
T with a maximum diameter not exceeding h. Let I be the set of nodes and
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APPROXIMATION OF A NONLINEAR EIGENVALUE PROBLEM 637

{xt} j the coordinates of the vertices of this triangulation. If xt e 3/2 * then
xt e 3/2 so that dist (6/2, 3/2*) =s Ch2. We assume for ail h that no triangle
has ail three vertices on 3/2*. For ease of exposition we assume that
/2 is convex so that Oh ^ /2. We introducé

Sh^ [x e C(f2h) :x\T i s l inearVr eTh) (3.1)

and

% { / x \ ù h e S h and ^ | ^ = 0 } . (3.2)

Let {Xj} eI be the continuous piecewise linear basis functions for

Sh satisfying Xj(xt) = ôtJVi, j G I and hence Xj^O in /2 for ail

j e / .
The approximation to (P) that we wish to consider is :

(P h) Given p e (0, 1), find uh # 0 G S# such that

(VM\ Vx)n» = (ƒ(«*)• ^)n* V^ E SO \ (3.3)

where ƒ is given by (1.2).
As the triangulation Th consists solely of acute-angled triangles we have

that

Vi.y e ƒ , (3.4)

see Ciarlet and Raviart (1973), and this yields a discrete maximum principle,
a discrete analogue of (S.M.P.) :

(D.M.P.) If i?A e Sh with

(Vi>\ Vx> )fl* ̂  0 (« 0) V^z e S* (3.5a)

I Î * ^ 0 ( ^ 0 ) on 3/2 * (3.5ô)
then

r ^ O (^0) in fih . (3.5c)

In addition if i^(;c7) = 0 for some x} e f2h then vh = 0 in .Ô .̂

It follows immediately from (D.M.P.) that if a solution «* exists to
(P h) then

K*=>0 in ^ ^ (3.6)

vol 26, n° 5, 1992
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For later use we consider the discretization of (Q) :

(G*) Given p e (0, 1) and £ € R\R~ find w\i) e S& wh(0) ^ 0, such
that

* * + f ) , *)û* V * e S $ , (3.7)

where ƒ is given by (1.2).
In Theorem 3.1 below we prove existence and uniqueness of a solution to

(Q/l) for all f e R\R~ , and hence to (P/z). The proof is a discrete analogue
of that of Theorem 2.1.

Firstly we introducé the corresponding finite element approximation of
(1.4) : find (Af, <£*) e M x S$ such that

(3.8)

In the lemma below we gather together some results concerning the first
eigenpair (Af, <£f) which will be useful later.

LEMMA 3.1 : The first eigenpair (Af, </>f) of (3.8) are such that

(i) A f => A x :> 0 w simple and </>f w o/ öne 5/gn, (3.9«)

(ii) normahsing so that

max {^f(x7) : j E ƒ} = 1 , {3.9b)

it follows that for h =s h0

and

^ * , ) V y e / ; (3.9J)

(iii) for h =s= h0

(<f>i)a"1 <oo for ail a > 0 . (3.9e)

Proof: From (3.4) and the Perron-Frobenius theorem we have that (1)
holds, see e.g. Barrett and Elliott (1989) for details. An optimal
L 2 error bound for the first eigenfunction is given in Strang and Fix (1973).
From this it is a simple matter, using standard L00 error estimâtes, to
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generate the L00 bound (3.9c). Since the triangulation is quasi-uniform and
Qh e O we have that

dist (xp 3/2) s* dist (xp bf2h) ^ Ch Vx; e /2 . (3.10)

Therefore (3.9J) is a direct conséquence of (3.9c), (N.D.C.) for <f>x and
(3.10). The resuit (3.9e) is clearly true for a s* 1, we know prove it for
a G (0, 1). Let

Bh^ {T eTh: f n a/2h* <f>) and i î j = l j r . (3.11)
reBh

For the same reasons as for (3.10) it follows that

dist (T, a/2) =* dist (r, 3/2*) s= Ch Vr E Th\Bh, (3.12)

and hence

</>Î Î (JC)^C0 1 (X) Vx G/2 *\/2 * . (3.13)

