M2AN. Mathematical modelling and numerical analysis
 - Modélisation mathématique et analyse numérique

P. LE TALLEC
 S. Mani
 F. A. Rochinha
 Finite element computation of hyperelastic rods in large displacements

M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique, tome $26, \mathrm{n}^{\circ} 5$ (1992), p. 595-625
http://www.numdam.org/item?id=M2AN_1992__26_5_595_0
© AFCET, 1992, tous droits réservés.
L'accès aux archives de la revue «M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

FINITE ELEMENT COMPUTATION OF HYPERELASTIC RODS IN LARGE DISPLACEMENTS (*)

by P. Le Tallec (${ }^{1}$), S. Mani (${ }^{2}$) and F. A. Rochinha (${ }^{3}$)

Communicated by R Temam

Abstract

The present paper deals with the Numerical Analysis of the equilibrium problem of an elastic rod subjected to very large displacements, involving traction, flexion and torsion The model which is used describes the motton and the deformation of the rod by orthogonal directors, which leads to an hyperelastic problem written in an objective and intrinsic framework This problem is then approximated by Mixed Finte Elements and the corresponding approxtmation is proved to be well posed and to produce soluttons which strongly converge towards any isolated stable equilibrium postton of the rod Finally, the discrete problem is numerically solved by a Newton's type procedure which respects the orthogonality of the directors and the inextenstbility of the rod

Résumé. - Le sujet de cet artucle est l'Analyse Numérqque du problème d'équillbre d'une poutre soumıse à de très grands déplacements, et à l'action combinée d'efforts de traction, de flexion et de torsion Le modèle utllisé décrit le mouvement et les déformations de la poutre à l'aıde de vecteurs directeurs orthogonaux, ce qui conduit à un problème hyperélastque écrit sous forme varıatıonnelle, objective et intrinsèque Le problème est ensuite approché par une méthode d'Éléments Finis mixtes, et on démontre que le problème approché est bien posé et qu'll possède des solutions discrètes qui convergent fortement vers toute configuratoon d' équilibre stable de la poutre Enfin, on propose une méthode de résolution numérqque du problème discret à l'aide d'une méthode de Newton qui respecte l' orthogonalité des vecteurs directeurs et l' inextenstbilité de la poutre

1. INTRODUCTION

This paper is concerned with the Numerical Analysis of the equilibrium problem of a hyperelastic rod subjected to large displacements, flexion and torsion. The relevant mechanical model, introduced in [1], [2] or [3], uses

[^0]directors to describe the motion of the rod and to measure torsion and flexion in an objective and intrinsic framework.

In a previous paper [4], we have written such a problem under a variational form and proved it to be well-posed.

Our goal is to derive here a consistent Finite Element approximation of this problem (Sect. 3), to prove its convergence (Sect. 3), its consistency (Sect. 4) and to describe a Newton's type solution procedure (Sect. 5) which respects its geometric constraints (orthonormality of the directors and, if relevant, inextensibility of the rod).

2. THE MECHANICAL PROBLEM

2.1. Reference configuration

Figure 1. - The Physical Problem.

We consider herein the deformation of a rod which, in its reference configuration is straight, of length L and of cross sections $\Omega(S)$. By choosing an adequate cartesian basis in the physical space E, this reference configuration can be identified to the domain $\bar{\Omega}$ of \mathbb{R}^{3} given by

$$
\begin{equation*}
\bar{\Omega}=\left\{X \in R^{3}, X=\left(X_{1}, X_{2}, S\right), 0 \leqslant S \leqslant L,\left(X_{1}, X_{2}\right) \in \bar{\Omega}(S)\right\} \tag{2.1}
\end{equation*}
$$

2.2. Kinematics of the rod

Following [4], we will suppose that the position $x(X)$ of any particle X after deformation is given by

$$
\begin{gather*}
x\left(X_{1}, X_{2}, S\right)=r(S)+X_{1} d_{1}(S)+X_{2} d_{2}(S) \tag{2.2}\\
d_{\alpha}(S) \cdot d_{\beta}(S)=\delta_{\alpha \beta}, \quad \forall 1 \leqslant \alpha, \beta \leqslant 2, \quad \forall S \in[0, L] \tag{2.3}
\end{gather*}
$$

Above, $r(S)$ is the final position of the rod center line and $\left\{d_{\alpha}(S)\right\}$ can be viewed as the images after deformation of two material vectors engraved on the section $X_{3}=S$, initially parallel to the coordinate axes and of norm unity. The above equality implies that the cross sections do not change
shape but does not require them to stay normal to the center line after deformation. In other words, shear is permitted.

In addition to (2.2)-(2.3), the deformation $x(X)$ must satisfy the kinematic boundary conditions imposed to the rod under study. Introducing the director $d_{3}=d_{1} \times d_{2}$, we suppose that these conditions consist in

$$
\begin{equation*}
r(0)=r_{0} \quad(\text { rod fixed in } 0) \tag{2.4}
\end{equation*}
$$

and in one or more of the following

$$
\begin{gather*}
r(L)=r_{L} \quad(\text { rod fixed at both ends }), \tag{2.5}\\
d_{k}(0)=d_{k}^{0} \text { for } k \text { given in }\{1,2,3\} \\
\left(\text { rod rotating around } d_{k}^{0}\right)
\end{gather*}
$$

or

$$
\begin{equation*}
d_{k}(0)=d_{k}^{0}, \forall k=1,2,3 \quad(\text { rod clamped }) \tag{2.6}
\end{equation*}
$$

$$
\begin{aligned}
& d_{k}(L)=d_{k}^{L} \text { for } k \text { given in }\{1,2,3\} \\
& d_{k}(L)=d_{k}^{L}, \forall k=1,2,3
\end{aligned}
$$

or
Finally, the set of kinematically admissible deformations is obtained by combining the kinematic assumption (2.2)-(2.3) with the above boundary conditions, and is therefore given by

$$
\begin{align*}
K= & \left\{\left\{r, d_{1}, d_{2}, d_{3}\right\}=\left\{r, d_{l}\right\} \in W^{1, p}\left(0, L ; E^{4}\right),\right. \\
& r(0)=r_{0}, d_{l}(s) \cdot d_{j}(s)=\delta_{i J}, \forall i, j=1,3, \forall s \in[0, L] \\
& \left\{r, d_{t}\right\} \text { satisfies one or more of the } \\
& \text { boundary condition }(2.5)-(2.7)\} . \tag{2.8}
\end{align*}
$$

Herein, $W^{1, p}(0, L)$ denotes the usual Banach space
with norms

$$
\begin{gathered}
W^{1, p}(0, L)=\left\{f \in L^{p}(0, L), f^{\prime}=\frac{d f}{d S} \in L^{p}(0, L)\right\} \\
\|f\|_{0, p}=\left(\int_{0}^{L}|f|^{p} d S\right)^{1 / p} \\
\|f\|_{1, p}=\left(\|f\|_{0, p}^{p}+\left\|f^{\prime}\right\|_{0, p}^{p}\right)^{1 / p}
\end{gathered}
$$

2.3. Measuring strains

Following [4], to the deformation $x(X)$ given by (2.2), we associate the strains $\left\{u_{j}\right\}$ and $\left\{w_{k}\right\}$ defined by

$$
\begin{align*}
& u_{j}\left(d_{l}\right)=\frac{1}{2} e_{j k l} d_{k}^{\prime} \cdot d_{l} \tag{2.9}\\
& v_{k}\left(d_{l}\right)=r^{\prime} \cdot d_{k} \tag{2.10}
\end{align*}
$$

vol. 26, n $^{\circ} 5,1992$

When $\left\{r, d_{l}\right\} \in K$, the above definitions reduce to

$$
\begin{align*}
d_{\imath}^{\prime} & =\left(u_{J} d_{J}\right) \times d_{\imath}, \tag{2.11}\\
r^{\prime} & =v_{k} d_{k} . \tag{2.12}
\end{align*}
$$

As indicated in [4], $\left\{u_{j}\right\}$ and $\left\{v_{k}\right\}$ are an objective measure of strains. They are defined independently of any observer and their knowledge characterizes $x(X)$ within a rigid body motion. From a geometric point of view, u_{α} measure flexion, u_{3} measures torsion, v_{α} measure shear and v_{3} measures volume changes.

From the compact injection from $W^{1, p}(0, L)$ into $L^{\infty}(0, L)$, it is also a simple matter to prove that u_{J} and v_{k} are weakly continuous maps from $W^{1, p}\left(0, L ; E^{4}\right)$ into $L^{p}(0, L)$.

2.4. Variational formulation

In the above kinematic framework, the equilibrium positions of the rod under study are characterized by the equilibrium equations

$$
\begin{gather*}
m^{\prime}+r \times n=0, \tag{2.13}\\
n^{\prime}+f=0, \tag{2.14}
\end{gather*}
$$

and by the hyperelastic constitutive law

$$
\begin{align*}
m & =\frac{\partial w}{\partial u_{\jmath}} d_{\jmath} \tag{2.15}\\
n & =\frac{\partial w}{\partial v_{k}} d_{k} \tag{2.16}
\end{align*}
$$

Above, m and n denote the stress couple and stress resultant inside the rod, f is the lineic density of applied forces, and w is the elastic stored energy potential of the rod. A typical choice for w is :

$$
\begin{align*}
w\left(S, u_{J}, v_{k}\right)= & \frac{1}{2}\left\{G A_{\alpha}(S) v_{\alpha}^{2}+E A(S)\left(v_{3}-1\right)^{2}\right. \\
& \left.+E I_{\alpha}(S) u_{\alpha}^{2}+G I(S) u_{3}^{2}\right\} \tag{2.17}
\end{align*}
$$

Such an energy potential involves shear $\left(G A_{\alpha} v_{\alpha}^{2}\right)$, tension $\left(E A\left(v_{3}-\right.\right.$ $1)^{2}$), flexion ($E I_{\alpha} u_{\alpha}^{2}$) and torsion ($G I u_{3}^{2}$).

If f is independent of r, the above equilibrium problem takes the variational form [4]

$$
\begin{cases}\text { Find } \quad\left\{r, d_{t}\right\} \in \bar{K} \quad \text { such that } \tag{2.18}\\ J\left(r, d_{l}\right) \leqslant J\left(p, g_{l}\right), & \forall\left\{p, g_{l}\right\} \in \bar{K}\end{cases}
$$

under the notation $\bar{K}=K$ and

$$
\begin{equation*}
J\left(r, d_{l}\right)=\int_{0}^{L} w\left(S, u_{j}\left(d_{t}\right), v_{k}\left(r, d_{t}\right)\right) d S-\int_{0}^{L} f \cdot r d S \tag{2.19}
\end{equation*}
$$

In our analysis, we will suppose that w is so chosen that the energy J satisfies :
(H1) $\quad J$ is continuous on $W^{1, p}\left(0, L ; E^{4}\right)$;

$$
\begin{align*}
& J\left(r, d_{t}\right)=C_{0}\left(\sum_{t=1}^{3}\left\|d_{t}^{\prime}\right\|_{0, p}^{p}+\left\|r^{\prime}-d_{3}\right\|_{0, p}^{p}\right)+J_{0}\left(r, d_{t}\right), \tag{H2}\\
& \text { with } J_{0} \text { positive and weakly lower semicontinuous } \\
& \text { on } W^{1, p}\left(0, L ; E^{4}\right) .
\end{align*}
$$

These two assumptions are satisfied by the choice (2.17) if we take $p=2$ and $C_{0}=\min \left(G A_{\alpha}, E A, E I_{\alpha}, G I\right)$.

