M2AN. Mathematical modelling and numerical analysis
 - Modélisation mathématique et analyse numérique

P. Peisker
 D. BRAESS

 Uniform convergence of mixed interpolated

 Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates

 elements for Reissner-Mindlin plates}M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique, tome 26, no 5 (1992), p. 557-574
http://www.numdam.org/item?id=M2AN_1992__26_5_557_0
© AFCET, 1992, tous droits réservés.
L'accès aux archives de la revue «M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

UNIFORM CONVERGENCE OF MIXED INTERPOLATED ELEMENTS FOR REISSNER-MINDLIN PLATES (*)

by P. Peisker (${ }^{1}$) and D. Braess (${ }^{2}$)

Communicated by P G Ciarlet

Abstract

The mixed-interpolated elements of Bathe and Dvorkin [4] and Bathe, Brezzi, and Cho [3] are analyzed It is shown that convergence is uniform in the thickness parameter when the Mindlin-Reissner plate is treated To this end a discrete analog of the Helmholtz decomposition of L_{2} is introduced

Résumé - On consıdère les éléments de Bathe, Dvorkın [4] et Bathe, Brezzl, Cho [3] uttlsant une interpolation composée pour la plaque de Mindlın-Reissner On démontre que la convergence est unıforme par rapport au paramètre d'épalsseur La démonstration est basée sur une décompositton discrète de type Helmholtz

1. INTRODUCTION

When the Mindlin plate is treated by finite elements, some extra devices are necessary to get convergence uniformly with respect to the thickness parameter. In particular, selected reduced integration or a mixed method with a penalty term is often applied. In 1986 Brezzi and Fortin [8] showed that a Helmholtz decomposition of L_{2} is an efficient tool in the analysis. Later Arnold and Falk [1] detected that a discrete version exists for a certain pairing of finite elements.

In the last few years the MITCn elements ($n=4,7,8$ and 9) of Bathe and Dvorkin [4] and Bathe et al. [3] have attracted much attention. The analysis of these mixed elements was done for the limit case in which the thickness parameter t is zero.

In this paper we will extend the analysis to positive thickness. To this end we will use a discrete Helmholtz decomposition. For this, the decomposition
(*) Received May 1990, revised December 1990
$\left.{ }^{(}{ }^{1}\right)$ Grimmstr 25 D-4000 Dusseldorf, Germany
$\left(^{2}\right)$ Fakultat fur Mathematık, Ruhr-Unıversitat, D-4630 Bochum 1, Germany
cannot be done with the standard operators grad and curl. Instead we will replace the latter by a discrete operator which will be called curl ${ }_{h}$. The properties of this operator may be derived from the axioms of Brezzi et al. [5].

Unless otherwise stated we will adopt the notation of the paper just cited.

2. THE PLATE MODEL

The energy functional of the Mindlin-Reissner plate can be written as

$$
\begin{equation*}
\frac{1}{2} t^{3} a(\theta, \theta)+\frac{1}{2} \lambda t\|\nabla w-\theta\|_{0}^{2}-t^{3}(f, w) \tag{2.1}
\end{equation*}
$$

where $\theta=\left(\theta_{1}, \theta_{2}\right)$ denotes the rotation, w the transverse displacement and t the thickness of the plate. We assume that the plate is clamped so that $\theta \in\left[H_{0}^{1}(\Omega)\right]^{2}$ and $w \in H_{0}^{1}(\Omega)$. The terms in (2.1) are the bending energy, the shear energy and the energy induced by the load $t^{3} f$, resp. As usual (., .) refers to the inner product in $L_{2}(\Omega)$ and $\|.\|_{s}$ is the norm in the Sobolev spaces $H^{s}(\Omega)$ and $H_{0}^{s}(\Omega)$. Furthermore the bilinear form a is given by

$$
a(\theta, \psi):=\frac{E}{12\left(1-\nu^{2}\right)} \int_{s^{\prime}}\left[\sum_{i, j}(1-\nu) \varepsilon_{l j}(\theta) \varepsilon_{i j}(\psi)+\nu \operatorname{div} \theta \operatorname{div} \psi\right] d x
$$

where $\varepsilon_{l j}(\theta)=\frac{1}{2}\left(\partial_{l} \theta_{J}+\partial_{J} \theta_{t}\right)$ is the linear strain tensor, E and ν are Young's modulus and Poisson's ratio, resp. By Korn's inequality, a is an imner product on $\left[H_{0}^{1}(\Omega)\right]^{2}$ that is equivalent to the usual one.

In the numerical solution the Sobolev spaces are replaced by finite element subspaces $\Theta_{h} \subset\left[H_{0}^{1}(\Omega)\right]^{2}$ and $W_{h} \subset H_{0}^{1}(\Omega)$, where h is a mesh parameter. Furthermore, often some reduced integration is used when evaluating the shear energy in order to prevent the scheme from locking. For that purpose a linear reduction operator

$$
R:\left[H_{0}^{1}(\Omega)\right]^{2} \rightarrow \Gamma_{h}
$$

is introduced in [5]. It makes the shear terms belong to a third finite element space Γ_{h}. The discretized problem then has the form

$$
\begin{equation*}
\frac{1}{2} a\left(\theta_{h}, \theta_{h}\right)+\frac{1}{2} \lambda t^{-2}\left\|\nabla w_{h}-R \theta_{h}\right\|_{0}^{2}-\left(f, w_{h}\right) \rightarrow \min _{\substack{w_{h} \in W_{h} \\ \theta_{h} \in \Theta_{h}}}! \tag{2.2}
\end{equation*}
$$

Obviously, after adjusting the thickness parameter we may assume that $\lambda=1$.

An essential step in the development of stable elements for the discretization of (2.1) was done when Brezzi and Fortin [8] used a Helmholtz decomposition to represent the Mindlin-Reissner plate model as two Poisson equations and one Stokes-like problem. Let

$$
\gamma:=t^{-2}(\nabla w-\theta)
$$

denote the shear strain vector. Then the solution of the variational problem associated to (2.1) satisfies

$$
\begin{align*}
a(\theta, \psi)+(\gamma, \nabla v-\psi) & =(f, v) \quad \forall \psi \in\left[H_{0}^{1}(\Omega)\right]^{2}, \quad v \in H_{0}^{1}(\Omega) \\
(\nabla w-\theta, \eta)-t^{2}(\gamma, \eta) & =0 \quad \forall \eta \in L_{2}(\Omega)^{2} \tag{2.3}
\end{align*}
$$

Using the Helmholtz Theorem [13]

$$
\left[L_{2}(\Omega)\right]^{2}=\nabla H_{0}^{1}(\Omega) \oplus \operatorname{curl}\left(H^{1}(\Omega) / \mathbb{R}\right)
$$

the shear strains γ and η are decomposed as

$$
\begin{equation*}
\gamma=\nabla r+\operatorname{curl} p \quad \text { and } \quad \eta=\nabla z+\operatorname{curl} q . \tag{2.4}
\end{equation*}
$$

Substituting (2.4) in (2.3) Brezzi and Fortin [8] obtained the following system of equations for $(\theta, w, r, p) \in\left[H_{0}^{1}(\Omega)\right]^{2} \times H_{0}^{1}(\Omega) \times H^{1}(\Omega) / \mathbb{R}:$

$$
\begin{array}{rlrl}
(\nabla r, \nabla v) & =(f, v) & & \forall v \in H_{0}^{1}(\Omega) \\
a(\theta, \psi)-(p, \operatorname{rot} \psi) & =(\nabla r, \psi) & & \forall \psi \in\left[H_{0}^{1}(\Omega)\right]^{2} \\
-(\operatorname{rot} \theta, q)-t^{2}(\operatorname{curl} p, \operatorname{curl} q) & =0 & & \forall q \in H^{1}(\Omega) / \mathbb{R} \\
(\nabla w, \nabla z)=(\theta, \nabla z)+t^{2}(f, z) & & \forall z \in H_{0}^{1}(\Omega) . \tag{2.7}
\end{array}
$$

Note that (2.5) is a simple Poisson equation, which is decoupled from the other equations. Furthermore, let \perp denote the isometry in two space : $(x, y)^{\perp}:=(y,-x)$. Then

$$
\begin{gathered}
\operatorname{rot} \theta:=\frac{\partial \theta_{2}}{\partial x}-\frac{\partial \theta_{1}}{\partial y}=\operatorname{div} \theta^{\perp}, \\
\operatorname{curl} q:=\left(\frac{\partial q}{\partial y},-\frac{\partial q}{\partial x}\right)=(\nabla q)^{\perp} .
\end{gathered}
$$

Thus (2.6) is related to a Stokes problem with penalty term $\frac{1}{2} t^{2}\|\nabla p\|_{0}^{2}$. Finally, (2.7) is again a Poisson equation.