Therefore combining (2.7d) and (3.13) we have for ail a G (0, 1) that

f
J n

^ f - U o o . (3.14)

A simple calculation ; using the quasi-uniformity of Th, (3.9d), (N.D.C.) for
<f>x and (3.10) ; yields for ail a e (0, 1)

fJ (*i)a-!= I [ (^ f r -^c j ; [^(r)^"-1]^^". (3.i5)

Combining (3.14) and (3.15) yields the desired resuit (3.9e). •
If one imagines extending the triangulation Th of Qh to fh of

/ ^ where ^ ^ is a polygonal approximation of H, such that fh of

12A satisfies the properties given at the start of this section with

f\ Oh and ƒ replacing 7*, f2h and ƒ. Then {A*, <£^ , the corresponding

finite element approximation of ƒ A ls <Ail » satisfies the corresponding

versions of (3.9) and in addition we have the discrete analogue of (2.8)

j S ^ i n f {£*(* , ) :* ,€ƒ} > C : - 0 . (3.16)

THEOREM 3.1 : För h ̂  h0 there exists a unique solution wh to
(Qh) and

C3^C2^l^wh^C1^>^ in /} , (3.17)
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where the positive constants C b C2 and C3 depend only on p, f2 and
O for Ç sufficiently smalL

Proof : The proof of existence is a discrete analogue of the proof of
Theorem 2.1 using (D.M.P.) instead of (S.M.P.). Similarly for uniqueness,
we have from (D.M.P.) that w* > 0 in Üh. Following the argument (2.15)
we have, for w\ ̂  wf, that there exist k, Î e I such that w^Ot*) > W\{xk) and
w\(x() >• w^to) and hence

y ^ max ' ; » 1 . (3.18)

Let zh= yw\~ w\ G S$9 then it follows from (D.M.P.) that zA=0 in
iï'1 and hence we have uniqueness. •

Remark 3.1 : It is not necessary for h to be sufficiently small to guarantee
that there exists a unique solution wh to (Qh). We imposed it in order to
simplify the proof and to establish at the same time (3.17) for later use. •

We now prove discrete analogues of Lemmas 2.2 and 2.3.

LEMMA 3.2 : Let

mh(x)= 7-^- . (3.19a)
(f'(uh)x,x)n"

then it follows that for h =s h0

V*eS£ (3.196)-*• ^ïa h/ h\ ^^ rfj,

P """"
and hence

\x\tn»- (f'(uh)x,x)n»^ {l-p)\x\\^ V * e S g . (3.19c)

Proof : The proof is a discrete analogue of the proof of Lemma 2.2. It
follows from (3.17) and (3.9e) that #*(*) is well-defined on Sg. From (3.4)
and the Perron-Frobenius theorem we have that the first eigenpair
(yttf, if/%) of Mh{. ) is such that ix\ > 0 is simple and ty\ is of one sign. It

follows that ( - , uh \ is the first eigenpair of â$h(. ) and hence the desired

results (3.19& and c). •

LEMMA 3.3 : Given p e (0, 1) and g e U+ then for h^h0 the solution
wh=wh(i) to (Qh) and the solution uh=wh(0) to (Ph) are such that

(i) w S « * > 0 ï n nhand(n) \wh-uh\1 ah^CÇ , (3.20)
where C dépends only on p and O.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelhng and Nu mène al Analysis



APPROXIMATION OF A NONLINEAR EIGENVALUE PROBLEM 641

Proof : The proof of (3.20) (i) is a discrete analogue of the proof of (2.26)
(i). Similarly, from (3.3), (3.7), (3.17) and (3.19c) it follows that

The desired resuit (3.20) (ii) follows from Sobolev's embedding theorem
and (3.9e). •

We are now in a position to analyse the error in the approximation of
(F) by (Ph). Firstly, we introducé some more notation.