2.5. The case with no extension and no shear

The case with no extension and no shear is an important limit case in practice. It is simply obtained by adding the constraint $r^{\prime}=d_{3}$ in the definition of kinematically admissible deformation fields. In other words, we introduce

$$
\begin{equation*}
K^{\mathrm{nnc}}=\left\{\left\{r, d_{l}\right\} \in K, r^{\prime}=d_{3}\right\} \tag{2.20}
\end{equation*}
$$

and define our equilibrium problem by (2.18) with \bar{K} now given by

$$
\bar{K}=K^{\mathrm{inc}}
$$

In this case, we have $v_{1}=v_{2}=v_{3}-1=0$ and thus w is only a function of $\left\{u_{j}\right\}$.

3. THE FINITE ELEMENT PROBLEM

3.1. Finite Element formulation

The classical Finite Element approximation of the equilibrium problem (2.18) approximates the position r of the rod center line by C^{1} piecewise cubic Finite Elements and the director fields d_{t} by C^{0} piecewise quadratic Finite Elements.

Figure 2. - The Finite Element Mesh.

With this choice, the Finite Element formulation of our problem is simply

$$
\begin{cases}\text { Find } \quad\left\{r, d_{l}\right\} \in \bar{K}_{h} & \text { such that } \tag{3.21}\\ J\left(r, d_{l}\right) \leqslant J\left(p, g_{l}\right), & \forall\left\{p, g_{l}\right\} \in \bar{K}_{h},\end{cases}
$$

with

$$
\begin{align*}
\bar{K}_{h}=K_{h}= & \left\{\left\{r, d_{l}\right\} \in V_{h} \times W_{h}^{3}, d_{l}\left(M_{p}\right) . d_{j}\left(M_{p}\right)=\delta_{l j},\right. \\
& \forall i, j=1,3, \forall M_{p} \in M_{h},\left\{r, d_{l}\right\} \text { satisfies the } \tag{3.22}\\
& \text { boundary conditions imposed for } K\},
\end{align*}
$$

in the general case and

$$
\begin{equation*}
\bar{K}_{h}=K_{h}^{\text {inc }}=\left\{\left\{r, d_{l}\right\} \in K_{h}, r^{\prime}=d_{3}\right\} \tag{3.23}
\end{equation*}
$$

in the case with no shear and no extension. Above, the Finite Element spaces V_{h} and W_{h} are respectively given by

$$
\begin{align*}
V_{h} & =\left\{v \in C^{1}(0, L ; E),\left.v\right|_{\left[a_{2 t-1}, a_{2 t+1}\right]} \in P_{3}, \forall i=1, N_{h}\right\}, \tag{3.24}\\
W_{h} & =\left\{v \in C^{0}(0, L ; E),\left.v\right|_{\left[a_{2 t-1}, a_{2 t+1}\right]} \in P_{2}, \forall i=1, N_{h}\right\}, \tag{3.25}
\end{align*}
$$

with $\left(\left[a_{2 \imath-1}, a_{2 \imath+1}\right]\right)_{t=1, N_{h}}$ a given subdivision of $[0, L], P_{n}$ the space of polynomials of degree less than or equal to n, and M_{h} the set of vertices and centers of the subdivision.

3.2. Lemmas

LEMMA 1:Let $\left(\left\{r_{h}, d_{t h}\right\}\right)_{h}$ be a sequence of elements with $\left\{r_{h}, d_{t h}\right\} \in$ $K_{h}, \forall h$ and $\left(\left\{r_{h}, d_{l h}\right\}\right)_{h}$ weakly converging towards $\left\{r, d_{l}\right\}$ in $W^{1, p}(0$, $L ; E^{4}$). Then

$$
\begin{equation*}
d_{j}(S) . d_{k}(S)=\delta_{j k}, \quad \forall S \in[0, L], \quad \forall j, k=1,3 . \tag{3.26}
\end{equation*}
$$

Proof: Let $h=\max \left|a_{2 t+1}-a_{2 \iota-1}\right|, q$ be such that $1 / p+1 / q=1$ and M_{p} be the point of M_{h} closest to S. We then have

$$
\begin{aligned}
d_{j h}(S) \cdot d_{k h}(S)-d_{j h} & \left(M_{p}\right) \cdot d_{k h}\left(M_{p}\right)= \\
& =d_{j h}\left(M_{p}\right) \cdot \int_{M_{p}}^{S} d_{k h}^{\prime}(\sigma) d \sigma+d_{k h}\left(M_{p}\right) \cdot \int_{M_{p}}^{S} d_{j h}^{\prime}(\sigma) d \sigma \\
& +\left(\int_{M_{p}}^{S} d_{j h}^{\prime}(\sigma) d \sigma\right) \cdot\left(\int_{M_{p}}^{S} d_{k h}^{\prime}(\sigma) d \sigma\right)
\end{aligned}
$$

From the Hölder inequality and since $\left\{r_{h}, d_{t h}\right\} \in K_{h}$, this implies

$$
\begin{aligned}
\left|d_{j h}(S) \cdot d_{k h}(S)-\delta_{j k}\right| \leqslant & h^{1 / q}\left\|d_{k h}^{\prime}\right\|_{0, p}+h^{1 / q}\left\|d_{j h}^{\prime}\right\|_{0, p} \\
& +h^{2 / q}\left\|d_{k h}^{\prime}\right\|_{0, p}\left\|d_{j h}^{\prime}\right\|_{0, p}
\end{aligned}
$$

Since $\left(\left\{d_{t h}\right\}\right)_{h}$ is weakly converging in $W^{1, p}\left(0, L ; E^{3}\right),\left\|d_{k h}^{\prime}\right\|_{0, p}$ is bounded and $d_{j h}(S) . d_{k h}(S)$ converges pointwise towards $d_{j}(S) . d_{k}(S)$. By going to the limit as h goes to zero in the above inequality, we then obtain the desired result.

Lemma 2: For any $\left\{r, d_{t}\right\}$ in \bar{K}, one can construct an element $\pi_{h}\left(\tau, d_{t}\right) \in K_{h}$ such that

$$
\lim _{h \rightarrow 0}\left\|\pi_{h}\left(r, d_{t}\right)-\left\{r, d_{\imath}\right\}\right\|_{1, p}=0
$$

The proof of this lemma is more technical and will be the purpose of the following section.

3.3. Convergence result

We now are able to prove the following convergence result.
THEOREM 1: Any isolated minimum of the continuous equilibrium problem (2.18) is the strong limit in $W^{1, p}\left(0, L ; E^{4}\right)$ of a sequence of local minima of the Finite Element problem (3.21).

Proof: The above theorem is valid for both the general case and the case with no shear and no extension. Its proof is based on standard compactness arguments and requires five steps.

Step 1. Interpolation of the minimum.
Let $\left\{\bar{r}, \bar{d}_{i}\right\}$ be an isolated minimum of (2.18). In other words, we suppose
that there exists a closed ball \bar{B}_{δ} in $W^{1, p}\left(0, L ; E^{4}\right)$ with center $\left\{\bar{r}, \bar{d}_{i}\right\}$ and radius δ such that

$$
J\left(\bar{r}, \bar{d}_{t}\right)<J\left(p, g_{l}\right), \quad \forall\left\{p, g_{l}\right\} \neq\left\{\bar{r}, \bar{d}_{t}\right\} \in \bar{B}_{\delta} \cap \bar{K}
$$

From Lemma 2, and the continuity of J on $W^{1, p}\left(0, L ; E^{4}\right)$, we have, for h sufficiently small,

$$
\begin{gathered}
\pi_{h}\left(\bar{r}, \bar{d}_{t}\right) \in \bar{B}_{\delta} \cap \bar{K}_{h} \\
\lim _{h \rightarrow 0} J\left(\pi_{h}\left(\bar{r}, \bar{d}_{l}\right)\right)=J\left(\bar{r}, \bar{d}_{l}\right) .
\end{gathered}
$$

Step 2. Finite Element minimizing sequence.
Since J is continuous and since $\bar{K}_{h} \cap \bar{B}_{\delta}$ is closed and bounded in $V_{h} \times W_{h}^{3}$, there exists a minimizer $\left\{r_{h}, d_{t h}\right\}$ of J on $\bar{K}_{h} \cap \bar{B}_{\delta}$. By construction, the sequence $\left(\left\{r_{h}, d_{t h}\right\}\right)_{h}$ is bounded in $W^{1, p}\left(0, L ; E^{4}\right)$. It can therefore be decomposed into subsequences, still denoted by $\left(\left\{r_{h}\right.\right.$, $\left.\left.d_{i h}\right\}\right)_{h}$ which weakly converge towards elements $\left\{r^{*}, d_{t}^{*}\right\}$ of $W^{1, p}\left(0, L ; E^{4}\right)$.

Since \bar{B}_{δ} is weakly closed, any such limit $\left\{r^{*}, d_{t}^{*}\right\}$ is in \bar{B}_{δ}. Moreover, sonce \bar{K}_{h} is included in K_{h} by definition, Lemma 1 implies that we also have

$$
d_{t}^{*}(S) . d_{j}^{*}(S)-\delta_{\imath \jmath}=0, \quad \forall S \in[0, L], \quad \forall i, j=1,3 .
$$

By definition of \bar{K}_{h} and of \bar{K}, we therefore have

$$
\left\{r^{*}, d_{t}^{*}\right\} \in \bar{K} \cap \bar{B}_{\delta} .
$$

Step 3. Characterization of $\left\{r^{*}, d_{\imath}^{*}\right\}$.
By construction of $\left\{r_{h}, d_{t h}\right\}$ and of $\pi_{h}\left(\bar{r}, \bar{d}_{t}\right)$, we have

$$
\begin{equation*}
J\left(r_{h}, d_{t h}\right) \leqslant J\left(\pi_{h}\left(\bar{r}, \bar{d}_{l}\right)\right), \forall h \tag{3.27}
\end{equation*}
$$

Going to the limit as h goes to zero, and taking into account the weak lower semicontinuity of J_{0} and hence of J, we get

$$
\begin{align*}
J\left(r^{*}, d_{t}^{*}\right) & \leqslant \lim \inf J\left(r_{h}, d_{t h}\right) \leqslant \lim \sup J\left(r_{h}, d_{t h}\right) \\
& \leqslant \lim J\left(\pi_{h}\left(\bar{r}, \bar{d}_{t}\right)\right)=J\left(\bar{r}, \bar{d}_{t}\right) . \tag{3.28}
\end{align*}
$$

But $\left\{r^{*}, d_{t}^{*}\right\} \in \bar{K} \cap \bar{B}_{\delta}$ and $\left\{\bar{r}, \bar{d}_{i}\right\}$ is the unique minimizer of J over $\bar{K} \cap \bar{B}_{\delta}$. Therefore, we must have

$$
\left\{r^{*}, d_{t}^{*}\right\}=\left\{\bar{r}, \bar{d}_{t}\right\}
$$

In other words, all the subsequences of $\left(\left\{r_{h}, d_{l h}\right\}\right)_{h}$ converge weakly towards $\left\{\bar{r}, \bar{d}_{t}\right\}$ in $W^{1, p}\left(0, L ; E^{4}\right)$ and then so does the whole sequence.

