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ON A TWO-DIMENSIONAL MAGNETOHYDRODYNAMIC PROBLEM
I. MODELLING AND ANALYSIS (*)

J. RAPPAZ C1), R. TOUZANI C)

Communicated by J. DESCLOUX

Abstract. — We consider a two-dimensional Magnetohydrodynamic system of équations
describing the motion of a conducting fluid in which eddy currentsflow. The mathematical model
is derived and existence of solutions is proved by using fixed point techniques. Uniqueness is
obtained under restrictive conditions on the involved physical parameters.

Résumé. — Nous considérons un problème de magnétohydrodynamique bidimensionnelle
décrivant le mouvement d'un fluide conducteur soumis à des courants de Foucault. Le modèle
mathématique est obtenu et V existence de solutions est démontrée en utilisant des techniques de
point fixe. L'unicité est obtenue dans un certain nombre de situations physiques.

1. INTRODUCTION

This paper is devoted to the study of a system of partial differential
équations modelling the two-dimensional motion of an electiically conduc-
ting incompressible fmid in présence of an eîectromagnetic field produced
by eddy currents. Such a system involves a coupling between Maxwell's
équations in the whole space and Navier-Stokes équations in the région
occupied by the fluid. This problem is encountered in a large variety of
industrial applications such as eiectromagnetic casting (See [1, 2] for
instance) and eiectromagnetic stirring installations.

In this first part we are concerned with the existence and uniqueness of
solutions of such a problem. In a second part, we shall investigate its
numerical analysis.

(*) Receivecî June 1990.
C1) Département de Mathématiques, Ecole Polytechnique Fédérale, 1015 Lausanne (Swit-

zerland).
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348 J. RAPPAZ, R. TOUZANI

An outline of the paper is as follows : in Section 2, we describe the setting
of the physical problem and the dérivation of the équations. In Section 3, we
introducé some notations and briefly recall some basic tools. Section 4 is
devoted to the proof of the existence of solutions using a fixed point
theorem. Uniqueness of such solutions is proved in Section 5 under
restrictions on the physical parameters.

2. THE MATHEMATICAL MODEL

Consider a set of three infinité cylindrical conductors AQ, Ax, A2 the
intersections of which with the plane Oxxx2 are denoted by O& Ou

O 2 respectively and such that their generating lines are parallel to the
x3-axis. The conductor AQ is assumed to be made of an electrically
conducting fluid while the conductors Al9 A2 stand for one inductor
surrounding the fluid, the loop being « closed at infinity ». The main goal of
such a set-up is to generate Lorentz forces that either maintain the fluid in
lévitation and/or create an electromagnetic stirring motion. The domains
I2O, /2j, f22 are assumed to be bounded, connected and of disjoined
closures, i.e., Öl O f2j = 0 for i ^ j , and their respective boundaries
Fo, Fl9 F2 are assumed to be smooth (C l say, cf. [3] for further précision).
We shall dénote in the sequel

n = n0 u nl u n2, r = r0 u rx u r2

and we assume that the domain 120 is given once for all, i.e., we do not treat
a free-boundary problem. Let us mention that we have restricted ourselves
to three conductors for the sake of simplicity ; the model and the results
presented in this paper can be generalized however to several situations
where we have a large number of conductors.

Let us assume now that an altemating current parallel to the x5-axis flows
in the inductor. This current is of a given frequency <ol2 TT and total
intensity / === 0. The frequency is assumed sufficiently small with respect to
the diameter of the conductors making it possible to neglect the current
displacements in the conductors.

The commonly used physical fields for such problems are the magnetic
induction b, the current density j , the electric field e, the velocity of the fluid
u and its pressure p. Because of the geometry, we consider X5-invariant
solutions, i.e., all the fields b, j , e, u, ... are spatially depending only on
x = (xu x2) e O?2. We seek all electromagnetic fields of the form :

b(x, 0 =Re (el

j(jc, 0 - R e (e'
e(x, 0 =Re (eiate(x))9
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ON A MAGNETOHYDRODYNAMIC PROBLEM 349

where x = (xï9 x2) e IFS2 and ? dénotes the time variable and b(x),
j(x), e(x) are complex-valued functions. By contrast, we assume that the
frequency is large enough so that we can admit that only a time-averaged
Lorentz force is responsible for the fluid motion. In this way, u,
p can be assumed time-independent and real-valued.