Let 7Th: C (fi)-* Sh dénote the interpolation operator such that for any

veC(f2)9 7Th v e Sh satisfies

7Thv(xl) = v(xl) Viel. (3.21)

We recall the standard approximation resuit : for m — 0 or 1, q e [l,oo]
and r E (1, oo] provided W2-\T) <+ Wm-q(r)

, \v\2rr VveW2'r(r), V r e r » .

(3.22)

Let <3 Ë & (L\il ), Hl{n) n H2{n )) be the « inverse Laplacian » de-
fined by

V r e f f ^ û ) . (3.23)

Let &k e Sf(L2(nh), SQ) be the « discrete inverse Laplacian » defined by

(V9TS,V^) O .= {v,x)n* VA-650
ft. (3.24)

We recall the following standard finite element error bounds for *&h :

| | ( ^ - ^ * ) r , | | 0 o o / 2 ^ C h | r 7 | 0 f l (3.256)

and for h^ h0

In addition we require the well-known discrete Sobolev embedding result

/ i \ 1/2
i l * l l o , c o , ^ C ( l n ^ ) U l l t i 2 (3.26)
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and the Gagliardo-Nirenberg inequality, see Friedman (1969), for all

* e (0, 1]. (3.27)

LEMMA 3.4 : Given p e (0, 1) then the unique solutions u and uh of
(P) and (Ph), respectively, satisfy for h ̂  h0 and any e e (0, 1]

(3.28)

where C dépends only on p and f2.

Proof: Since ƒ is monotonically increasing it follows from (3.23) and
(3.24) that

(VST*ƒ(«), V*,)n* l

*<jWif(u) + €Ï),Xl)a* V^eS0\ (3.29a)

where

It follows from (3.20) and (3.26) that

^ 1/2ff in I2h. (3.30)

From (D.M.P.) and by choosing wh = k h <f> f, with kh sufficiently large in the
construction used in the proof of Theorem 3.1, it follows that

0 in /2 *. (3.31)

Therefore combining (3.29) -> (3.31) yields

u~uh= [u- <0hf(u)] + [^* ƒ (M) - M'1]

^ (ST - 3T *) ƒ («) + ( w \ f f) - w'1) ̂  C (in i ) 1/2 f*. (3.32)

Similarly we have from (3.23) and (3.24) that

, (3.33a)
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where

From Sobolev's embedding theorem, elliptic regularity, (2.9), (2.10a),
(3.336), (3.256) and (3.17) we have for r e (2, oo) that

f2* | |0 > f l O i i a*C. (3.34)

From (2.26), (3.27) and (3.34) we have for any e e (0, 1] that

0 < u ^ w (f£) ^ W + C (£2V ~ e . (3.35)

From (S.M.P.) and by choosing k sufficiently large in the construction used
in the proof of Theorem 2.1, it follows that

)^0 in O . (3.36)

Therefore combining (3.33), (3.35), (3.256), (3.29a) and (3.36) yields

uh~u = [uh-9f(uh)] + [9f(uh)-u]

^(<ëh-<$)f (uh) + w(f *) -u^C (É*)1 * e. (3.37)

Combining (3.29), (3.32), (3.33) and (3.37) yields the desired resuit
(3.40). •

Finally we have the main resuit of this section.

THEOREM 3.2 : Given p e (0, 1) then the unique solutions u and
uh of (P) and (P h), respectively, satisfy for h ^h0 and any e > 0

where C dépends only on p and H.

Proof: The L00 resuit follows directly from (3.28), (3.25c), (3.22) and
(3.17) as | | # / ( K * ) | | 2 r n^C for ail r e (1, oo). The Whco resuit then
follows from the L00 resuit, (3.22) and the inverse inequality

oo.fl V * e S \ (3.39) •
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4. A MORE PRACTICAL APPROXIMATION

The standard Galerkin approximation analysed in the previous section
requires the term (f(uh), x)nh t o t>e integrated exactly. This is obviously
difficult in practice and it is computationally more convenient to consider a
scheme where numerical intégration is applied to this term. Below we
introducé and analyse such a scheme