Moreover, since $\left\{r^{*}, d_{i}^{*}\right\}=\left\{\bar{r}, \bar{d}_{i}\right\},(3.28)$ also implies that we have

$$
\begin{equation*}
\lim _{h \rightarrow 0} J\left(r_{h}, d_{\imath h}\right)=J\left(\bar{r}, \bar{d}_{\imath}\right) \tag{3.29}
\end{equation*}
$$

Step 4. Strong convergence.
From assumption (H2), J is the sum of the weakly lower semicontinuous functions $C_{0}\left\|d_{l}^{\prime}\right\|_{0, p}^{p}, C_{0}\left\|r^{\prime}-d_{3}\right\|_{0, p}^{p}$ and J_{0}. Since $J\left(r_{h}, d_{i h}\right)$ converges towards $J\left(\bar{r}, \bar{d}_{t}\right)$, each of its component must also converge, that is we must have

$$
\begin{array}{ll}
\lim _{h \rightarrow 0} C_{0}\left\|d_{t h}^{\prime}\right\|_{0, p}^{p} & =C_{0}\left\|\bar{d}_{t}^{\prime}\right\|_{0, p}^{p} \\
\lim _{h \rightarrow 0} C_{0}\left\|r_{h}^{\prime}-d_{3 h}\right\|_{0, p}^{p} & =C_{0}\left\|\bar{r}^{\prime}-\bar{d}_{3}\right\|_{0, p}^{p} \\
\lim _{h \rightarrow 0} J_{0}\left(r_{h}, d_{l h}\right) & =J_{0}\left(\bar{r}, \bar{d}_{l}\right) \tag{3.30}
\end{array}
$$

If it were not the case, then the weak convergence of $\left(\left\{r_{h}, d_{i h}\right\}\right)_{h}$ and the weak lowersemicontinuity of the different components of J would forbid (3.29) to take place.

From step 3 and from above, we first observe that $\left(d_{i h}^{\prime}\right)_{h}$ converges weakly and in norm towards \bar{d}_{i}^{\prime} in L^{p}. We have therefore strong convergence of $\left(d_{i h}^{\prime}\right)_{h}$ towards \bar{d}_{t}^{\prime} in L^{p} which, combined with the weak convergence of $\left(d_{l h}\right)_{h}$ towards \bar{d}_{l} in $W^{1, p}$ implies the strong convergence of $\left(d_{l h}\right)_{h}$ towards \bar{d}_{t} in $W^{1, p}$.

Similarly, $\left(r_{h}^{\prime}-d_{3 h}\right)_{h}$ converges weakly and in norm towards $\bar{r}^{\prime}-\bar{d}_{3}$ in L^{p}, therefore converges strongly towards $\bar{r}^{\prime}-\bar{d}_{3}$ in L^{p}. This, combined with the strong convergence of $\left(d_{3 h}\right)_{h}$ towards \bar{d}_{3} in L^{p} and the weak convergence of $\left(r_{h}\right)_{h}$ towards \bar{r} in $W^{1, p}$, guarantees the strong convergence of $\left(r_{h}\right)_{h}$ towards \bar{r} in $W^{1, p}$.
vol. $26, n^{\circ} 5,1992$

Step 5. $\left\{r_{h}, d_{l h}\right\}$ is a local minimizer of (3.1).
From the strong convergence of $\left(\left\{r_{h}, d_{t h}\right\}\right)_{h}$ towards $\left\{\bar{r}, \bar{d}_{i}\right\}$ proved in step 4 , we can deduce that for h sufficiently small, $\left\{r_{h}, d_{t h}\right\}$ will be in the interior of \bar{B}_{δ}. Being by construction a minimum of J on $\bar{K}_{h} \cap \bar{B}_{\delta}$, and being in the interior of $\bar{B}_{\delta},\left\{r_{h}, d_{i h}\right\}$ is then a local minimum of J on \bar{K}_{h}.

Therefore, finally, $\left\{\bar{r}, \bar{d}_{i}\right\}$ appears as the strong limit of the local minima $\left\{r_{h}, d_{t h}\right\}$ of J on \bar{K}_{h}.

4. APPROXIMATION RESULTS

4.1. Synopsis

The convergence result of the preceding section was based on Lemma 2, which states that for any kinematically admissible deformation $\left\{r, d_{l}\right\}$ of \bar{K}, there exists a Finite Element approximation $\pi_{h}\left(r, d_{l}\right) \in \bar{K}_{h}$ such that

$$
\begin{equation*}
\lim _{h \rightarrow 0}\left\|\pi_{h}\left(r, d_{l}\right)-\left\{r, d_{l}\right\}\right\|_{1, p}=0 \tag{4.31}
\end{equation*}
$$

In the general case ($\bar{K}_{h}=K_{h}$), which allows shear and extension, such a result is easy to prove. Indeed, there are interpolants $\pi_{h} r$ of r and $\pi_{h} d_{t}$ of d_{t} which satisfy ([5]) :

$$
\begin{gathered}
\pi_{h} r \in V_{h}, \quad \forall \stackrel{v}{r}, \\
\pi_{h} r\left(a_{2,-1}\right)=r\left(a_{2,-1}\right), \quad \forall i=1, N_{h}+1, \\
\lim _{h \rightarrow 0}\left\|\pi_{h} r-r\right\|_{1, p}=0, \\
\pi_{h} d_{\imath} \in W_{h}, \quad \forall h, \\
\pi_{h} d_{l}\left(M_{p}\right)=d_{l}\left(M_{p}\right), \quad \forall M_{p} \in M_{h}, \\
\lim _{h \rightarrow 0}\left\|\pi_{h} d_{l}-d_{l}\right\|_{1, p}=0 .
\end{gathered}
$$

By construction, $\pi_{h}\left(r, d_{t}\right)=\left(\pi_{h} r, \pi_{h} d_{l}\right)$ belongs to K_{h} and satisfies the desired approximation property (4.31).

The situation is more complicate in the limit case when shear or extension are no longer allowed ($\bar{K}_{h}=K_{h}^{\text {inc }}$). There, the element $\left\{\pi_{h} r, \pi_{h} d_{t}\right\}$ does not satisfy the inextensibility constraint $\left(\pi_{h} r\right)^{\prime}=\pi_{h} d_{3}$ and therefore does
not belong to $K_{h}^{\text {nc. }}$. Imposing $d_{3 h}=\left(\pi_{h} r\right)^{\prime}$ does not solve the problem because the element $\left\{\pi_{h} r, \pi_{h} d_{\alpha},\left(\pi_{h} r\right)^{\prime}\right\}$ does not satisfy the orthonormality constraint

$$
d_{t h}\left(M_{p}\right) \cdot d_{\jmath h}\left(M_{p}\right)=\delta_{\imath \jmath}, \quad \forall M_{p} \in M_{h}
$$

On the other hand, the field r_{h} defined by

$$
r_{h}(S)=r_{0}+\int_{0}^{S} \pi_{h} d_{3}(\sigma) d \sigma
$$

does not satisfy the boundary condition $r(L)=r_{L}$.
To overcome this problem, we propose below a construction of $\pi_{h}\left(r, d_{t}\right)$ which first interpolates d_{t} on W_{h} and then iteratively and locally rotates this interpolate so that we can satisfy the boundary condition

$$
r_{h}(L)=r_{0}+\int_{0}^{L} d_{3 h}(\sigma) d \sigma=r_{L}
$$

4.2. Notation

Let $\left\{r, d_{l}\right\}$ be the element of $K^{\text {inc }}$ that we want to approximate. By definition of $K^{\text {inc }},\left\{d_{i}(S)\right\}$ is a direct orthonormal basis of E (it can thus be identified to an element of the rotation group SO_{3}) and we have

$$
\begin{equation*}
r^{\prime}=d_{3} \tag{4.32}
\end{equation*}
$$

Moreover, if we want the set $K^{\text {inc }}$ of kinematically admissible deformations to be nonempty and to contain more than a single element, we must have

$$
\begin{equation*}
|r(L)-r(0)|=\left|r_{L}-r_{0}\right|=\left|\int_{0}^{L} d_{3}(\sigma) d \sigma\right|<L . \tag{4.33}
\end{equation*}
$$

This implies in particular that d_{3} does not stay parallel to itself, that is there exists two points S_{1} and S_{2} in $(0, L)$ and two unit vectors e_{1} and e_{2} in E such that

$$
\begin{align*}
& d_{3}\left(S_{\alpha}\right)=e_{\alpha}, \quad \forall \alpha=1,2 \tag{4.34}\\
& \left|e_{3}\right|=\left|e_{1} \times e_{2}\right|=C_{1}>0 \tag{4.35}
\end{align*}
$$

Let now $\varepsilon>0$ be given. By continuity of d_{3}, there exists two disjoint intervals I_{1} and I_{2} in ($0, L$) such that

$$
\begin{equation*}
\left|d_{3}(S)-e_{\alpha}\right|<\varepsilon, \quad \forall S \in I_{\alpha}, \quad \forall \alpha=1,2 . \tag{4.36}
\end{equation*}
$$

To each interval I_{α}, we now associate a subinterval J_{α} with same center but of half length and a function $q_{\alpha} \in W_{0}^{1, p}\left(I_{\alpha}\right)$ such that

$$
\begin{align*}
& q_{\alpha \mid J_{\alpha}}=1 / \text { meas }\left(J_{\alpha}\right) \tag{4.37}\\
& 0 \leqslant q_{\alpha} \leqslant 1 / \operatorname{meas}\left(J_{\alpha}\right) \tag{4.38}
\end{align*}
$$