The Stokes-like problem (2.6) can be written in a more compact form by introducing the bilinear form

$$
\begin{align*}
A_{t}((\theta, p),(\psi, q)):=a(\theta, \psi)- & (p, \operatorname{rot} \psi)- \\
& -(q, \operatorname{rot} \theta)-t^{2}(\operatorname{curl} p, \operatorname{curl} q) \tag{2.8}
\end{align*}
$$

The following regularity result can be found in $[1,8]$
THEOREM 21 Let Ω be a convex polygonal or a smoothly bounded domain in the plane For any $t>0$ and $g \in\left[H^{-1}(\Omega)\right]^{2}$ there is a unique solution $\chi \in\left[H_{0}^{1}(\Omega)\right]^{2}$ and $\rho \in H^{1}(\Omega) / \mathbb{R}$ of

$$
\begin{equation*}
A_{t}((\chi, \rho),(\psi, q))=(g, \psi) \quad \forall(\psi, q) \in\left[H_{0}^{1}(\Omega)\right]^{2} \times H^{1}(\Omega) / \mathbb{R} \tag{29}
\end{equation*}
$$

Moreover, if $g \in\left[L_{2}(\Omega)\right]^{2}$, then $\chi \in\left[H^{2}(\Omega)\right]^{2}, \rho \in H^{2}(\Omega)$ and there exists a constant C independant of t and g, such that

$$
\begin{equation*}
\|x\|_{2}+\|\rho\|_{1}+t\|\rho\|_{2} \leqslant C\|g\|_{0} \tag{210}
\end{equation*}
$$

The analysis of a special finite element approximation of the scheme (2) was simplified by the existence of a discrete version of the Helmholtz Theorem [1] Although a decomposition is not always given in this strong sense, a certain step in this direction was done when Brezzi et al [5] introduced the following five properties

Assume that besides

$$
\begin{array}{ll}
W_{h} \subset H_{0}^{1}(\Omega) & \text { (transverse displacement) } \\
\Theta_{h} \subset\left[H_{0}^{1}(\Omega)\right]^{2} & \text { (rotations) }
\end{array}
$$

two additional spaces

$$
\begin{array}{ll}
\Gamma_{h} \subset H_{0}(\text { rot }, \Omega) & \text { (shear strains) } \\
Q_{h} \subset L_{2}(\Omega) / \mathbb{R} & \text { (pressure) }
\end{array}
$$

and a reduction operator

$$
R \quad\left[H_{0}^{1}(\Omega)\right]^{2} \rightarrow \Gamma_{h}
$$

are given such that the following properties hold
$\left.P_{1}\right) \nabla W_{h} \subset \Gamma_{h}, 1$ e the discrete shear

$$
\gamma_{h}=t^{-2}\left(\nabla w_{h}-R \theta_{h}\right)
$$

belongs to Γ_{h}
$\left.P_{2}\right) \operatorname{rot} \Gamma_{h} \subset Q_{h}$
$\left.P_{3}\right)$ The pair of spaces $\left(\Theta_{h}, Q_{h}\right)$ satisfies the inf-sup condition

$$
\lim _{q_{t} \in Q_{1}} \sup _{\psi_{h} \in \Theta_{h}} \frac{\left(\operatorname{rot} \psi_{h}, q_{h}\right)}{\left\|\psi_{h}\right\|_{1}\left\|q_{h}\right\|_{0}}=\beta>0
$$

with β being independent of the mesh size h

[^0]P_{4}) Commuting diagram property Let P_{h} be the L_{2}-projection onto Q_{h} Then
$$
\operatorname{rot} R \eta=P_{h} \operatorname{rot} \eta \quad \forall n \in\left[H_{0}^{1}(\Omega)\right]^{2}
$$

1 e the following diagram commutes

$$
\begin{aligned}
& {\left[H_{0}^{1}(\Omega)\right]^{2} \xrightarrow{\text { rot }} I,(\Omega)} \\
& R \downarrow \underset{I_{h}}{ } \xrightarrow{r_{1}} Q_{h}
\end{aligned}
$$

$\left.P_{5}\right)$ Completeness of decomposition If $\delta_{h} \in \Gamma_{h}$ and $\operatorname{rot} \delta_{h}=0$ then $\delta_{h} \in \nabla W_{h}$

Recall that P_{3} essentrally states that the parr (Θ_{h}, Q_{h}) is « good» for the Stokes problem [13], whereas P_{4} states that the pair $\left(\Gamma_{h}^{\perp}, Q_{h}\right)$ is « good» for the mixed variable formulation of an elliptic second order equation [6, 7, 11, 15]

Brezzı, Bathe and Fortin [5] used these properties for the analysis of the plate in the limit case $t=0$ It is our aim to show that the properties P_{1} to P_{5} also imply convergence which is uniformly good for every $t>0$ To this end we will extend the Helmholtz decomposition to the finite element spaces

3 THE HELMHOLTZ DECOMPOSITION OF $\boldsymbol{r}_{\boldsymbol{n}}$

Definition 31 Let the operator

$$
\operatorname{curl}_{h} Q_{h} \rightarrow \Gamma_{h}
$$

be defined by

$$
\begin{equation*}
\left(\operatorname{curl}_{h} q_{h}, \eta\right)=\left(q_{h}, \text { rot } \eta\right) \text { for all } \eta \in \Gamma_{h} \tag{array}
\end{equation*}
$$

We recall that $\Gamma_{h} \subset H_{0}($ rot, $\Omega)$, where $H_{0}($ rot, $\Omega)=\left\{\eta \in\left[L_{2}(\Omega)\right]^{2}\right.$, rot $\eta \in L_{2}(\Omega), \eta \tau=0$ on $\left.\partial \Omega\right\}, \tau$ being the unit tangent vector Therefore, the functional $\eta \mapsto\left(q_{h}\right.$, rot $\left.\eta\right)$ is well defined and $\operatorname{curl}_{h} q_{h}$ is uniquely determined by (3 1) - Formally, curl $_{h}$ is introduced like a distributional derivative on a finite dimensional space

THEOREM 32 Assume that the propertıes P_{1}, P_{2} and P_{5} hold Then an L_{2}-or thogonal decomposition is given by

$$
\begin{equation*}
\Gamma_{h}=\nabla W_{h} \oplus \operatorname{curl}_{h} Q_{h} \tag{3}
\end{equation*}
$$

Proof (1) From Definition 31 and P_{1} it follows that

$$
\nabla W_{h} \oplus \operatorname{curl}_{h} Q_{h} \subset \Gamma_{h}
$$

Furthermore, given $q_{h} \in Q_{h}$ and $w_{h} \in W_{h}$ it follows that

$$
\left(\operatorname{curl}_{h} q_{h}, \nabla w_{h}\right)=\left(q_{h}, \operatorname{rot} \nabla w_{h}\right)=0
$$

Therefore, the functions $\operatorname{curl}_{h} q_{h}$ and ∇w_{h} are L_{2}-orthogonal.
(2) Given $\gamma_{h} \in \Gamma_{h}$, let η_{h} be the L_{2}-projection onto $\operatorname{curl}_{h} Q_{h}$. Then $\boldsymbol{\eta}_{h}$ is characterized by

$$
\left(\gamma_{h}-\eta_{h}, \operatorname{curl}_{h} q_{h}\right)=0 \quad \text { for all } \quad q_{h} \in Q_{h}
$$

From Definition 3.1 we conclude that (rot $\left.\left(\gamma_{h}-\eta_{h}\right), q_{h}\right)=0 \forall q_{h} \in Q_{h}$, and P_{2} implies that

$$
\operatorname{rot}\left(\gamma_{h}-\eta_{h}\right)=0
$$

Therefore, P_{5} asserts that $\gamma_{h}-\eta_{h} \in \nabla W_{h}$, so that, by construction, $\gamma_{h} \in \nabla W_{h} \oplus \operatorname{curl}_{h} Q_{h}$.