For i?2, v2 e C (Öh) we approximate (vx, v2)/2
h ty

irh(vlv2)='£a>Jv1(xJ)v20cJ)9 (4.1)

where <o = ^ Vj e ƒ. Introducing the interior nodes

Io= {j e I :Xj e nh}, we set

(t?!, t>2)/= £ o,Jvl(xJ)v2(xJ). (4.2)
J

It is easy to show using (3.22) and inverse inequalities that for all non-
negative x e Sh and re [1, oo)

(4.3)

We now define a more practical approximation of (P) than (Ph) :

(Ph) Given p e (0, 1), find ûh^0 e SQ such that

= (ƒ (Û*), *)* V^ e S5, (4.4)

where ƒ is given by (1.2).

We introducé the corresponding discretizations of (Q) and (1.4) :
(Qh) Given/? e (0, 1) and £ e U\U~ find w*(f ) e S& w*(0) # 0, such

that

(VM>\ V^) f l* = (ƒ (w;i + £), * ) * V^ E S£ , (4.5)

where ƒ is given by (1.2).
Find (Âf, <£f) E R x S$ such that

(4.6)
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It is convenient to introducé # e if (C (f2h), 5$), the « discrete inverse

Laplacian in the présence of numerical intégration » defined by

(V#N, V*)fl*= (v.xt V ^ e 5 j . (4.7)

We note that ^A r\ = <êh(7rh 17 ) and recall the well-known error bound for

# \ which follows immediately from (3.24), (4.7), (4.1) and (3.22) : for any
VheSh

n^Chl + m \vh\m nfl m = 0 or 1 . (4.8)\m

We now have the discrete analogues of Lemmas 3.1 -• 3.4 and Theorems
3.1 -• 3.2. In the majority of cases we do not give proofs as they are a
straightforward modification of their counterparts in the previous section.

LEMMA 4.1 : The f ir st eigenpair (À{, 4>\) of (4.6) are such that

(i) k\>Q is simple and <f>\ is of one sign ; (4.9a)

(ii) normalising s o that

max {^(Xj):j el] = 1 , (4.9*)

it follows that for h ==s h0

^ - À Î l ^ C h 2 , | <Ê i -<^ | 0 o o fi«Ch2lni ( 4 . 9 c )

and

} * , ) V / e / ; (4.9d)

(iii) for h =s h0

\ a - \ 1 ) ? < O ) V a > 0 . (4.9e)

Proof : From (3.4) and the Perron-Frobenius theorem we have that (i)
holds, see e.g. Barrett and Elliott (1989) for details. For (4.9c) see Strang
andFix (1973), (3.9c), (4.8) and (3.26). Similarly (4.9rf) follows from (3.9rf),
(3.9c) and (4.9c). Clearly (4.9^) holds for a. ̂  1, we now prove it for
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a. e (O, 1). From (4.9<i), the quasi-umformity of the mesh and (N.D.C.) we
have

[dist (j^, 3 / 2 ) f " 1 + C o - a " ! . (4.10)

Then for h =s= /Î0 we choose T̂ e N such that (K-l)h-^cr^Kh and set for
* = 1 -*K

l£k)^ {j el : (jfc- 1 ) /Kd i s t (*,, 6 / 3 ) ^ ^ } . (4.11)

By quasi-uniformity of the mesh it follows that the number of nodes
belonging to I^k) is bounded above by Ch~ l. Therefore from (4.11) we have
that

h2 £ [dist (*,, dB)]a-i^Cha + Ch ^ {khy~1^
J e !0 A = i

(K-l)h

ya-ldy + C ^C . (4.12)
o

Combining (4.10) and (4.12) yields the desired result (4.9e). •

THEOREM 4.1 : For h ^ h0 there exists a unique solution wh to (Qh) and

C3**C2<f>hi*s âh 3*Cl$i in Ö, (4.13)

where the positive constants Cx, C2 and C3 depend only on p, f2 and
f2 for £ sufficiently small.