Figure 3. - The function $\boldsymbol{q}_{\boldsymbol{\alpha}}$.
Finally, for a given subdivision $\left(\left[a_{2 l-1}, a_{2 l+1}\right]\right)_{l=1, N_{h}}$, we denote by $\left(\varphi_{p}\right)_{p=1,2 N_{h}+1}$ the Finite Element nodal basis of W_{h}, defined by

$$
\varphi_{p}\left(M_{q}\right)=\delta_{p q}, \quad \forall M_{q} \in M_{h}
$$

and by p_{p} the positive number

$$
p_{p}=\int_{0}^{L} \varphi_{p}(\sigma) d \sigma
$$

We then have

$$
\begin{gather*}
\pi_{h}\left(d_{l}\right)=\sum_{p} d_{l}\left(M_{p}\right) \varphi_{p}, \\
\left\|\pi_{h}(\hat{v})\right\|_{1, p} \leqslant C_{2}\|v\|_{1, p}, \quad \forall v \in W^{1, p}(0, L) . \tag{4.39}
\end{gather*}
$$

4.3. Iterative construction of $\pi_{h}\left(r, d_{i}\right)$

The proposed construction of the Finite Element approximation of $\left\{r, d_{l}\right\}$ proceeds as follows:

- set $d_{t}^{0}=\pi_{h} d_{t}$,
- then, for $n \geqslant 0$ and $d_{i}^{n}\left(M_{p}\right)$ known,

1. compute the residual

$$
\begin{aligned}
R^{n} & =r_{L}-r_{0}-\int_{0}^{L} d_{3}^{n}(\sigma) d \sigma \\
& =r_{L}-r_{0}-\sum_{p} p_{p} d_{3}^{n}\left(M_{p}\right) \\
& =R_{1}^{n} e_{3} \times e_{1}+R_{2}^{n} e_{3} \times e_{2}+R_{3}^{n} e_{3} ; \\
& \mathrm{M}^{2} \text { AN Modélsation mathématique et Analyse numénque } \\
& \text { Mathematical Modellıng and Numerical Analysıs }
\end{aligned}
$$

2. compute the rotation vector

$$
\begin{equation*}
\omega_{p}^{n}=\lambda_{2}^{n} q_{1}\left(M_{p}\right) e_{3}-\lambda_{3}^{n} q_{1}\left(M_{p}\right) e_{2}+\lambda_{1}^{n} q_{2}\left(M_{p}\right) e_{3} \tag{4.41}
\end{equation*}
$$

which cancels the residual (Newton update)

$$
\sum_{p} p_{p} \omega_{p}^{n} \times d_{3}^{n}\left(M_{p}\right) \approx \sum_{\alpha} \sum_{M_{p}} p_{p} \omega_{p}^{n} \times e_{\alpha}=R^{n}
$$

From (4.40) and (4.41), this amounts to set

$$
\begin{gather*}
\lambda_{1}^{n}=R_{1}^{n /}\left(\sum_{p} p_{p} q_{2}\left(M_{p}\right)\right), \\
\lambda_{\alpha+1}^{n}=R_{\alpha+1}^{n} /\left(\sum_{p} p_{p} q_{1}\left(M_{p}\right)\right) ; \tag{4.42}
\end{gather*}
$$

3. update $d_{i}\left(M_{p}\right)$ by rotation :

$$
\begin{equation*}
d_{l}^{n+1}\left(M_{p}\right)=\exp \left(\Omega_{p}^{n}\right) d_{l}^{n}\left(M_{p}\right), \tag{4.43}
\end{equation*}
$$

the skew symmetric operator Ω_{p}^{n} being defined by

$$
\Omega_{p}^{n} X=\omega_{p}^{n} \times X, \quad \forall X \in E ;
$$

- end loop on n,
- set :

$$
\begin{align*}
d_{l h} & =\lim _{n \rightarrow 0} \sum_{p} d_{l}^{n}\left(M_{p}\right) \varphi_{p} \\
r_{h}(S) & =r_{0}+\int_{0}^{S} d_{3 h}(\sigma) d \sigma \\
\pi_{h}\left(r, d_{t}\right) & =\left\{r_{h}, d_{t h}\right\} . \tag{4.44}
\end{align*}
$$

The above construction can be proved to satisfy Lemma 2. More precisely, we have the following technical theorem, whose proof can be found in annex.

THEOREM 2 : There exists two constants C_{3} and C_{4} such that, $\forall \varepsilon<1 / 8 C_{4}$, there exists h_{0} such that, $\forall h<h_{0}$, we have :

$$
\begin{gather*}
\pi_{h}\left(r, d_{t}\right) \quad \text { is well defined and belongs to } K_{h}^{\mathrm{nc}} \\
\left\|r-r_{h}\right\|_{2, p}+\sum_{t}\left\|d_{t}-d_{t h}\right\|_{1, p} \leqslant \frac{\varepsilon}{C_{3}}\left(3+(1+L)^{1 / p}\right) . \tag{4.45}
\end{gather*}
$$

5. NUMERICAL ALGORITHM

5.1. The problem to solve

Within an arclength continuation framework, we have to solve the following problem at each load increment n [6]:

$$
\left\{\begin{array}{l}
J\left(\mu^{n+1}, r^{n+1}, d_{t}^{n+1}\right) \leqslant J\left(\mu^{n+1}, p, g_{t}\right), \quad \forall\left(p, g_{t}\right) \in K_{h}^{\mathrm{ncc}}, \tag{5.46}\\
\left(r^{n+1}, d_{t}^{n+1}\right) \in K_{h}^{\mathrm{nc}}, \\
\left\langle d_{t}^{n+1}-d_{t}^{n}, d_{t}^{n}-d_{t}^{n-1}\right\rangle+\mu_{u}^{2}\left(\mu^{n+1}-\mu^{n}\right)\left(\mu^{n}-\mu^{n-1}\right)=d s^{2}
\end{array}\right.
$$

under the notation (3.23) and

$$
\begin{equation*}
J\left(\mu, r, d_{l}\right)=\int_{0}^{L} w\left(S, u_{j}\left(d_{l}\right)\right) d S-\mu \int_{0}^{L} f . r d S \tag{5.47}
\end{equation*}
$$

Here, we have replaced the problem of finding one solution by the problem of building a solution curve associated to a variable load factor. On this solution curve, we build points $\mu^{n+1}, r^{n+1}, d_{t}^{n+1}$ which are at a distance $d s$ one from another.

More precisely, μ is the incremental load factor, $d s$ the stepsize along the solution curve, $\langle.,$.$\rangle an adequate scalar product on W_{h}$, and μ_{u} is a scaling factor.

Figure 4. - Arclength Continuation.
We have specialized above in the case with no shear and no extension which we think is the most interesting. It is better conditioned than the slightly extensible case and since extensibility has very little effect on the physical solution, using an inextensible approximation leads overall to a faster and more accurate solution.

In the inextensible case, the constraint on r implies that we have

$$
r(S)=r_{0}+\int_{0}^{s} d_{3}(\sigma) d \sigma
$$

and thus r can be eliminated from our problem. Under the notation

$$
\begin{equation*}
F(S)=-\int_{S}^{L} f(t) d t \tag{5.48}
\end{equation*}
$$

the energy J reduces to

$$
\begin{align*}
J\left(\mu, d_{l}\right)= & \int_{0}^{L} w\left(S, u_{j}\left(d_{t}\right)\right) d S-\mu \int_{0}^{L} F^{\prime}(S) \cdot r d S \\
= & \int_{0}^{L} w\left(S, u_{j}\left(d_{t}\right)\right) d S \\
& +\mu \int_{0}^{L} F(S) \cdot d_{3}(S) d S-\mu F(0) \cdot r_{0} \tag{5.49}
\end{align*}
$$

Similarly, the elimination of r from the definition of K_{h}^{ncc} leads to the new definition

$$
\begin{align*}
K_{h}^{\mathrm{nc}}=\left\{\left\{d_{l}\right\} \in X_{h}, d_{l}\left(M_{p}\right) \cdot d_{j}\left(M_{p}\right)=\delta_{\imath j}, \forall i, j=1,3\right. \\
\left.\forall M_{p} \in M_{h}, r_{L}=r_{0}+\int_{0}^{L} d_{3}(\sigma) d \sigma\right\} \tag{5.50}
\end{align*}
$$

under the notation
$X_{h}=\left\{\left\{d_{1}, d_{2}, d_{3}\right\} \in W_{h}^{3},\left\{d_{l}\right\}\right.$ satisfies the boundary conditions (2.6)-(2.7) used in the definition of $K\}$,
$M_{h}=$ set of all vertices and centers of the subdivision

$$
\begin{align*}
& \left(\left[a_{2 i-1}, a_{2 ı+1}\right]\right) \\
= & \left\{a_{1}, a_{2}, a_{3}, \ldots, a_{2 N_{h}}, a_{2 N_{h}+1}\right\} . \tag{5.52}
\end{align*}
$$

5.2. Euler-Lagrange Equations

By construction of $K_{h}^{\text {inc }}$, the Euler-Lagrange equations associated to (5.46) are simply

$$
\begin{gather*}
\frac{\partial J}{\partial d_{j}}\left(\mu^{n+1}, d_{t}^{n+1}\right) \cdot \hat{g}_{J}+\sum_{p} \sum_{t, j=1}^{3} \lambda_{i j p}^{n+1}\left(d_{t}^{n+1} \cdot \hat{g}_{j}+\hat{g}_{l} \cdot d_{j}^{n+1}\right)\left(M_{p}\right)+ \\
+N^{n+1} \cdot \int_{0}^{L} \hat{g}_{3}(\sigma) d \sigma=0, \quad \forall\left(\hat{g}_{j}\right) \in d X_{h} \tag{5.53}\\
\left(d_{i}^{n+1} \cdot d_{J}^{n+1}\right)\left(M_{p}\right)=\delta_{\imath \jmath}, \quad \forall i, j=1,3, \quad \forall M_{p} \in M_{h} \tag{5.54}\\
\int_{0}^{L} d_{3}^{n+1}(\sigma) d \sigma=r_{L}-r_{0} \tag{5.55}
\end{gather*}
$$

vol. $26, n^{\circ} 5,1992$

$$
\begin{equation*}
\left\langle\left(d_{t}^{n+1}-d_{t}^{n}\right),\left(d_{t}^{n}-d_{t}^{n-1}\right)\right\rangle+\mu_{u}^{2}\left(\mu^{n+1}-\mu^{n}\right)\left(\mu^{n}-\mu^{n-1}\right)=d s^{2} \tag{5.56}
\end{equation*}
$$

with $\lambda_{l j p}$ and N the Lagrange multipliers associated to the constraints (5.54) and (5.55). Observe that N is actually the reaction force exerted on the rod by its support in L. After linearization around ($d_{i}, \mu, \lambda_{i J p}, N$), and if d_{\imath} satisifies (5.54), these equations reduce to the system