In order to obtain the electromagnetic model we use Maxwell's équations
and Ohm's law in each connected component of ü. If we assume that the
current density j , which is vanishing outside O, is parallel to the x5-axis in
all the domains 12 k, k = 0, 1, 2, we deduce from the Biot-Savart's law that
the magnetic induction b has no x5-component and its behaviour at infinity
is an O(\x\~1) with \x\ = (x2 + x2)112. Let e3 dénote the unit vector in the
.^-direction, we can write :

3, b(x)= (&!(*), b2(x)), x = (XUX2)<ER2,

where bx and b2 are the two components of b in the xx and .^-direction
respectively.

From the Maxwell's équation :

div b = 0 in IR3 ,

we deduce the existence of a scalar field <j> : R2 -» C such that

b(x) = curl <f> (JC), x e R2 , (2.1)

where the two-dimensional vector curling operator is defined by :
def

From the Maxwell's équation :

CUFi u — /*QJ m ira ,

in which we have neglected current displacements and assumed that the
magnetic permeability fx is constant and equal to the one of the vacuüm
A* o» w e deduce that

- A 0 ( x ) = Mo7(*). xzU2. (2.2)

If x $ Ö, thenj (JC) = 0 and the function 4> is harmonie outside the domain
Ö. It remains to establish a relationship between j and <f> inside the domain

n,
The velocity u is assumed to have no xj-component and we set

U(JC) = (MjOO, U2(X)) the two components of u. By using the Ohm's law

j = o- (e + u x b), in Ak , k = 0, 1, 2 ,

vol. 26, n° 2, 1992



350 J. RAPPAZ, R. TOUZANI

where er = erk is the electric conductivity of the domain Ak, k = 0, 1,2 and
u = 0 in Ax and A2, we conclude that e is parallel to the Xj-axis, i.e.,
e = e(x) e3 and with (2.1) :

j = <r(e - u . V</> ) in ü . (2.3)

Clearly, to link j to </> it remains to dérive a relationship between
e and </>. To do this, we use the Maxwell's équation :

curl e + itüb = 0 in Ak , k = 0, 1, 2 ,

in order to obtain

curl (e + i w ^ ) = 0 in fl .

This implies there are complex constants Ck such that

e + iù>4> =Ck inük, k = 0, 1, 2 . (2.4)

Combining relationships (2.2), (2.3) and (2.4) yields :

A<£ = 0 in U\Ö , (2.5)
- A<f> + At0 <rA(u . V<£ + io>^ - Cjfe) = 0 in /2^ , Jk - 0, 1, 2 . (2.6)

The next step of the construction of the mathematical model consists in
relating the unknown constants Ck, k = 0, 1, 2 in (2.6) to the given total
current intensity / . Let us impose that if the total current in Z^ is
ƒ then its value is - / in O2 (which corresponds to a différence of
77 in phase). Moreover, we impose that the total current in 120 is zero. More
precisely, we set

/ = j(x)dx = ~ j(x)dx (2.7)

and
r

j(x)dx = 0. (2.8)L
From (2.7), (2.3) with u - 0 in Ox U f22i and (2.4) we obtain

C f 4>(x)dx),
Jnk f

k=lt2, (2.9)

where \Ok\ is the measure of Hk.
Now, assuming that div u = 0 in f20 and u = 0 on Fo we have

u . V<£ dx = 0

M2AN Modélisation mathématique et Analyse numérique
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ON A MAGNETOHYDRODYNAMIC PROBLEM 351

and, from (2.8), (2.3), (2.4) we obtain

a0C0^J^- f 4>(x)dx. (2.10)

Let us define

Ik(cf>)= <f>(x)dx (2.11)

and

'

def

*
if 4 - 1 . 2 ,

(2.12)
0 if k = 0 .

If we eliminate Ck in (2.6) by using (2.9) and (2.10), we obtain

in /2jt, fc = 0 , 1 , 2 . (2.13)

It remains, to achieve the electromagnetic model, to give boundary
conditions.