LEMMA 4.2 : Let

|2

( ƒ ( « ) * , X)i

then it follows that for h *£ h0

- = âh (ûh ) ^ âh (x ) V^ G S g (4.146)
p

and hence

l*lî.fl*- (ƒ(«*)*.*)/> (1 -P) klî,fl*
 v * e 55. (4.14c)
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Proof: For e G (0 , — — ) we have from (4.9e), (4.3) and Sobolev's
\ 1 — p I

embedding theorem that

^C I U H S . 2 ( i + i ) , i J a s C \x\la * e S § . (4.15)

Therefore from (4.13) and (4.15) we have that Ûh is well-defined on
SQ. The remainder of the proof follows that of Lemmas 2.2 and 3.2. •

LEMMA 4.3 : Given p e (0, 1) and J Ê R + then for h =s; h0 the solution

wh = wh(g) to (Qh) and the corresponding solution ûh ~ wh(Q) to (Ph) are

such that

(i) wh**ûh>0 in nh and (ii) \wh - ûh\x oh**Cg , (4.16)

where C dépends only on p and O.

Proof: The bounds (4.16) (i) follow as for (3.20) (i). (4.16) (ii) follows as
for (3.20) (ii) and (2.26) (ii) by noting that

I**-Û*IU*= (ƒ(** + £)-ƒ(**), **-û*)J. (4.17) •

LEMMA 4.4 : Given p e (0, 1) then the unique solutions u and ûh of
(P) and (Ph), respectively, satisfy for h ̂  h0 and any s G (0, 1]

where C dépends only on p and 12.
In order to prove an L °° error bound for ûh we need to bound

-7rh) ƒ (» )+ (.<gh-<Sh)irhf{v) (4.19)

for v = M and ûh. This we do in the following lemmas.

LEMMA 4.5 : For h « h0 and for v = u and ûh we have that

||<*-**)»*/(O||a.tO*c(*lnI)2, (4.20)

where C dépends on p and fl.
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Proof : It follows from (3.25c), (3.22) and the Calderon-Zygmund
inequality that

(4.21)

The desired result follows from setting r = In (l/h) and noting the bound
(4.13). •

For the next results we need to introducé some more notation. For
o- such that <f>x satisfies (N.D.C.) and h === h0 choose K such that
(K + l)h^ a < (K + 2)h.

We define

Tjh= {r sTh:3xe T with dist (x, df2)^jh} j = 1 -+ K ,

9 (4.22a)

j=2^K+l. (4.22b)

It follows that Oh = {_J R?9 from the quasi-uniformity of the mesh that
j - i

ƒ?ƒ c A ƒ = {x G /5 : (/ - 1 ) h =s dist (JC, 3/2 ) <: (j + 1 ) ̂ }

7 = 1 - * , (4.23a)

and hence

m (Rjh) ̂  m (A/1) ̂  Ch . (4.236)

For y e f2 let gy G W1}1(f2) bz the Green's function such that gy = 0 on
dfï and

(V0y, Vi?)fl = »ty) V u e f f 1 ' ^ / ] ) ; (4.24Ö)

and grj e SQ, i ts Galerkin approximation ; that is,

(Vgh
y^x)a* = x(y) VxeS$. (4.24b)

L E M M A 4 . 6 : ( i ) For y e H and for h =s= hö

I I M o , i , ^ C h ( l n i ) O'*) 7 = 1 - ^ . (4.25a)
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( i i ) F o r y e O

(iii) For y e Oh where f^^cc Oa} ci<=j?, and for h =s h0

IWII i . » . * * * ^ ./ = ! - > * . (4.25c)

Proo/; (i) Let G]1 e //^(/2 ) n H 2{f2 ) be such that

(VG/, Vt7)fl - (1, V)AH Vv e Hl{Ü) . (4.26)

It follows that

Gjh(y)= f fly(jc)£fas ||gy|| *. (4.27a)

and

f - f l " 1 * , (4.27Z7)f
since ^(f) = gt{x) = C In (|JC - t \ ) + vt{x) and i ; feC2(/5). A simple
calculation using (4.23£) yields from (4.27fr) that

Therefore we have, adopting the notation (2.4d), that

0 ^ G*Oc) ^ Ch In ~ (jh) Vx G Djh . (4.29)

As - AGy* = 0 in O\/2jh, (S.M.P.) yields that

O ^ G / ( v ) ^ C h l n i (jh) Vy e O (4.30)

and hence the desired resuit (4.25a) follows from (4.27a) and (4.30).