$$
\begin{align*}
& {\left[\frac{\partial^{2} J}{\partial d_{J} \partial d_{k}}\left(\mu, d_{i}\right) \cdot g_{k}\right] \cdot \hat{g}_{j}+\sum_{p} \sum_{\imath} \lambda_{i j p}\left(g_{i} \cdot \hat{g}_{J}+\hat{g}_{i} \cdot g_{j}\right)\left(M_{p}\right)+} \\
& +d N \cdot \int_{0}^{L} \hat{\boldsymbol{g}}_{3}(\sigma) d \sigma+d \mu \int_{0}^{L} F(\sigma) \cdot \hat{\boldsymbol{g}}_{3}(\sigma) d \sigma \\
& +\sum_{p} \sum_{l j} d \lambda_{l j p}\left(d_{i} \cdot \hat{g}_{j}+\hat{g}_{l} \cdot d_{J}\right)\left(M_{p}\right)= \\
& =-\frac{\partial J}{\partial d_{j}}\left(\mu, d_{i}\right) \cdot \hat{g}_{J}-\sum_{p} \sum_{i J} \lambda_{i j p}\left(d_{i} \cdot \hat{g}_{J}+d_{j} \cdot \hat{g}_{i}\right)\left(M_{p}\right)- \\
& -N \cdot \int_{0}^{L} \hat{g}_{3}(\sigma) d \sigma, \quad \forall\left\{\hat{g}_{J}\right\} \in d X_{h},\left\{g_{k}\right\} \in d X_{h}, \tag{5.57}\\
& \left(d_{\imath} \cdot g_{j}+d_{j} \cdot g_{\imath}\right)\left(M_{p}\right)=0, \quad \forall i, j=1,3, \quad \forall M_{p} \in M_{h}, \tag{5.58}\\
& \int_{0}^{L} g_{3}(\sigma) d \sigma=-\int_{0}^{L} d_{3}(\sigma) d \sigma+r_{L}-r_{0}, \tag{5.59}\\
& \left\langle g_{l}, d_{t}^{n}-d_{t}^{n-1}\right\rangle+\mu_{u}^{2} d \mu\left(\mu^{n}-\mu^{n-1}\right)=d s^{2}- \\
& -\left\langle\left(d_{t}-d_{t}^{n}\right),\left(d_{t}^{n}-d_{t}^{n-1}\right)\right\rangle-\mu_{u}^{2}\left(\mu-\mu^{n}\right)\left(\mu^{n}-\mu^{n-1}\right), \tag{5.60}
\end{align*}
$$

with unknowns $\left\{g_{i}\right\}, d \mu, d \lambda_{i j p}$ and $d N$.

5.3. Solving the linearized Euler Lagrange equations

When (5.54) is satisfied, (5.58) simply imposes that $\left\{g_{t}\right\}\left(M_{p}\right)$ be in the tangent space to SO_{3} at $\left\{d_{l}\right\}\left(M_{p}\right)$, and hence it implies that $\left\{\boldsymbol{g}_{l}\right\}$ is of the form

$$
\begin{equation*}
g_{\imath}\left(M_{p}\right)=U_{p} \times d_{t}\left(M_{p}\right) \tag{5.61}
\end{equation*}
$$

with U_{p} an arbitrary rotation vector. If we now restrict (5.57) to test functions $\hat{g}_{J}(\hat{U})$ which are also of the form

$$
\hat{g}_{J}\left(M_{p}\right)=\hat{U}_{p} \times d_{j}\left(M_{p}\right)
$$

M^{2} AN Modélısation mathématıque et Analyse numérıque Mathematical Modelling and Numencal Analysis
with \hat{U}_{p} arbitrary, then the linearized system (5.57)-(5.58) simply reduces to the new system

$$
\begin{gather*}
a(U, \hat{U})+d N^{l} \int_{0}^{L} \hat{g}_{3}^{l}(\hat{U}) d \sigma+d \mu \int_{0}^{L} F \cdot \hat{g}_{3}(\hat{U}) d \sigma=L_{1}\left(\hat{g}_{J}(\hat{U})\right) \tag{5.62}\\
\int_{0}^{L} g_{3}(U) d \sigma=L_{2} \tag{5.63}\\
\left\langle g_{l}(U), \Delta d_{t}\right\rangle+d \mu \Delta \mu=L_{3} \tag{5.64}
\end{gather*}
$$

with new unknowns $U,\left(d N^{l}\right)_{l=1,3}$ and $d \mu$. Above, $L_{1}\left(\hat{g}_{j}\right), L_{2}$ and L_{3} respectively denote the right-hand sides of (5.57), (5.59) and (5.60), $\left(d N^{l}\right)_{l}$ and $\left(\hat{g}_{3}^{l}\right)_{l}$ denote the cartesian components of the vectors $d N$ and \hat{g}_{3}, and we have used the notation

$$
\begin{align*}
& a(U, \hat{U})=\left(\frac{\partial^{2} J}{\partial d_{j} \partial d_{k}} \cdot g_{k}(U)\right) \cdot \hat{g}_{j}(\hat{U})+ \\
&+\sum_{p} \sum_{t j} \lambda_{\imath j p}\left(U_{p} \times d_{t} \cdot \hat{U}_{p} \times d_{J}+U_{p} \times d_{j} \cdot \hat{U}_{p} \times d_{t}\right) \tag{5.65}\\
& \Delta d_{t}=\left(d_{t}^{n}-d_{t}^{n-1}\right) \tag{5.66}\\
& \Delta \mu=\mu_{u}^{2}\left(\mu^{n}-\mu^{n-1}\right) \tag{5.67}
\end{align*}
$$

Compared to the usual linearized system encountered in rod computations, this new system :

- also uses as basic unknown the rotation vector U_{p}, defined in each node $M_{p} \in M_{h}$ of the Finite Element mesh (nine unknowns per Finite Element),
- does not involve any unknown associated to the position of the rod center line, these being eliminated by the inextensibility condition,
- adds four scalar unknowns which are the variations of the reaction force N in L and of the load factor μ.

These last unknowns play the role of the scaling factor usually encountered in continuation techniques. They can therefore be treated by the bordering algorithm proposed in ([6]). Then, the solution of the linearized system (5.62)-(5.63) can be obtained by the following block Gaussian elimination :

- Solve $\quad a\left(U^{1}, \hat{U}\right)=L_{1}\left(\hat{g}_{j}(\hat{U})\right), \quad \forall \hat{U} ;$
- For $l=1,3$, solve $a\left(U^{2, l}, \hat{U}\right)=-\int_{0}^{L} \hat{g}_{3}^{l}(\hat{U}) d \sigma, \quad \forall \hat{U}$;
- Solve $a\left(U^{3}, \hat{U}\right)=-\int_{0}^{L} F . \hat{g}_{3}(\hat{U}) d \sigma, \quad \forall \hat{U}$;
- Solve the 4×4 linear system (of unknown $d N^{l}$ and $d \mu$)

$$
\begin{align*}
d N^{l} \int_{0}^{L} g_{3}\left(U^{2, l}\right) d \sigma+d \mu \int_{0}^{L} g_{3}\left(U^{3}\right) d \sigma & =L^{2}-\int_{0}^{L} g_{3}\left(U^{1}\right) d \sigma \tag{5.71}\\
d N^{l}\left\langle g_{l}\left(U^{2, l}\right), \Delta d_{l}\right\rangle+d \mu\left(\left\langle g_{l}\left(U^{3}\right), \Delta d_{l}\right\rangle\right. & +\Delta \mu)= \\
& =L_{3}-\left\langle g_{l}\left(U^{1}\right), \Delta d_{l}\right\rangle
\end{align*}
$$

- Set

$$
\begin{gather*}
U=U^{1}+d N^{l} U^{2, l}+d \mu U^{3} \tag{5.72}\\
g_{l}\left(M_{p}\right)=U_{p} \times d_{l}\left(M_{p}\right), \quad \forall M_{p} \in M_{h} \tag{5.73}
\end{gather*}
$$

- Set

5.4. Computation of $\boldsymbol{\lambda}$

The above solution procedure does not give the value of $d \lambda$. To obtain it, we rewrite the Euler Lagrange equation (5.53) at point $\left\{\pi\left(d_{k}+g_{k}\right)\right.$, $\mu+d \mu, N+d N\}$ with $\left\{\pi\left(d_{k}+g_{k}\right)\right\}\left(M_{p}\right)$ a projection of $\left\{d_{k}+g_{k}\right\}\left(M_{p}\right)$ onto SO_{3}. At first order, we get by construction of $\left\{g_{k}\right\}, d \mu, d \lambda_{i J p}$ and $d N$

$$
\begin{aligned}
& \frac{\partial J}{\partial d_{J}}\left(\mu+d \mu, \pi\left(d_{k}+g_{k}\right)\right) \cdot \hat{g}_{j}+(N+d N) \cdot \int \hat{g}_{3}(\sigma) d \sigma+ \\
& \quad \sum_{p} \sum_{i s}(\lambda+d \lambda)_{l j p}\left(\pi\left(d_{k}+g_{k}\right)_{t} \cdot \hat{g}_{J}+\pi\left(d_{k}+g_{k}\right)_{j} \cdot \hat{g}_{l}\right)\left(M_{p}\right)= \\
& =0\left(\left\|g_{l}\right\|^{2}+\|d N\|^{2}+d \mu^{2}+|d \lambda|^{2}\right), \quad \forall\left\{\hat{g}_{l}\right\} \in d X_{h}
\end{aligned}
$$

A direct identification then yields:

$$
\begin{align*}
2(\lambda+d \lambda)_{l j p} \approx & -\frac{\partial J}{\partial d_{l}}\left(\mu+d \mu, \pi\left(d_{k}+g_{k}\right)\right) \cdot \hat{g}_{l}^{l j p} \\
& -(N+d N) \cdot \int_{0}^{L} \hat{g}_{3}^{l p}(\sigma) d \sigma \tag{5.74}
\end{align*}
$$

under the notation

$$
\hat{\boldsymbol{g}}_{l}^{\imath p}\left(M_{q}\right)=\frac{1}{2}\left(\pi\left(d_{k}+g_{k}\right)_{j} \delta_{l l}+\pi\left(d_{k}+g_{k}\right)_{l} \dot{\delta}_{\jmath l}\right)\left(M_{q}\right) \delta_{p q} .
$$

5.5. Final Solution Procedure

With the above results, the Newton and arclength continuation method takes the following form when applied to the solution of our Finite Element equilibrium problem (3.21) :

For $n=1$ until $\mu^{n} \geqslant 1$ do:

- For $m=1$ until (5.53)-(5.56) is satisfied, do (Newton loop) :

1. Compute the rotation vector U, the variation of reaction force $d N$ and of load factor $d \mu$ by (5.68)-(5.72);
2. Obtain the linear variation g_{i} of d_{i} by (5.73);
3. Set $\left\{d_{t}\right\}, N, \mu=\left\{\pi\left(d_{t}+g_{t}\right)\right\}, N+d N, \mu+d \mu$;
4. Compute $(\lambda+d \lambda)_{l j p}$ by (5.74);

- End of Newton loop;
- Update $\Delta d, \Delta \mu$ and $d s$;

End of continuation loop.