Using the decomposition (3.2) we will immediately obtain a representation of the approximation scheme (2.2), which is analogous to (2.5)-(2.7). Obviously, when $\lambda=1$, the solution of the variational problem (2.2) is characterized by

$$
\begin{align*}
a\left(\theta_{h}, \psi_{h}\right)+\left(\gamma_{h}, \nabla v_{h}-R \psi_{h}\right) & =\left(f, v_{h}\right) & & \forall \psi_{h} \in \Theta_{h}, v_{h} \in W_{h} \tag{3.3}\\
\left(\nabla w_{h}-R \theta_{h}, \eta_{h}\right)-t^{2}\left(\gamma_{h}, \eta_{h}\right) & =0 & & \forall \eta_{h} \in \Gamma_{h}
\end{align*}
$$

Inserting the L_{2}-orthogonal decompositions

$$
\gamma_{h}=\nabla r_{h}+\operatorname{curl}_{h} p_{h} \quad \text { and } \quad \eta_{h}=\nabla z_{h}+\operatorname{curl}_{h} q_{h}
$$

into (3.3), and observing that by Definition 3.1 and P_{4}

$$
\left(\operatorname{curl}_{h} q_{h}, R \theta_{h}\right)=\left(q_{h}, \operatorname{rot} R \theta_{h}\right)=\left(q_{h}, P_{h} \operatorname{rot} \theta_{h}\right)=\left(q_{h}, \operatorname{rot} \theta_{h}\right),
$$

we obtain the discrete version of the decomposition (2.5)-(2.7) :

$$
\begin{align*}
\left(\nabla r_{h}, \nabla v_{h}\right)=\left(f, v_{h}\right) & \forall v_{h} \in W_{h}, \tag{3.4}\\
a\left(\theta_{h}, \psi_{h}\right)-\left(p_{h}, \operatorname{rot} \psi_{h}\right)=\left(\nabla r_{h}, R \psi_{h}\right) & \forall \psi_{h} \in \Theta_{h}, \tag{3.5}\\
-\left(\operatorname{rot} \theta_{h}, q_{h}\right)-t^{2}\left(\operatorname{curl}_{h} p_{h}, \operatorname{curl}_{h} q_{h}\right)=0 & \forall q_{h} \in Q_{h}, \\
\left(\nabla w_{h}, \nabla z_{h}\right)=\left(R \theta_{h}, \nabla z_{h}\right)+t^{2}\left(f, z_{h}\right) & \forall z_{h} \in W_{h} . \tag{3.6}
\end{align*}
$$

For abbreviation we introduce the discrete bilnear form

$$
\begin{align*}
& A_{t}^{h}\left(\left(\theta_{h}, p_{h}\right),\left(\psi_{h}, q_{h}\right)\right):= \\
& \quad:=a\left(\theta_{h}, \psi_{h}\right)-\left(p_{h}, \operatorname{rot} \psi_{h}\right)-\left(q_{h}, \operatorname{rot} \theta_{h}\right)-t^{2}\left(\operatorname{curl}_{h} p_{h}, \operatorname{curl}_{h} q_{h}\right) \tag{3.7}
\end{align*}
$$

As a consequence of property P_{3} the following stability estimate for the discrete Stokes like problem (3.5) is valid, $c f$. [8, 14].

Lemma 3.3 (Stability) : Assume that the pair of spaces (Θ_{h}, Q_{h}) satisfies P_{3}. Then there exists a positive constant α which is independent of the parameters t and h, such that for all $\left(\theta_{h}, q_{h}\right) \in \Theta_{h} \times Q_{h}$
$\sup _{\substack{\psi_{h} \in \bigotimes_{h} \\ q_{h} \in Q_{h}}} \frac{A_{t}^{h}\left(\left(\theta_{h}, p_{h}\right),\left(\psi_{h}, q_{h}\right)\right)}{\left\|\psi_{h}\right\|_{1}+\left\|q_{h}\right\|_{0}+t\left\|\operatorname{curl}_{h} q_{h}\right\|_{0}} \geqslant \alpha\left(\left\|\theta_{h}\right\|_{1}+\left\|p_{h}\right\|_{0}+t\left\|\operatorname{curl}_{h} p_{h}\right\|_{0}\right)$.

We conclude this section with an observation concerning the discrete operator curl ${ }_{h}$.

Proposition 3.4: Let P_{h} and Π_{h} denote the L_{2}-projection onto Q_{h} and Γ_{h}, resp. Then

$$
\operatorname{curl}_{h} P_{h} \rho=\Pi_{h} \operatorname{curl} \rho \quad \text { for all } \quad \rho \in H^{1}(\Omega),
$$

i.e. the following diagram commutes :

$$
\begin{gathered}
H^{1}(\Omega) \xrightarrow{\text { curl }} L_{2}(\Omega)^{2} \\
P_{h} \downarrow_{\substack{2 \\
\text { curl }_{h}}} \downarrow^{H_{h}} \\
Q_{h} \xrightarrow{ } \Gamma_{h} .
\end{gathered}
$$

Proof: Given $\rho \in H^{1}(\Omega)$ and $\gamma_{h} \in \Gamma_{h} \subset H_{0}(\operatorname{rot} \Omega)$ we use Definition 3.1, P_{2} and integration by parts to obtain

$$
\begin{aligned}
\left(\operatorname{curl}_{h} P_{h} \rho, \gamma_{h}\right)=\left(P_{h} \rho, \operatorname{rot} \gamma_{h}\right)= & \left(\rho, \operatorname{rot} \gamma_{h}\right)= \\
& =\left(\operatorname{curl} \rho, \gamma_{h}\right)=\left(\Pi_{h} \operatorname{curl} \rho, \gamma_{h}\right) .
\end{aligned}
$$

4. ERROR ANALYSIS

In this section we will derive abstract error estimates assuming the properties P_{1} to P_{5}. Specifically, we will establish H^{1}-estimates on the rotation vector and the transverse displacement, whereas L_{2}-estimates are postponed to the next section.

The most difficult part is the derivation of error bounds for the Stokeslike problem. Since the discrete bilinear form A_{t}^{h} differs from A_{t}, the approximation scheme is nonconforming and we have to deal with consistency errors. We assume throughout the remainder of this paper that Ω is a convex polygon or smoothly bounded domain in the plane, so that the regularity result of Theorem 2.1 is valid.

Remark 4.1: Let (χ, ρ) be the unique solution of the Stokes-like problem (2.9) with $t>0$. Setting $\psi=0$ in (2.9) we have that

$$
t^{2}(\operatorname{curl} \rho, \operatorname{curl} p)=(\operatorname{rot} \psi, q) \quad \forall q \in H^{1}(\Omega) / \mathbb{R} .
$$

From this we conclude that

$$
\begin{array}{rlrl}
t^{2} \operatorname{rot} \operatorname{curl} \rho & =\operatorname{rot} \psi & \in L_{2}(\Omega) \\
\operatorname{curl} \rho \cdot \tau & =\frac{\partial \rho}{\partial n}=0 & & \text { on } \partial \Omega
\end{array}
$$

Specifically,

$$
\begin{equation*}
(\operatorname{curl} \rho, \operatorname{curl} q)=(\operatorname{rot} \operatorname{curl} \rho, q) \quad \forall q \in H^{1}(\Omega) . \tag{4.1}
\end{equation*}
$$

Therefore, by a density argument test functions $q \in L_{2}(\Omega) / \mathbb{R}$ are also permitted in (2.9).