(ii) From (4.24b) we have that |g j | ̂  Â = gj(y) and hence the desired

resuit (4.256) follows from this and (3.26).
(iii) From an inverse inequality and (3.22) we have that

vol 26, n° 5, 1992



650 J W BARRETT

As y e O i is f ar away from /?ƒ one can prove that

lk-*îlli.«**Ch <4-32>
using the standard techniques for local energy estimâtes, see Wahlbin (1990)
for details. The desired resuit (4.25c) then follows from (4.31) and
(4.32). •

LEMMA 4.7 : For h^howe have

(i)

(ii)

and

(iii) | | ^ ( / - 7rh )f(üh)\\0^n^Ch^-£ V £ > 0 ; (4.33c)

where C dépends on p and f2.

Proof: We have from (3.23), (4.24a) and (4.23) that for v = u and
ûh there exists 3? G H such that

(4.34)
j •

The results (4.25a) and (4.13) yield that

| ( ( / - *•*)ƒ(«>). 9y)A\\ ^ C h 2 l n ^ - (4*35>

It follows from (4.25a) and (3.22) that for j = 2 -> K

| / ( f ) | 2 , œ , ^ . (4-36)

As

= f'(v)D2v+f"(v) (Dv)2, (4.37)
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it follows from (4.36), (4.22), (2.9) and (N.D.C.) for <f>x that

j = 2 y = 2

i f(
lni

* Jo
^ C h 2 l n ^ . (4.38)

Similarly it follows, noting (4.37), (4.13) and (4.9d), that

[), gy)Rk\ ^ C h 2 l n i | ^ | 2
 nk. (4.39)

In addition we have for any 8 > 0, noting (3.22), that

Therefore from (4.37), (4.13), (4.9d), (2.9) and (N.D.C.) for <f>l we have
that

| ( ( 7 - nh)f(u), gy)R> + 1\ « C h 2 (4.40a)
and

| « / - «•*) ƒ(«"). 9y)RiJ ^ C h 2 |«*lî |00>i î*. (4.406)

Similarly we have for any S > 0 that

where we have employed an inverse inequality and noted that \ûh\1 ûh^C,

which follows immediately from (4.4), (4.3) and (4.13).
The desired results (4.33a-c) follow from (4.34) and (4.35) with (a) (4.38)

and (4.40a) ; (b) (4.39) and (4.402?) ; and (c) (4.41). •

LEMMA 4.8 : For v == u and ûh and f or h =s h0 we have that

(4.42a)
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and

(n)for f2f czcz O

where C dépends on p and 12.

Proof : We have from (3.24), (4.7), (4.24b), (4.23) and (3.22) that for
v = u and ûh there exists y e Oh such that

, / ^ ) ! .IflJI } . (4.43)
7 = 1 J

It follows from an inverse inequality and (4.23) that

^ l . (4.44)

It follows from (4.236), (4.13), (4.9d), (2.9) and (N.D.C.) for <£, that

1/2

since

7 = 3

Similarly we have
K

1

; JA

7 = 3

(K~i)h
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Finally it follows from (4.13), (4.9d), (2.9) and (N.D.C.) for 4>x that

The desired resuit (4.42a) follows from (4.43), (4.44), (4.45), (4.47) and
(4.256). The desired result (4.426) follows from (4.43) with y G Üly (4.44)
and (4.46) with (4.25c), (4.236) and (4.13) ; and (4.47) with (4.256). •

LEMMA 4.9 : For h^ /i0, Oj <= cz fl and for all e > 0 we have

(i) (9-9h)f(u)\ ^Ch2" e( l +hp~m), (4.48a)
II 0, oo, fl

(ii) II (SF-£*)ƒ(«) L «Ch 2 " £ , (4.486)
II 't U, 00, ilj

(iii) | | (Sr -#* ) / (û* ) | n o ssCh ' - £ , (4.48c)
H II U OO Si

(4.48cO
and

^ ^ c h ^ a + iû»!^^). (4.48e)

where C dépends on p and Ï2.