Remark 1: Formula (5.74) is first order accurate as is the linear expansion (5.57)-(5.60) of the nonlinear system (5.53)-(5.56). Therefore, as confirmed by our numerical experiments, the above Newton loop has a quadratic speed of convergence. The use of (5.74) for computing $d \lambda$ is much cheaper in CPU time than would be the solution of (5.57) : it is explicit and only involves the first gradient of J. Moreover, the same gradient is used in solving (5.68) at the next step, which results in further savings.

Remark 2: The solution procedure (5.68)-(5.73) only involves 3 unknowns by node M_{p} (the values of U_{p}) instead of 9 (the values of $g_{l}\left(M_{p}\right)$) for (5.57)-(5.60). But it only works if $\left\{d_{\imath}\right\}\left(M_{p}\right)$ is in SO_{3} which explains why we have to project $\left\{d_{i}+g_{i}\right\}\left(M_{p}\right)$ back to SO_{3} at each step. The projection procedure that we have used is from [7] and is given by

$$
\begin{aligned}
\left\{\pi\left(d_{t}+g_{\imath}\right)\right\}\left(M_{p}\right) & =\pi\left(d_{\imath}\left(M_{p}\right)+U_{p} \times d_{\imath}\left(M_{p}\right)\right) \\
& =Q_{p} \cdot\left\{d_{\imath}\right\}\left(M_{p}\right)
\end{aligned}
$$

with Q_{p} the rotation matrix defined by

$$
\begin{gathered}
Q_{p}=I d+\left(U_{p}+U_{p}^{2} / 2\right) /\left(1+\left\|U_{p}\right\|^{2} / 4\right), \\
U_{p}=\left(\begin{array}{ccc}
0 & -U_{p}^{3} & U_{p}^{2} \\
U_{p}^{3} & 0 & -U_{p}^{1} \\
-U_{p}^{2} & U_{p}^{1} & 0
\end{array}\right) .
\end{gathered}
$$

Remark 3: In the case with shear and extension, the unknown field r cannot be eliminated. The application of the above Newton procedure to this case leads to the algorithm described in [8].

Remark 4 : By construction of J and u, we have

$$
\begin{aligned}
& \frac{\partial J}{\partial d_{J}} \cdot \hat{g}_{i}=\int_{0}^{L} \frac{\partial w}{\partial u_{r}} \cdot\left(d_{r+1}^{\prime} \cdot \hat{g}_{r-1}\right.\left.+\hat{g}_{r+1}^{\prime} \cdot d_{r-1}\right) d S+\mu \int_{0}^{L} F \cdot \hat{g}_{3} d S \\
&\left(\frac{\partial^{2} J}{\partial d_{j} \partial d_{k}} \cdot g_{k}(U)\right) \cdot g_{J}(\hat{U})=\int_{0}^{L}\left\{\frac{\partial^{2} w}{\partial u_{r} \partial u_{s}}\left(\frac{\partial u_{r}}{\partial d_{k}} \cdot g_{k}(U)\right)\left(\frac{\partial u_{s}}{\partial d_{j}} \cdot g_{J}(\hat{U})\right)+\right. \\
&\left.+\frac{\partial w}{\partial u_{r}}\left(\frac{\partial^{2} \hat{u}_{r}}{\partial d_{j} \partial d_{k}} \cdot g_{k}(U)\right) \cdot \hat{g}_{J}(\hat{U})\right\} d S
\end{aligned}
$$

In the case of nonconservative external loads such as drag forces, the force resultant F depends on d_{3}. This case can still be handled by the above solution procedure, the only change being the addition of the nonsymmetric term

$$
\int_{0}^{L}\left(\frac{\partial F}{\partial d_{3}} \cdot g_{3}(U)\right) \cdot \hat{g}_{3}(\hat{U}) d S
$$

to the second derivative of J.

5.6. Initialization

We initialize our continuation loop by setting $\left\{\Delta d_{l}\right\}=0$ and by picking a reasonable value for the first load increment. The choice of $\left\{d_{t}^{0}\right\}$ is more delicate since it must satisfy the boundary conditions of X_{h}, the orthonormality condition (2.3) and be reasonably close to $K_{h}^{\text {inc }}$. Our current strategy :

1. takes a circular initial configuration r^{0}, coplanar with the load $F(0)$, of length L, and satisfying the boundary conditions imposed on r,
2. sets $d_{3}^{0}=\left(r^{0}\right)^{\prime}$,
3. computes d_{α}^{0} by linearly interpolating the angle defining d_{α} in the cross section between the values imposed at the extremities of the rod,
4. and, if needed, changes locally the values of the Euler angles of $\left\{d_{l}^{0}\right\}$ in order to satisfy the boundary conditions imposed on $\left\{d_{t}\right\}$, in a way very similar to the construction of $\pi_{h}\left(r, d_{t}\right)$ in Section 4.

If needed, as is the case for example for the steep wave problem, this strategy can be supplemented by an incremental variation of the kinematic boundary condition on r_{L}.

5.7. Numerical Result

All tests were run on a Macintosh $\mathrm{SE} / 30$ personal computer.
The first numerical test deals with the Cantilever beam in large displacements whose analytical solution has been presented in [9]. For a
beam of length $L=10 \mathrm{~m}$, of flexural stiffness $E I=100 \mathrm{daN} \times \mathrm{m}^{2}$ and subjected to a terminal load of $P=-10 \mathrm{daN}$, the exact solution corresponding to a vertical displacement of 8.10 m was obtained without continuation after five iterations of the Newton loop, and this for a mesh of fifty Finite Elements.

The second test is more challenging since it deals with a very flexible rod such as those encountered in flexible riser systems. The data are taken from [4]. We consider a very flexible rod, of length $L=32.6 \mathrm{~m}$, of flexural

Figure 5. - The Cantilever beam under Terminal load.

Figure 6. - In Plane Configuration of the Flexible Rod.
stiffness $E I=435 \mathrm{daN} \times \mathrm{m}^{2}$, of torsional stiffness $G I=400 \mathrm{daN} \times \mathrm{m}^{2}$ or $4000 \mathrm{daN} \times \mathrm{m}^{2}$, and subjected to a uniform loading $f=-7.5 \mathrm{daN} / \mathrm{m}$. The rod hangs between point $A=(0,0,0)$ and $B=(1.8,0,15)$. Both extremities are vertically clamped and a rotation of 90 degrees is imposed to the rod section in B. The Finite Element mesh consists again of fifty Finite Elements. Here, we have first computed the solution at zero imposed torsion, solution which was obtained after 8 continuation steps of 3 to 4 Newton iterations each. Starting from this solution, we have then directly

Figure 7. - Out of Plane displacement of the Flexible Rod.

Figure 8. - Final Configuration of the steep wave problem.
imposed the 90 degrees rotation, which was obtained in 5 Newton iterations for each value of the torsional stiffness. As expected, with imposed torsion, the rod configuration is no longer coplanar, the out of plane displacement being larger when $G I$ is larger. The first figure displays the in plane configuration for the case without torsion and for the two cases with imposed torsion. The second one displays the out of plane displacements observed in torsion for the two values of GI.

The last test is adapted from a test case proposed by Coflexip Company (the steep wave problem). It considers a rod of length $L=185 \mathrm{~m}$, fixed in points $A=(0,0,0)$ and $B=(55,0,-100)$, of flexural stiffness $E I=$ $7 \mathrm{kN} \times \mathrm{m}^{2}$. It is subjected to a vertical load of density $f(S)$ given by

$$
\left\{\begin{array}{rlrr}
f(S) & =-0.3 \mathrm{kN} / \mathrm{m} & \text { if } & 0<S<110 \\
& =0.38 \mathrm{kN} / \mathrm{m} & \text { if } & 110<S<170, \\
& =0.60 \mathrm{kN} / \mathrm{m} & & \text { if } \\
& 170<S
\end{array}\right.
$$

Figure 9. - The flexion moment distribution in the steep wave problem.

Figure 10. - The normal tension distribution in the steep wave problem.

The computation used a Finite Element mesh of 37 elements. A first solution was obtained with B fixed in $B=(120,0,-100)$ in 33 continuation steps of the loading factor. Then, the point B was incrementally translated to its final position in 5 increments of 10 to 15 meters. For each translation increment, the solution was obtained in 4 iterations of the standard Newton algorithm. The final configuration, together with the flexion moment and tension force are displayed on the above figures.

6. ANNEX. PROOF OF THEOREM 2

The proof uses the following lemmas.
Lemma $3:$ For any h with $h \leqslant$ meas $\left(I_{\alpha}\right) / 8$ (restriction 1), we have

$$
\begin{equation*}
\frac{1}{2} \leqslant \sum_{M_{p}} p_{p} q_{\alpha}\left(M_{p}\right) \leqslant \frac{5}{2} \tag{6.75}
\end{equation*}
$$

Proof: Let I_{α}^{h} (resp. J_{α}^{h}) be the union of all segments $\left[a_{2,-1}, a_{2 t+1}\right]$ having at least one vertex in I_{α} (resp. included in J_{α}). By construction of q_{α}, we then have

$$
\begin{aligned}
\sum_{p} p_{p} q_{\alpha}\left(M_{p}\right) & \geqslant \sum_{M_{p} \in J_{\alpha}^{h}} p_{p} q_{\alpha}\left(M_{p}\right) \\
& =\frac{1}{\operatorname{meas}\left(J_{\alpha}\right)} \sum_{M_{p} \in J_{\alpha}^{h}} p_{p} \\
& \geqslant \operatorname{meas}\left(J_{\alpha}^{h}\right) / \operatorname{meas}\left(J_{\alpha}\right) \geqslant \frac{1}{2} .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
\sum_{M_{p}} p_{p} q_{\alpha}\left(M_{p}\right) & \leqslant \sum_{M_{p} \in I_{\alpha}^{h}} p_{p} q_{\alpha}\left(M_{p}\right) \\
& \leqslant \frac{1}{\operatorname{meas}\left(J_{\alpha}\right)} \sum_{M_{p} \in I_{\alpha}^{h}} p_{p} \\
& \leqslant \operatorname{meas}\left(I_{\alpha}^{h}\right) / \operatorname{meas}\left(J_{\alpha}\right) \leqslant \frac{5}{2}
\end{aligned}
$$

LEMMA 4: Under restriction 1, we have

$$
\begin{gather*}
\|v\|_{C^{0}(0, L)} \leqslant C_{3}\|v\|_{1, p}, \quad \forall v \in W^{1, p}(0, L) \tag{6.76}\\
\sum_{p=1}^{2 N_{h}+1} p_{p}\left\|\omega_{p}^{n}\right\| \leqslant C_{4}\left\|R^{n}\right\| \tag{6.77}
\end{gather*}
$$

where C_{3} and C_{4} denote constants independent of ε and h, and $\|\cdot\|$ denotes the euclidian norm in E.