We now present the energy estimate for the Stokes-like problem.
THEOREM 4.2 : Assume that the properties P_{1} to P_{5} hold. Let (θ, p) and $\left(\theta_{h}, p_{h}\right)$ be the solutions of (2.6) and (3.5), resp. Then the following error bound

$$
\begin{align*}
\| \theta- & \theta_{h}\left\|_{1}+\right\| p-p_{h}\left\|_{0}+t\right\| \operatorname{curl} p-\operatorname{curl}_{h} p_{h} \|_{0} \leqslant \\
\leqslant & C\left\{\inf _{\psi_{h} \in \Theta_{h}}\left\|\theta-\psi_{h}\right\|_{1}+\inf _{q_{h} \in Q_{h}}\left\|p-q_{h}\right\|_{0}+t\|R \operatorname{curl} p-\operatorname{curl} p\|_{0}\right. \\
& \left.+\left\|r-r_{h}\right\|_{0}+\sup _{\psi_{h} \in \Theta_{h}} \frac{\left|\left(\nabla r_{h}, R \psi_{h}-\psi_{h}\right)\right|}{\left\|\psi_{h}\right\|_{1}}\right\} \tag{4.2}
\end{align*}
$$

holds with C being independent of the mesh size h and of the parameter t.
Remark: The first two terms on the right hand side of (4.2) are the standard terms for the approximation from the subspaces Θ_{h} and Q_{h}. By Remark 4.1, the (nonconforming) difference of A_{t} and A_{t}^{h} arises only from the difference between curl and curl_{h}. This effect is in principle treated by deriving bounds for

$$
\frac{\left|A_{t}^{h}\left(\left(\theta, P_{h} p\right),\left(\chi_{h}, q_{h}\right)\right)-\left(\nabla r, \chi_{h}\right)\right|}{\left\|\chi_{h}\right\|_{1}+\left\|q_{h}\right\|_{0}+t\left\|\operatorname{curl}_{h} q_{h}\right\|}
$$

see e.g. the proofs of Strang's lemmas in [10]. The result is the third term in (4.2). Obviously, the fourth term shows that the error in the solution of the Poisson equation (2.5) is inherited to the Stokes problem. The last term represents the additional consistency error induced by the operator R on the right hand side of (3.5).

Proof: (1) Let $\tilde{\theta}_{h} \in \Theta_{h}$ be an approximation to θ satisfying

$$
\left\|\theta-\tilde{\theta}_{h}\right\|_{1}=\inf _{\psi_{h} \in \Theta_{h}}\left\|\theta-\psi_{h}\right\|_{1} .
$$

Using the relation $\operatorname{curl}_{h} P_{h} p=\Pi_{h}$ curl p given in Proposition 3.4, we conclude that

$$
\begin{align*}
\| \theta- & \theta_{h}\left\|_{1}+\right\| p-p_{h}\left\|_{0}+t\right\| \operatorname{curl} p-\operatorname{curl}_{h} p_{h} \|_{0} \\
\leqslant & \left(\left\|\theta-\tilde{\theta}_{h}\right\|_{1}+\left\|p-P_{h} p\right\|_{0}+t\left\|\operatorname{curl} p-\Pi_{h} \operatorname{curl} p\right\|_{0}\right) \\
& +\left(\left\|\tilde{\theta}_{h}-\theta_{h}\right\|_{1}+\left\|P_{h} p-p_{h}\right\|_{0}+t\left\|\operatorname{curl}_{h}\left(P_{h} p-p_{h}\right)\right\|_{0}\right) \tag{4.3}
\end{align*}
$$

Since Π_{h} is the L_{2}-projection onto $\Gamma_{h},\left\|\operatorname{curl} p-\Pi_{h} \operatorname{curl} p\right\|_{0}=$ inf $\|$ curl $p-\eta\left\|_{0} \leqslant\right\| \operatorname{curl} p-R$ curl $p \|_{0}$. Therefore, the first three terms $\eta \in \Gamma_{h}$
are bounded by the right hand side of (4.2). Lemma 3.3 ensures that there exists a pair $\left(\chi_{h}, q_{h}\right) \in \Theta_{h} \times Q_{h}$ such that

$$
\begin{equation*}
\left\|\chi_{h}\right\|_{1}+\left\|q_{h}\right\|_{0}+t\left\|\operatorname{curl}_{h} q_{h}\right\|_{0}=1 \tag{4.4}
\end{equation*}
$$

and

$$
\begin{align*}
& \alpha\left(\left\|\theta_{h}-\tilde{\theta}_{h}\right\|_{1}+\left\|p_{h}-P_{h} p\right\|_{0}+t\left\|\operatorname{curl}_{h}\left(p_{h}-P_{h} p\right)\right\|_{0}\right) \\
& \leqslant A_{t}^{h}\left(\left(\theta_{h}-\tilde{\theta}_{h}, p_{h}-P_{h} p\right),\left(\chi_{h}, q_{h}\right)\right) \tag{4.5}
\end{align*}
$$

Using (3.5) the right hand side of (4.5) can be rewritten as
$A_{t}^{h}\left(\left(\theta_{h}-\tilde{\theta}_{h}, p_{h}-P_{h} p\right),\left(\chi_{h}, q_{h}\right)\right)=$

$$
\begin{align*}
= & \left(\nabla r_{h}, R \chi_{h}\right)-A_{t}^{h}\left(\left(\tilde{\theta}_{h}, P_{h} p\right),\left(\chi_{h}, q_{h}\right)\right) \\
= & {\left[\left(\nabla r, \chi_{h}\right)-A_{t}^{h}\left(\left(\theta, P_{h} p\right),\left(\chi_{h}, q_{h}\right)\right)\right] } \\
& +A_{t}^{h}\left(\left(\theta-\tilde{\theta}_{h}, 0\right),\left(\chi_{h}, q_{h}\right)\right) \\
& +\left(\nabla r_{h}-\nabla r, \chi_{h}\right)+\left(\nabla r_{h}, R \chi_{h}-\chi_{h}\right) \\
:= & E_{1}+E_{2}+E_{3} . \tag{4.6}
\end{align*}
$$

We will establish bounds for the three terms separately.
(2) First, we treat the most difficult term E_{1}. From Remark 4.1 it follows that $A_{t}\left((\theta, p),\left(\chi_{h}, q_{h}\right)\right)=\left(\nabla r, \chi_{h}\right)$. Hence,

$$
\begin{align*}
E_{1} & =-A_{t}^{h}\left(\left(\theta, P_{h} p\right),\left(\chi_{h}, q_{h}\right)\right)+A_{t}\left((\theta, p),\left(\chi_{h}, q_{h}\right)\right) \\
& =\left(P_{h} p-p, \operatorname{rot} \chi_{h}\right)-t^{2}\left[\left(\operatorname{rot} \operatorname{curl} p, q_{h}\right)-\left(\operatorname{curl}_{h} P_{h} p, \operatorname{curl}_{h} q_{h}\right)\right] . \tag{4.7}
\end{align*}
$$

Next, the commuting diagram property P_{4} and $q_{h} \in Q_{h}$ imply that $\left(\right.$ rot curl $\left.p, q_{h}\right)=\left(P_{h} \operatorname{rot}(\operatorname{curl} p), q_{h}\right)=\left(\operatorname{rot} R \operatorname{curl} p, q_{h}\right)=$

$$
=\left(R \operatorname{curl} p, \operatorname{curl}_{h} q_{h}\right) .
$$

Furthermore, by applying Proposition 3.4 we obtain

$$
\left(\operatorname{curl}_{h} P_{h} p, \operatorname{curl}_{h} q_{h}\right)=\left(\Pi_{h} \operatorname{curl} p, \operatorname{curl}_{h} q_{h}\right)=\left(\operatorname{curl} p, \operatorname{curl}_{h} q_{h}\right) .
$$