Proof : The above results follow by combining (4.19) and (4.20) with
various other results :

(i) (4.33a), (4.42a) and noting that | | n ^ œ ^ f u A j « Ch*.

(ii) (4.33a) and (4.426).
(iii) (4.33c), (4.42a), (3.39) and (4.13).
(iv) (4.336) and (4.42a).
(v) (4.336) and (4.426). •
Finally we have the main resuit of this section.

THEOREM 4.2 : Given p e (0, 1) then the unique solutions u and
ûh of (P) and (Ph), respectively, satisfy for h ̂  h0, ft} czcz O and
any s > 0

for pe [1/2,1) 4 ^
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\u-uh\ ^ C h 2 - e ( l + ^ - l / 2 ) + C h ^ £ | | M - ^ L „ „
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and

II" """H o, 00,^ + *H« -^h^a,***2-

where C dépends on p and fl.

Proof : From (4.18), (4.48a) and (4.48c) we have that

From (3.22) and (3.39) we have that.

and hence

\ ü h \ 2
 ; ^ C ( 1 +h-2\\u~ ûh\\2 ) . (4.516)
1 oo fi O oo ü

Combining (4.50) and (4.516) yields

lâ*lfû**C^1 + *l'"Z"'llM-û*llo»fl>- (4-52)

Therefore (4.13) and (4.53) yield that

II M - M * II ^ C h ( 3 / 2 ) " £ (4.54a)
il " o , oo, n

and hence

The desired result (4A9a) then follows from (4.53), (4.542?) and (3.39). The
result (4.496) folïows from (4.486), (4.48e), (4.49a) and (3.39). •

COROLLARY : Given p G. (O, 1) then the unique solutions u and ûh of
(P ) and (Ph) in one dimension, respectively, satisfy for h =s= h0

where C dépends on p and f2.
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Proof : In one dimension the key différences are (i) for y a mesh point

gh
y^gy and | ^ | | l t 0 O > o **C

and (ii) the ( In — ) term s are avoided and one can set s = 0 in the above. It

is then a simple matter to adapt the proof of Lemma 4.8 to show that (4.42b)
holds for Hj = O and hence the desired resuit (4.55) follows. •

In proving the above error bounds, (4.49) and (4.55), we have exploited,
and hence the lengthy argument, the fact that the lack of Lipschitz
continuity of ƒ (M) and ƒ (Û^) occurs in the vicinity of 9/2, where the Green's
functions are « small » ; see (4.25Ö) for example. This is the reason why
there is no « pollution » from the numerical intégration of this rough forcing
term, Le. we have an optimal interior L °° error bound in two dimensions,
global in one dimension. This is in marked contrast to the case where the
lack of Lipschitz continuity occurs in the interior. Wahlbin (1990), § 18,
studies the one dimensional linear problem :

-u"=[xY+ for j c e / 2 = ( - l , 1) w(- 1) = K ( 1 ) = 0 ,

where p e (0, 1) and shows that

In addition he shows that the L °° error does not improve away from
x = 0, where the forcing term is rough. Thus there is global pollution in this
case,

Finally, we note from Lemmas 4.5, 4.7 and 4.8 that the only term that is
not converging globally at the near optimal rate in L ^ in two dimensions is
the last term in (4.19). From this it would appear better to define
w\ our fully practical approximation to M, to be

ûh = &h7rhf(û
h) (4.56a)

as opposed to our present choice

ÛA= 9h f(ûh)= êh 7rhf(û
h). (4.56b)

We note that (4.56a) is as computationally convenient as (4.56e). However,
we have not been able to généralise Lemma 4.2 to this choice.
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