Proof: Inequality (6.76) is a direct consequence of the Sobolev embedding theorem. As for (6.77), we have by Lemma 3 and definition of ω_{p}^{n}

$$
\begin{aligned}
\left\|\omega_{p}^{n}\right\| & \leqslant \sqrt{2}\left(q_{1}\left(M_{p}\right)+q_{2}\left(M_{p}\right)\right) \sup _{\ell}\left|\lambda_{\ell}^{n}\right| \\
& \leqslant 2 \sqrt{2}\left(q_{1}\left(M_{p}\right)+q_{2}\left(M_{p}\right)\right) \sup _{\ell}\left|R_{\ell}^{n}\right| \\
& \leqslant \frac{2 \sqrt{2}}{C_{1}^{2}}\left(q_{1}\left(M_{p}\right)+q_{2}\left(M_{p}\right)\right)\left\|R^{n}\right\| .
\end{aligned}
$$

Using again Lemma 3, we then deduce

$$
\begin{aligned}
\sum_{p} p_{p}\left\|\omega_{p}^{n}\right\| & \leqslant \frac{2 \sqrt{2}}{C_{1}^{2}}\left(\sum_{\alpha} \sum_{p} p_{p} q_{\alpha}\left(M_{p}\right)\right)\left\|R^{n}\right\| \\
& \leqslant \frac{10 \sqrt{2}}{C_{1}^{2}}\left\|R^{n}\right\| .
\end{aligned}
$$

Lemma 5 : Under restriction 1 , there exists a constant $K_{1}(\varepsilon)$ such that

$$
\begin{equation*}
\left\|\Omega^{n}\right\|_{1, p}=\left\|\sum_{q} \Omega_{q}^{n} \varphi_{q}\right\|_{1, p} \leqslant K_{1}(\varepsilon)\left\|R^{n}\right\| . \tag{6.78}
\end{equation*}
$$

Proof: By construction of Ω_{q}^{n} and from Lemma 4, we have

$$
\begin{aligned}
\left\|\Omega^{n}\right\|_{1, p}= & \left\|\omega^{n}\right\|_{1, p} \\
\leqslant & \left\|\lambda_{1}^{n} e_{3} \sum_{q} q_{2}\left(M_{q}\right) \varphi_{q}\right\|_{1, p} \\
& +\left\|\lambda_{2}^{n} e_{3} \sum_{q} q_{1}\left(M_{q}\right) \varphi_{q}\right\|_{1, p} \\
& +\left\|\lambda_{3}^{n} e_{2} \sum_{q} q_{1}\left(M_{q}\right) \varphi_{q}\right\|_{1, p} \\
\leqslant & \sup _{\ell}\left|\lambda_{\ell}^{n}\right|\left(\left\|\pi_{h} q_{2}\right\|_{1, p}+2\left\|\pi_{h} q_{1}\right\|_{1, p}\right) \\
\leqslant & 2 \sup _{\ell}\left|R_{\ell}^{n}\right|\left(C_{2}\left\|q_{2}\right\|_{1, p}+2 C_{2}\left\|q_{1}\right\|_{1, p}\right) \\
\leqslant & \frac{2 C_{2}}{C_{1}^{2}}\left(\left\|q_{2}\right\|_{1, p}+2\left\|q_{1}\right\|_{1, p}\right)\left\|R^{n}\right\|
\end{aligned}
$$

which completes our proof. From Lemmas 3 and 4, we also deduce

$$
\begin{equation*}
\sup _{p}\left\|\Omega_{p}^{n}\right\| \leqslant\left\|\Omega^{n}\right\|_{C^{0}(0, L)} \leqslant C_{3} K_{1}(\varepsilon)\left\|R^{n}\right\| \tag{6.79}
\end{equation*}
$$

LEMMA 6:

$$
\begin{gather*}
\left\|R^{n+1}\right\| \leqslant \frac{1}{2}\left\|R^{n}\right\| \tag{6.80}\\
\left\|d_{t}^{n+1}-d_{t}^{n}\right\|_{1, p} \leqslant K_{2}(\varepsilon)\left\|R^{n}\right\| \tag{6.81}\\
\left\|d_{3}^{n+1}-d_{3}\right\|_{C^{0}\left(I_{\alpha}\right)} \leqslant \varepsilon . \tag{6.82}
\end{gather*}
$$

Proof: The proof proceeds by induction. Therefore we have to suppose that (6.82) holds for $n+1=0$, which is

$$
\text { Restriction 2: } \quad\left\|\pi_{h} d_{3}-d_{3}\right\|_{C^{0}\left(I_{\alpha}\right)} \leqslant \varepsilon
$$

We then proceed in 3 steps, assuming that (6.80), (6.81) and (6.82) hold for any $0 \leqslant m<n$.

Step 1. Checking (6.80).
By definition of R^{n} and by construction of Ω_{p}^{n}, we have

$$
\begin{aligned}
& R^{n+1}=r_{L}-r_{0}-\sum_{p} p_{p} d_{3}^{n+1}\left(M_{p}\right) \\
& =r_{L}-r_{0}-\sum_{p} p_{p} \exp \left(\Omega_{p}^{n}\right) d_{3}^{n}\left(M_{p}\right) \\
& =R^{n}+\sum_{p}\left(I d-\exp \left(\Omega_{p}^{n}\right)\right) d_{3}^{n}\left(M_{p}\right) p_{p} \\
& =R^{n}-\sum_{p} \omega_{p}^{n} \times d_{3}^{n}\left(M_{p}\right) p_{p}-\sum_{p} p_{p} \sum_{k \geqslant 2} \frac{\left(\Omega_{p}^{n}\right)^{k} d_{3}^{n}\left(M_{p}\right)}{k!} \\
& =\sum_{p} \omega_{p}^{n} \times\left(e_{\alpha} \operatorname{Ind}\left(I_{\alpha}\right)-d_{3}^{n}\left(M_{p}\right)\right) p_{p}-\sum_{p} p_{p} \sum_{k \geqslant 2} \frac{\left(\Omega_{p}^{n}\right)^{k} d_{3}^{n}\left(M_{p}\right)}{k!} .
\end{aligned}
$$

Above, Ind (I_{α}) denotes the indicator function of the interval I_{α}. Using (4.36) and (6.82) at step $m=n-1$, the above identity yields

$$
\begin{aligned}
\left\|R^{n+1}\right\| & \leqslant \sum_{p} 2 \varepsilon p_{p}\left\|\omega_{p}^{n}\right\|+\sum_{p} p_{p}\left\|\Omega_{p}^{n}\right\|^{2}\left(\sum_{k \geqslant 0} \frac{\left\|\Omega_{p}^{n}\right\|^{k}}{(k+2)!}\left\|d_{3}^{n}\left(M_{p}\right)\right\|\right) \\
& \leqslant\left(\sum_{p} p_{p}\left\|\omega_{p}^{n}\right\|\right)\left(2 \varepsilon+\sup _{p}\left\|\Omega_{p}^{n}\right\| \exp \left(\left\|\Omega_{p}^{n}\right\|\right)\right)
\end{aligned}
$$

From (6.77) and (6.79), we then have

$$
\left\|R^{n+1}\right\| \leqslant C_{4}\left\|R^{n}\right\|\left(2 \varepsilon+C_{3} K_{1}(\varepsilon)\left\|R^{n}\right\| \exp \left(C_{3} K_{1}(\varepsilon)\left\|R^{n}\right\|\right)\right) .
$$

Using then (6.80) for $0 \leqslant m<n$, we finally obtain

$$
\left\|R^{n+1}\right\| \leqslant C_{4}\left(2 \varepsilon+C_{3} K_{1}(\varepsilon)\left\|R^{0}\right\| \exp \left(C_{3} K_{1}(\varepsilon)\left\|R^{0}\right\|\right)\right)\left\|R^{n}\right\|
$$

This is (6.80), provided that we have
Restriction 3: $C_{4}\left(2 \varepsilon+C_{3} K_{1}(\varepsilon)\left\|R^{0}\right\| \exp \left(C_{3} K_{1}(\varepsilon)\left\|R^{0}\right\|\right)\right) \leqslant \frac{1}{2}$.

Step 2. Checking (6.81). By construction, we have

$$
\begin{aligned}
d_{t}^{n+1}-d_{t}^{n} & =\sum_{p}\left(\exp \Omega_{p}^{n}-I d\right) d_{t}^{n}\left(M_{p}\right) \varphi_{p}, \\
& =\pi_{h}\left(\left(\exp \Omega^{n}-I d\right) d_{t}^{n}\right),
\end{aligned}
$$

which implies

$$
\begin{align*}
\left\|d_{\imath}^{n+1}-d_{\imath}^{n}\right\|_{1, p}= & \left\|\pi_{h}\left(\left(\exp \Omega^{n}-I d\right) d_{\imath}^{n}\right)\right\|_{1, p} \\
\leqslant & C_{2}\left\|\left(\exp \Omega^{n}-I d\right) d_{\imath}^{n}\right\|_{1, p} \\
\leqslant & C_{2}\left\|\exp \Omega^{n}-I d\right\|_{1, p}\left\|d_{\imath}^{n}\right\|_{1, p} \\
\leqslant & C_{2}\left\|\sum_{k \geqslant 1} \frac{\left(\Omega^{n}\right)^{k}}{k!}\right\|_{1, p}\left(\left\|d_{\imath}^{0}\right\|_{1, p}+\left\|d_{\imath}^{0}-d_{t}^{n}\right\|_{1, p}\right) \\
\leqslant & C_{2}\left\|\Omega^{n}\right\|_{1, p} \exp \left\|\Omega^{n}\right\|_{1, p} \\
& \left(\left\|\pi_{h} d_{\imath}\right\|_{1, p}+\left\|d_{\imath}^{0}-d_{\imath}^{n}\right\|_{1, p}\right) . \tag{6.83}
\end{align*}
$$

Moreover, writing (6.81) and (6.80) for $0 \leqslant m<n$ yields

$$
\begin{align*}
\left\|d_{i}^{0}-d_{i}^{n}\right\|_{1, p} & \leqslant \sum_{m=0}^{n-1}\left\|d_{i}^{m+1}-d_{i}^{m}\right\|_{1, p} \\
& \leqslant K_{2}(\varepsilon) \sum_{m=0}^{n-1}\left\|R^{m}\right\| \\
& \leqslant K_{2}(\varepsilon)\left\|R^{0}\right\|\left(\sum_{m=0}^{n-1} 2^{-m}\right) \\
& \leqslant 2 K_{2}(\varepsilon)\left\|R^{0}\right\| \tag{6.84}
\end{align*}
$$

vol $26, n^{\circ} 5,1992$

Plugging (6.84) into (6.83) and using (6.78) and (6.80) finally yields

$$
\begin{aligned}
\left\|d_{t}^{n+1}-d_{\imath}^{n}\right\| \leqslant C_{2} K_{1}(\varepsilon)\left\|R^{n}\right\| \exp \left(K_{1}(\varepsilon)\left\|R^{0}\right\|\right)\left(C_{2}\left\|d_{\imath}\right\|_{1, p}\right. & + \\
& \left.+2 K_{2}(\varepsilon)\left\|R^{0}\right\|\right)
\end{aligned}
$$

which is (6.81) if we set

$$
\begin{equation*}
K_{2}(\varepsilon)=C_{2} K_{1}(\varepsilon) \exp (1)\left(C_{2} \sup _{\ell}\left\|d_{\ell}\right\|_{1, p}+2\right) \tag{6.85}
\end{equation*}
$$

and impose the restriction
Restriction 4: $\max \left(K_{1}(\varepsilon), K_{2}(\varepsilon)\right)\left\|R^{0}\right\| \leqslant 1$.