Subtraction of the last two equations yields

$$
\begin{align*}
\left(\operatorname{rot} \operatorname{curl} p, q_{h}\right)-\left(\operatorname{curl}_{h} P_{h} p, \operatorname{curl}_{h} q_{h}\right) & = \\
& =\left(R \operatorname{curl} p-\operatorname{curl} p, \operatorname{curl}_{h} q_{h}\right) . \tag{4.8}
\end{align*}
$$

Inserting this into (4.7) and recalling the normalization (4.4) we have

$$
\begin{align*}
E_{1} & \leqslant\left\|p-P_{h} p\right\|_{0}\left\|\chi_{h}\right\|_{1}+(t\|R \operatorname{curl} p-\operatorname{curl} p\|)\left(t\left\|\operatorname{curl}_{h} q_{h}\right\|\right) \\
& \leqslant\left\|p-P_{h} p\right\|_{0}+t\|R \operatorname{curl} p-\operatorname{curl} p\| . \tag{4.9}
\end{align*}
$$

(3) A bound for E_{2} is easily obtained by recalling the definition of A_{t}^{h} and the normalization (4.4)

$$
\begin{aligned}
E_{2} & =a\left(\theta-\tilde{\theta}_{h}, \psi_{h}\right)-\left(\operatorname{rot}\left(\theta-\tilde{\theta}_{h}\right), q_{h}\right) \\
& \leqslant C\left\|\theta-\tilde{\theta}_{h}\right\|_{1} \cdot\left(\left\|\psi_{h}\right\|_{1}+\left\|q_{h}\right\|_{0}\right) \\
& \leqslant C\left\|\theta-\tilde{\theta}_{h}\right\|_{1} .
\end{aligned}
$$

(4) Finally, we consider the remaining term. Since $\left\|\chi_{h}\right\|_{1} \leqslant 1$, we have

$$
\begin{aligned}
E_{3} & =\left(\nabla r_{h}-\nabla r, \chi_{h}\right)+\left(\nabla r_{h}, R \chi_{h}-\chi_{h}\right) \\
& =\left(r_{h}-r, \operatorname{div} \chi_{h}\right)+\left(\nabla r_{h}, R \chi_{h}-\chi_{h}\right) \\
& \leqslant\left\|r_{h}-r\right\|_{0}+\sup _{\psi_{h} \in \Theta_{h}} \frac{\left(\nabla r_{h}, R \psi_{h}-\psi_{h}\right)}{\left\|\psi_{h}\right\|_{1}} .
\end{aligned}
$$

Collecting the terms from the estimates of E_{1}, E_{2} and E_{3}, we have a bound for the right hand side of (4.5) and the proof of the theorem is complete.

The following lemma completes the estimates by those for the remaining variables. The proof is standard and can be found e.g. in [10].

LEMMA $4.3:$ Let r, w and r_{h}, w_{h} be the solutions of (2.5), (2.7) and (3.4), (3.5), resp. Then the following error bounds hold

$$
\begin{gather*}
\left\|\nabla\left(r-r_{h}\right)\right\|_{0}=\inf _{v_{h} \in W_{h}}\left\|\nabla\left(r-v_{h}\right)\right\|_{0}, \tag{4.10}\\
\left\|\nabla\left(w-w_{h}\right)\right\|_{0} \leqslant \inf _{v_{h} \in W_{h}}\left\|\nabla\left(w-v_{h}\right)\right\|_{0}+\left\|R \theta_{h}-\theta\right\|_{0} . \tag{4.11}
\end{gather*}
$$

5. ERROR ANALYSIS CONTINUED : $L_{\mathbf{2}}$ ESTIMATES

We continue our abstract error estimates based on the properties P_{1} to P_{5} to obtain bounds on the L_{2}-norm of the errors $\theta-\theta_{h}$ and $w-w_{h}$.

Theorem 5.1 : Assume that the properties P_{1} to P_{5} hold. Let (θ, p) and $\left(\theta_{h}, p_{h}\right)$ be the solutions of (2.6) and (3.5), resp. Then there exists a constant C independant of the thickness parameter t and the mesh size h such that

$$
\begin{align*}
\left\|\theta-\theta_{h}\right\|_{0} & \leqslant \sup _{g \in L_{2}(\Omega)^{2}} \frac{1}{\|g\|_{0 \chi_{h} \in \bigotimes_{h}}} \inf \left\{M \left(\left\|\theta-\theta_{h}\right\|_{1}+\left\|\left(I-P_{h}\right) \operatorname{rot} \theta\right\|_{0}\right.\right. \\
& \left.+\left\|p-p_{h}\right\|_{0}+t\left\|\operatorname{curl} p-\operatorname{curl}_{h} p_{h}\right\|_{0}\right) \\
& \times\left(\left\|\chi_{g}-\chi_{h}\right\|_{1}+\left\|\left(I-P_{h}\right) \operatorname{rot} \chi_{g}\right\|_{0}+\left\|\left(\rho_{g}-P_{h} \rho_{g}\right)\right\|_{0}\right. \\
& \left.+t\left\|\operatorname{curl} \rho_{g}-R \operatorname{curl} \rho_{g}\right\|_{0}\right) \\
& \left.+\left(\nabla r, \chi_{h}\right)-\left(\nabla r_{h}, R \chi_{h}\right)\right\}, \tag{5.1}
\end{align*}
$$

where for each $g \in L_{2}(\Omega)^{2}$ the pair $\left(\chi_{g}, \rho_{g}\right)$ is the unique solution of the Stokes-like problem (2.9) and P_{h} is the L_{2}-projection onto Q_{h}.

Proof : Given $g \in L_{2}(\Omega)^{2}$, let $(\chi, \rho):=\left(\chi_{g}, \rho_{g}\right)$ be the solution of (2.9). Since θ and θ_{h} are solutions of the mixed problems (2.6) and (3.5), resp., we obtain

$$
\begin{align*}
\left(g, \theta-\theta_{h}\right)= & \left(g, \theta-\theta_{h}\right)-\left[A_{t}((\theta, p),(\chi, \rho))-(\nabla r, \chi)\right] \\
& +\left[A_{t}^{h}\left(\left(\theta_{h}, p_{h}\right),\left(\chi_{h}, P_{h} \rho\right)\right)-\left(\nabla r_{h}, R \chi_{h}\right)\right] \\
= & {\left[\left(g, \theta-\theta_{h}\right)-A_{t}\left((\chi, \rho),\left(\theta-\theta_{h}, p-p_{h}\right)\right)\right] } \\
& +\left[\left(\nabla r, \chi-\chi_{h}\right)-A_{t}\left((\theta, p),\left(\chi-\chi_{h}, \rho-P_{h} \rho\right)\right)\right] \\
& +A_{t}\left((\theta, p),\left(\chi-\chi_{h}, \rho-P_{h} \rho\right)\right)-A_{t}\left((\chi, \rho),\left(\theta_{h}, p_{h}\right)\right) \\
& +A_{t}^{h}\left(\left(\chi_{h}, P_{h} \rho\right),\left(\theta_{h}, p_{h}\right)\right) \\
& +\left(\nabla r, \chi_{h}\right)-\left(\nabla r_{h}, R_{\chi}\right) . \tag{5.2}
\end{align*}
$$

vol. $26, \mathrm{n}^{\circ} 5,1992$

Using Remark 4.1 and recalling (2.6) and (2.9), we find that the terms in brackets in the first two rows on the right hand side of (5.2) vanish. We separate the t-dependent terms and note that $A_{0}=A_{0}^{h}$:

$$
\begin{align*}
(g, \theta & \left.-\theta_{h}\right)=A_{0}\left(\left(\chi-\chi_{h}, \rho-P_{h} \rho\right),\left(\theta-\theta_{h}, p-p_{h}\right)\right)- \\
& -t^{2}\left\{\left(\operatorname{rot} \operatorname{curl} p, \rho-P_{h} \rho\right)-\left(\operatorname{rot} \operatorname{curl} \rho, p_{h}\right)+\left(\operatorname{curl}_{h} P_{h} \rho, \operatorname{curl}_{h} p_{h}\right)\right\} \\
& +\left(\nabla r, \chi_{h}\right)-\left(\nabla r_{h}, R_{\chi}\right) \\
& =: E_{1}+E_{2}+E_{3} . \tag{5.3}
\end{align*}
$$

Here E_{\imath} refers to the term of the l-th row on the right hand side of (5.3). Obviously,

$$
\begin{equation*}
E_{1} \leqslant C\left(\left\|\theta-\theta_{h}\right\|_{1}+\left\|p-p_{h}\right\|_{0}\right)\left(\left\|\chi-\chi_{h}\right\|_{1}+\left\|\rho-P_{h} \rho\right\|_{0}\right) \tag{5.4}
\end{equation*}
$$

while E_{3} is found directly from (5.1).
This leaves the estimate of E_{2}. From Remark 4.1 we know that (2.6b) may be read as $-t^{2}$ rot curl $p=\operatorname{rot} \theta$, and Theorem 2.1 provides us with an H^{1}-estimate of rot θ. Since P_{h} is a projection, we obtain from (2.6b) with $q=\rho-P_{h} \rho$ that

$$
\begin{align*}
-t^{2}\left(\operatorname{rot} \operatorname{curl} p, \rho-P_{h} \rho\right) & =\left(\operatorname{rot} \theta, \rho-P_{h} \rho\right) \\
& =\left(\left(I-P_{h}\right) \operatorname{rot} \theta, \rho-P_{h} \rho\right) \\
& \leqslant\left\|\left(I-P_{h}\right) \operatorname{rot} \theta\right\|_{0}\left\|\rho-P_{h} \rho\right\|_{0} \tag{5.5}
\end{align*}
$$

Next we use (4.8) with ρ instead of p and p_{h} instead of q_{h} to obtain

$$
\begin{align*}
\left(\text { rot } \operatorname{curl} \rho, p_{h}\right)-\left(\operatorname{curl}_{h} P_{h} \rho\right. & \left., \operatorname{curl}_{h} p_{h}\right)= \\
= & \left(R \operatorname{curl} \rho-\operatorname{curl} \rho, \operatorname{curl}_{h} p_{h}\right) \\
= & \left(R \operatorname{curl} \rho-\operatorname{curl} \rho, \operatorname{curl}_{h} p_{h}-\operatorname{curl} p\right) \\
& +(R \operatorname{curl} \rho-\operatorname{curl} \rho, \operatorname{curl} p) \tag{5.6}
\end{align*}
$$

Furthermore, P_{4} implies that

$$
\begin{align*}
((R-I) \operatorname{curl} \rho, \operatorname{curl} p) & =(\operatorname{rot}(R-I) \operatorname{curl} \rho, p) \\
& =\left(\left(P_{h}-I\right) \operatorname{rot} \operatorname{curl} \rho, p\right) \\
& =\left(\operatorname{rot} \operatorname{curl} \rho, P_{h} p-p\right) \tag{5.7}
\end{align*}
$$

We proceed analogously to (5.5) and use (2.9) with $q=p-P_{h} p$, $\psi=0$ to obtain

$$
\begin{align*}
-t^{2}\left(\operatorname{rot} \operatorname{curl} \rho, p-P_{h} p\right) & =\left(\operatorname{rot} \chi, p-P_{h} p\right) \\
& =\left(\left(I-P_{h}\right) \operatorname{rot} \chi, p-P_{h} p\right) \\
& \leqslant\left\|\left(I-P_{h}\right) \operatorname{rot} \chi\right\|_{0}\left\|p-p_{h}\right\|_{0} \tag{5.8}
\end{align*}
$$

Substituting (5.8) in (5.7) and (5.7) in (5.6) and recalling (5.5) we obtain

$$
\begin{align*}
E_{2} & \leqslant\left(\left\|\left(I-P_{h}\right) \operatorname{rot} \theta\right\|_{0}+\left\|p-p_{h}\right\|_{0}+t\left\|\operatorname{curl} p-\operatorname{curl}_{h} p_{h}\right\|_{0}\right) \\
& \times\left(\left\|\left(I-P_{h}\right) \operatorname{rot} \chi_{g}\right\|_{0}+\left\|\rho-P_{h} \rho\right\|_{0}+t\|\operatorname{curl} \rho-R \operatorname{curl} \rho\|_{0}\right) . \tag{5.9}
\end{align*}
$$

Combining (5.9), (5.4) and (5.3) yields the estimate (5.1).
The L_{2}-estimate for the displacement error is standard, see e.g. [10, p. 203].

ThEOREM 5.2: Let w and w_{h} denote the solutions of (2.7) and (3.6), resp. Then

$$
\begin{align*}
\left\|w-w_{h}\right\|_{0} \leqslant & \sup _{g \in L_{2}(\Omega)}
\end{align*} \frac{1}{\|g\|_{0}} \inf _{\xi_{h} \in W_{h}} \quad\left\{\left\|w-w_{h}\right\|_{1}\left\|\xi_{g}-\xi_{h}\right\|_{1}+\left|\left(\theta-R \theta_{h}, \nabla \xi_{h}\right)\right|\right\},
$$

where for each $g \in L_{2}(\Omega)$ the function $\xi_{g} \in H_{0}^{1}(\Omega)$ is the unique solution of the variational problem

$$
\left(\nabla \xi_{g}, \nabla v\right)=(g, v) \quad \forall v \in H_{0}^{1}(\Omega)
$$

6. APPLICATIONS

Numerous examples of finite element spaces satisfying the five properties P_{1} to P_{5} can be found in [5], where a systematic study of the MITCn elements is given. We will apply our abstract error estimates to those elements.

We treat the triangular elements first. Let \mathscr{T}_{h} be a regular triangulation of the convex, polygonal domain Ω into triangles T of diameter less than h.

6.1. Triangular elements of order $k \geqslant 2$

For each integer $k \geqslant 0$ we denote by $P_{k}(T)$ the space of polynomials of degree $\leqslant k$ on T. Let $k \geqslant 2$. Then the following system $\left(W_{h}, \Theta_{h}\right.$, $\left.Q_{h}, \Gamma_{h}, R\right)$ satisfies P_{1} to P_{5} [5] :

$$
\begin{aligned}
W_{h} & :=\left\{w \in H_{0}^{1}(\Omega) ;\left.w\right|_{T} \in P_{k}(T) \quad \forall T \in \mathscr{T}_{h}\right\} ; \\
\Theta_{h} & :=\left\{\psi \in\left[H_{0}^{1}(\Omega)\right]^{2} ;\left.\psi\right|_{T} \in P_{k}(T)^{2} \oplus B_{k+1}(T)^{2} \quad \forall T \in \mathscr{T}_{h}\right\},
\end{aligned}
$$

where

$$
B_{k+1}(T):=\left\{\lambda_{1} \lambda_{2} \lambda_{3} p ; p \in P_{k-2}(T)\right\}
$$

and $\lambda_{1} \lambda_{2} \lambda_{3}$ is the cubic bubble function on T vanishing on ∂T;

$$
\begin{array}{ll}
Q_{h}:=\left\{q \in L_{2}(\Omega) / \mathbb{R} ;\left.q\right|_{T} \in P_{k-1}(T)\right. & \left.\forall T \in \mathscr{T}_{h}\right\} ; \\
\Gamma_{h}:=\left\{\gamma \in H_{0}(\operatorname{rot}, \Omega) ;\left.\gamma\right|_{T} \in R T_{k-1}\right. & \left.\forall T \in \mathscr{T}_{h}\right\}
\end{array}
$$

where

$$
R T_{k-1}:=\left\{\binom{p_{1}}{p_{2}}+p_{3}\binom{y}{-x} ; \quad p_{\imath} \in P_{k-1}\right\}
$$

is a rotated Raviart-Thomas-space of order $k-1$ [15]. Furthermore, the operator R is defined by

$$
\begin{align*}
& \int_{e}(\gamma-R \gamma) \tau p_{k-1} d s=0 \quad \text { for each edge } e \text { and } p_{k-1} \in P_{k-1}(e), \tag{6.1}\\
& \int_{T}(\gamma-R \gamma) p_{k-2} d x=0 \quad \text { for each } T \in \mathscr{T}_{h} \text { and } p_{k-2} \in P_{k-2}(T), \tag{6.2}
\end{align*}
$$

where τ denotes the unit tangent vector. In particular, the estımate

$$
\begin{equation*}
\|\eta-R \eta\|_{0} \leqslant c h^{s}\|\eta\|_{s}, \quad 1 \leqslant s \leqslant k \tag{6.3}
\end{equation*}
$$

can be found in [15].
We will use the orthogonality relation (6.2) in the derivation of the error estimates. For this purpose we denote by Π_{k-2} the L_{2}-projection onto the space of piecewise polynomials of order $k-2$. Moreover, we recail that a piecewise polynomial $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ belongs to $H_{0}(\operatorname{rot} \Omega)$ if and only if $\gamma . \tau$ is continuous at the interelement boundaries and vanishes on $\partial \Omega$ [15].