Step 3. Checking (6.82). From (6.76), (6.81) and (6.84), we get

$$
\begin{aligned}
\left\|d_{3}^{n+1}-d_{3}\right\|_{C^{0}\left(I_{\alpha}\right)} & =\left\|d_{3}^{n+1}-d_{3}\right\|_{C^{0}(0, L)} \\
& \leqslant C_{3}\left\|d_{3}^{n+1}-d_{3}\right\|_{1, p} \\
& \leqslant C_{3}\left(\left\|d_{3}^{n+1}-d_{3}^{n}\right\|_{1, p}+\left\|d_{3}^{n}-d_{3}^{0}\right\|_{1, p}+\left\|d_{3}^{0}-d_{3}\right\|_{1, p}\right) \\
& \leqslant C_{3}\left(3 K_{2}(\varepsilon)\left\|R^{0}\right\|+\left\|\pi_{h} d_{3}-d_{3}\right\|_{1, p}\right)
\end{aligned}
$$

This is (6.82) if we impose the restriction
Restriction 5: $\quad C_{3}\left(3 K_{2}(\varepsilon)\left\|\bar{R}^{0}\right\|+\left\|\pi_{h} d_{3}-d_{3}\right\|_{1, p}\right) \leqslant \varepsilon$.

Proof of Theorem 4 : Let $\varepsilon<1 / 8 C_{4}$ be given. Let

$$
e_{h}=\sup _{\ell}\left\|d_{\ell}-\pi_{h} d_{\ell}\right\|_{1, p} .
$$

We have seen that e_{h} goes to zero with h, and therefore, there exists h_{0} such that, $\forall h<h_{0}$, we have

$$
\begin{gather*}
h \leqslant \operatorname{meas}\left(I_{\alpha}\right) / 8, \tag{6.86}\\
C_{4} C_{3}^{2} L K_{1}(\varepsilon) e_{h} \exp \left(C_{3}^{2} L K_{1}(\varepsilon) e_{h}\right) \leqslant \frac{1}{4}, \tag{6.87}\\
C_{3} L \max \left(K_{1}(\varepsilon), K_{2}(\varepsilon)\right) e_{h} \leqslant 1, \tag{6.88}\\
\left(3 C_{3}^{2} L K_{2}(\varepsilon)+C_{3}\right) e_{h} \leqslant \varepsilon . \tag{6.89}
\end{gather*}
$$

Moreover, the definition of R^{n} implies that we have

$$
\begin{align*}
\left\|R^{0}\right\| & =\left\|r_{L}-r_{0}-\int_{0}^{L} d_{3}^{0}(\sigma) d \sigma\right\| \\
& =\left\|\int_{0}^{L}\left(d_{3}-d_{3}^{0}\right)(\sigma) d \sigma\right\| \\
& \leqslant C_{3} L\left\|d_{3}-d_{3}^{0}\right\|_{1, p} \\
& \leqslant C_{3} L e_{h} \tag{6.90}
\end{align*}
$$

With this choice of h and ε, Restriction 1 holds because of (6.86), Restriction 2 and 5 hold because of (6.89) and (6.90), Restriction 3 follows from (6.87) and from our choice of ε and Restriction 4 is a direct consequence of (6.88) and (6.90). Therefore, all the above lemmas can be applied.

In particular, we have

$$
\begin{gathered}
\left\|d_{l h}-d_{t}\right\|_{1, p} \leqslant \sum_{m=0}^{\infty}\left\|d_{t}^{m+1}-d_{t}^{m}\right\|_{1, p}+\left\|d_{t}^{0}-d_{t}\right\|_{1, p} \\
\leqslant \sum_{m=0}^{\infty} K_{2}(\varepsilon)\left\|R^{m}\right\|+\left\|\pi_{h} d_{t}-d_{l}\right\|_{1, p} \\
\leqslant 2 K_{2}(\varepsilon)\left\|R^{0}\right\|+e_{h} \\
\leqslant\left(2 K_{2}(\varepsilon) C_{3} L+1\right) e_{h} \\
\leqslant \varepsilon / C_{3}, \\
\left\|r_{h}-r\right\|_{2, p}=\left(\int_{0}^{L}\left|\int_{0}^{s}\left(d_{3}-d_{3 h}\right)(\sigma) d \sigma\right|^{p} d s+\left\|d_{3}-d_{3 h}\right\|_{1, p}^{p}\right)^{1 / p} \\
\leqslant\left(L\left\|d_{3}-d_{3 h}\right\|_{0, p}^{p}+\left\|d_{3}-d_{3 h}\right\|_{1, p}^{p}\right)^{1 / p} \\
\leqslant(L+1)^{1 / p} \varepsilon / C_{3},
\end{gathered}
$$

which proves (4.45).
To prove that $\left\{r_{h}, d_{i h}\right\} \in K_{h}^{\text {ncc }}$, we first observe that by construction of $d_{t h}$, we have

$$
\begin{aligned}
\left\{d_{t h}\left(M_{p}\right)\right\} & =\left(\prod_{m=0}^{\infty} \exp \Omega_{p}^{m}\right)\left\{d_{l}^{0}\left(M_{p}\right)\right\} \\
& =\left(\prod_{m=0}^{\infty} \exp \Omega_{p}^{m}\right)\left\{d_{l}\left(M_{p}\right)\right\}
\end{aligned}
$$

Since $\left\{d_{t}\left(M_{p}\right)\right\}$ is a direct orthonormal basis of E and since $\exp \Omega_{p}^{m}$ is a rotation matrix, it then follows that $\left\{d_{l h}\left(M_{p}\right)\right\}$ is a direct orthonormal basis of E. Moreover, because q_{α} and hence ω^{m} and Ω^{m} take zero values at both ends of the rod, the above identity yields

$$
\begin{aligned}
& \left\{d_{l h}(0)\right\}=\left\{d_{l}(0)\right\} \\
& \left\{d_{l h}(L)\right\}=\left\{d_{l}(L)\right\}
\end{aligned}
$$

and hence $\left\{d_{i h}\right\}$ satisfies the kinematic boundary conditions of $K_{h}^{\text {inc }}$.
As for r_{h}, by construction, we have

$$
\begin{aligned}
r_{h}(0) & =0 \\
r_{h}(L) & =r_{0}+\int_{0}^{L} d_{3 h}(\sigma) d \sigma \\
& =r_{L}+r_{0}-r_{L}+\lim _{n \rightarrow \infty} \int_{0}^{L} d_{3}^{n}(\sigma) d \sigma \\
& =r_{L}-\lim _{n \rightarrow \infty} R^{n}=r_{L} \\
r_{h}^{\prime}(S) & =d_{3 h}(S)
\end{aligned}
$$

All conditions are satisfied for $\left\{r_{h}, d_{t h}\right\}$ to be in $K_{h}^{\text {mc }}$ which completes our proof.

ACKNOWLEDGMENTS

This research was supported by the Scientific Cooperation Program between France and Tunisia (C.I.E.S. - M.R.E. - E.N.I.T.) and between France and Brasil (accord CAPES-COFECUB). The last draft of this paper was prepared during a visit of the first author at the Division of Applied Mechanics of the University of Stanford and at the Army High Performance Computing Research Center of the University of Minnesota. Special thanks are due on this occasion to Professors J. Simo and T. Tezduyar.

REFERENCES

[1] S. S. Antman, Ordinary Differential Equations of One Dimensional Elasticity, Arch. Rat. Mech. Anal., 61, 1976, pp. 307-393.
[2] S. S. Antman, C. S. Kenney, Large Buckled States of Nonlinear Elastic Rods under Torsion, Thrust and Gravity, Arch. Rat. Mech. Anal., 76, 1981, pp. 289338.
[3] J. Simo, A Finite Strain Beam Formulatıon The Three-dimensional Dynamic Problem, Part 1, Comp. Meth. Appl. Mech. Eng., 49, 1985, pp. 55-70.
[4] J. F. Bourgat, P. Le Tallec, S. Mani, Modélısatıon et Calcul des Grands Déplacements de Tuyaux Elastıques en Flexion Torsion, J. Méc. Théor. Appl., 7, 1988, pp. 1-30.
[5] T. Dupont, R. Scott, Polynomıal Approxımatıon of Functıons in Sobolev Spaces, Math. Comp., 34, 1980, pp. 441-463.
[6] H. KELLER, The bordering algorithm and path following near singular points of higher nullity, SIAM J. Sc1. Stat. Comp., 4, 1983, pp. 573-582.
[7] T. J. R. Hughes, J. Winget, Finite Rotatıon Effects in Numerical Integration of Rate Constitutlve Equations Arising in Large Deformation Analysis, Int. J. Numer. Meth. Eng., 15, 1980, pp. 1413-1418.
[8] J. C. Simo, L. Vu Quoc, A Three-dimensional Finite Strain Rod Model Part II Computatıonal Aspects, Comp. Meth. Appl. Mech. Engrg., 58, 1986, pp. 79-116.
[9] K. E. Bisshop, D. E. Drucker, Large Deflectlons of Cantllever Beams, Quart. Appl. Math., 3, 1945, pp. 272-275.

[^0]: (*) Received for publication February 4, 1991.
 ${ }^{(1)}$ CEREMADE, Unuversité Paris-Dauphıne, 75775 Paris Cedex 16, France.
 $\left(^{2}\right)$ Département de Mathématıques, Faculté des Sciences de Tunıs, Campus Unıversitaıre, 1060 Tunis, Tunisie
 ${ }^{(3)}$ Instituto Politecnico do Rio de Janewo, Parque da Cascata, C. Postal 97282, Nova Friburgo, Rio de Janeiro, Brasıl.