An important element of this class is the MITC7 element, which is obtained for $k=2$. If $k \geqslant 4$, then the pairs with polynomials of order k for the velocities and $k-1$ for the pressure are stable elements for the Stokesproblem [13, 16], and the space of bubble functions B_{k+1} may be dropped in the definition of Θ_{h}. Formally, the definitions can also be extended to

Triangular elements : MITC6 and MITC7
(• rotation and displacement, O rotation only).
M^{2} AN Modélisatıon mathématıque et Analyse numérique Mathematical Modelling and Numerical Analysis
$k=1$. However, in this case some extra devices are necessary to ensure stability, see e.g. [12].

Now we deduce from the abstract error estimates.
THEOREM 6.2 : Consider the elements of order $k \geqslant 2$ defined in 6.1. Then for $\ell-0,1$ and $1 \leqslant s \leqslant k$ the following error estimates

$$
\begin{gather*}
\left\|\theta-\theta_{h}\right\|_{\ell} \leqslant c h^{s+1-\ell}\left(\|\theta\|_{s+1}+\|p\|_{s}+t\|p\|_{s+1}+\|r\|_{s+1-\ell}\right) \\
\left\|w-w_{h}\right\|_{\ell} \leqslant \\
c h^{s+1-\ell}\left(\|w\|_{s+1}+\|\theta\|_{s+1-\ell}+\|p\|_{s-\ell}\right. \tag{6.4}\\
\left.\quad+t\|p\|_{s+1-\ell}+\|r\|_{s+1-\ell}\right)
\end{gather*}
$$

hold with c being independant of t and h.
Proof: Let $1 \leqslant s \leqslant k$. The estimate for the solution of the first Poisson equation is standard [10]

$$
\begin{equation*}
\left\|r-r_{h}\right\|_{0}+h\left\|r-r_{h}\right\|_{1} \leqslant c h^{s+1}\|r\|_{s+1} \tag{6.5}
\end{equation*}
$$

To estimate the last term from (4.2) we note that in each triangle T the function $\Pi_{k-2}(\nabla r)$ is orthogonal to $\psi_{h}-R \psi_{h}$. Moreover, $\left(I-\Pi_{k-1}\right)(\nabla r)$ may be estimated by standard approximation arguments. Therefore, (6.3) and (6.5) yield

$$
\begin{align*}
\left|\left(\nabla r_{h}, \psi_{h}-R \psi_{h}\right)\right| & =\left|\left(\nabla\left(r_{h}-r\right), \psi_{h}-R \psi_{h}\right)+\left(\nabla r-\Pi_{k-2} \nabla r, \psi_{h}-R \psi_{h}\right)\right| \\
& \leqslant c h\left\|\psi_{h}\right\|_{1}\left\{\left\|r_{h}-r\right\|_{1}+\left\|\left(I-\Pi_{k-2}\right) \nabla r\right\|_{0}\right\} \\
& \leqslant c h^{s}\left\|\psi_{h}\right\|_{1}\|r\|_{s} \tag{6.6}
\end{align*}
$$

Substituting (6.3), (6.5) and (6.6) in (4.2) and using the well-known approximation properties of piecewise polynomials of degree $\leqslant k$, we have

$$
\begin{align*}
\left\|\theta-\theta_{h}\right\|_{1} & +\left\|p-p_{h}\right\|_{0}+t\left\|\operatorname{curl} p-\operatorname{curl}_{h} p_{h}\right\|_{0} \leqslant \\
& \leqslant c h^{s}\left(\|\theta\|_{s+1}+\|p\|_{s}+t\|p\|_{s+1}+\|r\|_{s}\right), \quad 1 \leqslant s \leqslant k \tag{6.7}
\end{align*}
$$

This gives the estimate as stated in (6.4a) with $\ell=1$.
Next we apply the abstract error estimate (5.1) to derive an L_{2}-estimate of the rotation vector. Let χ_{h} be the $\|\cdot\|_{1}$-nearest element to χ_{g} in $\Theta_{h}:$

$$
\left\|\chi_{g}-\chi_{h}\right\|_{1}=\lim _{\psi_{h} \in \Theta_{h}}\left\|\chi_{g}-\psi_{h}\right\|_{1} .
$$

Inserting (6.7), (6.3), and the regularity estimate (2.10) into (5.1) we get

$$
\begin{align*}
&\left\|\theta-\theta_{h}\right\|_{0} \leqslant c h^{s+1}\left(\|\theta\|_{s+1}+\|p\|_{s}+t\|p\|_{s+1}+\|r\|_{s}\right)+ \\
&+\frac{1}{\|g\|_{0}}\left|\left(\nabla r, \chi_{h}\right)-\left(\nabla r_{h}, R \chi_{h}\right)\right| . \tag{6.8}
\end{align*}
$$

To treat the last term we use simılar arguments as in the derivation of (66)

$$
\begin{align*}
\mid\left(\nabla r, \chi_{h}\right)- & \left(\nabla r_{h}, R \chi_{h}\right)\left|\leqslant\left|\left(\nabla\left(r-r_{h}\right), \chi_{h}\right)\right|+\left|\left(\nabla r_{h},(I-R) \chi_{h}\right)\right|\right. \\
\leqslant & \left\|r-r_{h}\right\|_{0}\left\|\chi_{h}\right\|_{1}+\left|\left(\nabla\left(r_{h}-r\right),(I-R) \chi_{h}\right)\right| \\
& +\left|\left(\nabla r,(I-R)\left(\chi_{h}-\chi_{g}\right)\right)\right|+\left|\left(\nabla r,(I-R) \chi_{g}\right)\right| \\
\leqslant & c\left(h^{s+1}\|r\|_{s+1}\|g\|_{0}+\left\|\left(I-\Pi_{k-2}\right) \nabla r\right\|_{0} h^{2}\|g\|_{0}\right) \\
\leqslant & c h^{s+1}\|r\|_{s+1}\|g\|_{0}, \quad 1 \leqslant s \leqslant k . \tag{6.9}
\end{align*}
$$

Combining (6.8) and (6.9) yields the estimate as stated in (6.4a) with $\ell=0$.

Finally, we will establish bounds of the error of the transversal displacement w. First we consider $\ell=1$. From (4.11) it follows that

$$
\begin{equation*}
\left\|w-w_{h}\right\|_{1} \leqslant c h^{s}\|w\|_{s+1}+\left\|\theta-R \theta_{h}\right\|_{0} . \tag{6.10}
\end{equation*}
$$

Using (6.3) we get

$$
\begin{aligned}
\left\|\theta-R \theta_{h}\right\|_{0} & \leqslant\|(I-R) \theta\|_{0}+\left\|(I-R)\left(\theta_{h}-\theta\right)\right\|_{0}+\left\|\theta-\theta_{h}\right\|_{0} \\
& \leqslant c\left(h^{s}\|\theta\|_{s}+h\left\|\theta-\theta_{h}\right\|_{1}+\left\|\theta-\theta_{h}\right\|_{0}\right) .
\end{aligned}
$$

The estimates of $\left\|\theta-\theta_{h}\right\|_{\ell}$ from (64a) may now be applied to obtain

$$
\left\|\theta-\boldsymbol{R} \theta_{h}\right\|_{0} \leqslant c h^{s}\left(\|\theta\|_{s}+\|p\|_{s-1}+t\|p\|_{s}+\|r\|_{s}\right) .
$$

Inserung tilns esumate mut (6.10) we have the esumate as stated in ($6.4 b$) for $\ell=1$.

Now we turn to the case $\ell=0$ and recall Theorem 5.2. Given $g \in L_{2}(\Omega)$, let $\xi_{g} \in H_{0}^{1}(\Omega)$ denote the solution of (5.11). By standard results on conforming methods there is a $\xi_{h} \in W_{h}$ such that

$$
\left\|\xi_{g}-\xi_{h}\right\|_{1} \leqslant c h\left\|\xi_{g}\right\|_{2} \leqslant c h\|g\|_{0}
$$

We combine this fact with the defining equations (62) and (63) for R Also we may use the bounds of $\left\|\theta-\theta_{h}\right\|$ from ($64 a$) to obtain

$$
\begin{aligned}
& \left|\left(\theta-R \theta_{h}, \nabla \xi_{h}\right)\right|= \\
& \quad=\left|\left(\theta-R \theta, \nabla\left(\xi_{h}-\xi_{g}\right)\right)+\left(\theta-R \theta, \nabla \xi_{g}\right)+\left(R\left(\theta-\theta_{h}\right), \partial \xi_{h}\right)\right| \\
& \quad \leqslant \\
& \quad\|\theta-R \theta\|_{0}\left\|\nabla\left(\xi_{h}-\xi_{g}\right)\right\|_{0}+\left|\left(\theta-R \theta,\left(I-\Pi_{k-2}\right) \nabla \xi_{g}\right)\right| \\
& \quad+\left\|\nabla \xi_{h}\right\|_{0}\left(\left\|(I-R)\left(\theta-\theta_{h}\right)\right\|_{0}+\left\|\theta-\theta_{h}\right\|_{0}\right)
\end{aligned}
$$

$$
\begin{align*}
& \leqslant c\|g\|_{0}\left(h\|\theta-R \theta\|_{0}+h\left\|\theta-\theta_{h}\right\|_{1}+\left\|\theta-\theta_{h}\right\|_{0}\right) \\
& \leqslant c h^{s+1}\|g\|_{0}\left(\|\theta\|_{s+1}+\|p\|_{s}+t\|p\|_{s+1}+\|r\|_{s+1}\right) . \tag{6.11}
\end{align*}
$$

Inserting (6.11) into (5.10) completes the proof.
According to Theorem 6.2 the finite elements defined in 6.1 provide an approximation scheme of arbitrary order of accuracy uniformly in a fixed range $0 \leqslant t \leqslant C$. In particular, the limit case $t=0$, i.e. the Kirchhoff plate model, is included.

Even if the boundary and the load f are smooth, due to the boundary layer in case $t>0$ neither $\|\theta\|_{3}$ nor $\|p\|_{2}$ may be bounded independently of the thickness parameter $[1,8]$. Therefore a high order approximation is not always advantageous. For this reason the following MITC6 element also seems to be attractive : Choose Θ_{h} and W_{h} such that each contains continuous piecewise quadratics and combine these two spaces with a piecewise constant pressure space Q_{h} and $\Gamma_{h}:=\left\{\gamma \in H_{0}\right.$ (rot, Ω); $\left.\gamma\right|_{T}$ linear $\forall T\}$. The latter is the rotated Brezzi-Douglas-Marini space of lowest order [7]. The operator R is defined by

$$
\int_{e}(\gamma-R \gamma) p_{1} d s=0 \quad \text { for each edge } e \text { of } T, \quad p_{1} \in P_{1}(e)
$$

i.e. the tensorial component is interpolated at the two Gauß points of each edge. Here, the Stokes-like problem is discretized using the $P_{2}-P_{0^{-}}$ element. Therefore, only $k=1$ holds in (6.4a). On the other hand, the displacement error estimate ($6.4 b$) holds with $\ell=1$ and $k=2$.

PROPOSITION 6.3 : Let $\left(\theta_{h}, w_{h}\right)$ be the solution of (2.2) for the MITC6element. Assume in addition to (2.10) that the solution w of the Poisson equation (2.7) is H^{3}-regular. Then the following error estimate

$$
\begin{align*}
& \left\|\theta-\theta_{h}\right\|_{0} \leqslant c h^{2}\|f\|_{0} \\
& \left\|w-w_{h}\right\|_{1} \leqslant c h^{2}\left(\|f\|_{0}+t^{2}\|f\|_{1}\right) \tag{6.12}
\end{align*}
$$

is valid.
Furthermore, in [5] rectangular elements are also presented. In particular, the MITC4 and the MITC9 rectangular elements are described in detail [2, 3, 4]. The analysis of the MITC9-element follows the same lines as in the proof of Theorem 6.2 and the error estimate (6.4) holds with $k=2$.

After completing this manuscript we have heard that Brezzi and Stenberg are preparing a similar theory and that in a forthcoming book by Brezzi and Fortin [17] also some equivalent ideas can be found.

REFERENCES

[1] D. N. Arnold \& R. S Falk, A uniformly accurate finite element method for the Mindlin-Reissner plate, SIAM J Numer Anal 26, 1276-1290 (1989).
[2] K. J Bathe \& F. Brezzi, On the convergence of a four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation In Proceeding Conf. on Mathematics of Finite Elements and Applications 5 (J. R. Whiteman, ed.), Academic Press 1985, pp. 491-503.
[3] K. J. Bathe, F Brezzi \& S. W Cho, The MITC7 and MITC9 plate bending elements, J. Computers \& Structures 32, 797-814 (1989)
[4] K. J. Bathe \& E. N. Dvorkin, A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, Int. J. Num. Meth Eng. 21, 367-383 (1985).
[5] F. Brezzi, K. J. Bathe \& M. Fortin, Mixed-interpolated elements for Reissner-Mindlin plates, Int J. Num Meth Eng 28, 1787-1801 (1989)
[6] F. Brezzi, J. Douglas, Jr., M Fortin \& L. D Marini, Efficient rectangular mixed finite elements in two and three space variables RAIRO Model. Math. Anal. Numér. 21, 581-604 (1987)
[7] F Brezzi, J. Douglas, Jr. \& L D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer Math. 47, 217-235 (1985)
[8] F. Brezzi \& M. Fortin, Numerical approximatıon of Mindlin-Reissner plates, Math. Comp. 47, 151-158 (1986)
[9] F. Brezzi \& J Pitkaranta, On the stabilization of finite element approxtmations of the Stokes equations In «Efficient Solutions of Elliptic Systems» (W. Hackbusch. ed.), Vieweg, Braunschwerg 1984, 11-19
[10] P. G. Ciarlet, The Finite Element Method for Elliptic Problems North Holland 1978.
[ii] J Douglas, Jr. \& j. E. Roberts, Glujul estumates for mined methods for second order elliptic equations, Math Comp 44, 39-52 (1985).
[12] L P. Franca \& R Stenberg, A modification of a low order Reissner-Mindlin plate bending element. Rapport de Recherche No 1084 INRIA-Rocquencourt, France, 1989.
[13] V. Girault \& P. A. Raviart, Finite Element Methods for Navier-Stokes Equatıons, Sprınger-Verlag, Berlın, 1986.
[14] Z. Huang, A multt-grid algorithm for mixed problems with penalty, Numer. Math. 57, 227-247 (1990)
[15] P. A Raviart \& J. M. Thomas, A mixed finte element method for second order elliptic problems In «Mathematical Aspects of Finite Element Methods» (I. Galliganı and E Magenes, eds.), pp 292-315, Springer Verlag 1977
[16] L R Scott \& M Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of plecewise polynomials RAIRO Model. Math Anal. Numér 19, 111-143 (1985).
[17] F. Brezzi \& M Fortin, Mixed and Hybrid Finite Elements, Spınger Verlag 1991

[^0]: M^{2} AN Modélısation mathematıque et Analyse numerıque
 Mathematical Modelling and Numerical Analysis