The interface conditions are deduced by interpreting the two first
Maxwell's équations considered here in the sense of distributions and by
assuming the non-existence of surface currents. Namely :

[ < £ ] = [ ^ - ] = 0 on rkt A = 0 ,1 , 2 , (2.14)

def

where [(//] = v̂ ext ~ înt dénotes the jump of the function t// on

F and — stands for the outward normal derivative, the vector n being the
dn

outward unit normal to 7". The behaviour at infinity is deduced from
b(x) = O(\x\-1). Hence <t> (x) = O (log | x | ) when |JC| -• + oo. From
potential theory we get :

0 ( J C ) = a l o g | j c | +/3 +O(\x\-1)> \x\ ^ + oo , (2.15)

Vcf>(x)= a - ^ - + O ( | x | - 2 ) , \x\ - . + 0 0 , (2.16)
\x\2

where a, /3 are complex numbers.
The electromagnetic model is given by équations (2.5), (2.13), (2.14) and

(2.15). If u is given, the unknowns are <f>, a and p. Remark that if

vol. 26, n°2, 1992



352 J, RAPPAZ, R. TOUZANI

(<£, a , p) is a solution of (2.5), (2.13), (2.14) and (2.15) then
(<f> + y, at /3 + y) is another one for all y e C. This is natural since the
function <f> has to be known only up to an additive constant. In order to fix
this constant, we set

l <f>(x)dx = 0, (2.17)

and we have, by using (2.10) and (2.4) :

e = -ia><f> in n0. (2.18)

Let us consider now the fluid flow problem in ü 0. The fluid motion is
governed by stationary incompressible Navier-Stokes équations where the
body force term f is given by the Lorentz forces {cf. [4]). After time-
averaging on a period T = 2 n/co, and using (2.1), (2.3) and (2.18), we
easily verify that :

f(x) = -ÜL " Re (eiiütj(x)s3)xRe (ela}tb(x)) dt
2 ir Jo

r\ \r £ f K. r / C T I /

-ir ( («• V$R)V<t>R + (a • V^7) V^j) (2.19)

where < î?, < ;̂ dénote respectively the real and the imaginary part of
<£. We then obtain for the fluid motion équations :

- ^ Au + u . Vu + Vp =

V&j

- —- ((u . V<f>R) V</>R + (u . V07) V<£7) in /2 0 , (2.20)

divu = 0 in Z20, (2.21)
u = 0 on T o , (2.22)

where v > 0 is the kinematic viscosity of the fluid and p its density. Note
that depending on physical requirements, condition (2.22) may be replaced
by a slip boundary condition (vanishing normal velocity and tangential
traction). Such a condition would be more adapted to a free boundary
problem. The results stated in this paper can be straightforwardly extended
to such conditions.
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ON A MAGNETOHYDRODYNAMIC PROBLEM 353

Reporting équations (2.5), (2.13)-(2.15) and (2.20)-(2.22), the mathema-
tical model finally consists in seeking <f> : R2->C, u : I2 0 -»R 2 , p:
/30->R and (a, /3) e C2 such that :

in Ok9 k = 0, 1, 2 , (2,23)

A<£ = 0 in O' = U2\n, (2.24)

dx = 0 , (2.25)

= « l o g | j c | + 0 + O ( | x | - 1 ) |* | ^ + oo, (2.26)

0 on r ^ , t = 0 , l , 2 , (2.27)

v Au + u . Vu 4- Vp - ^— (<j>j V<f>R - <f>R V<P})
2 p

= 0 in /2 0 , (2.28)

div u = 0 in Ho , (2.29)
u = 0 on Fo ; (2.30)

we recall that in (2.23) we set u = 0 in Ox U O2, Ik and Jk are given by
(2.11), (2.12) in which / is a data of the problem.

Remark 2.1 : We have restricted ourselves to the case of three conductors
in order to simplify the présentation, the presented model can be straight-
forwardly generalized to the case of a set of N conductors where some of
which are made of liquid métal, the central hypothesis being that the
intégral of the current density j over the whole plane R2 is zero.

3. NOTATIONS AND SOME BASIC TOOLS

If D is an open subset of IR2 and if v : D -> C is a complex-valued function,
we dénote by v * its complex conjugate and by | v \ its modulus. The Sobolev
spaces Wm'p(D\ Hm(D), LP(D) and the corresponding norms || . ||m p D,
II • IL,J>' II • h.p,D a n d semi-norms | . \mpD, \ - | m D have their usual
meanings for real or complex-valued functions.

Since we shall deal with partial differential équations that are formulated
in R2, we shall make use of the folio wing weighted Sobolev space :

^<5(R2)= {$ : I R 2 - , C ; ^ ^ eL2(IR2), V^ e L2(U2)2} (3.1)

vol. 26, na 2, 1992



354 J. RAPPAZ, R. TOUZANI

equipped with the norm

where f (jt) = (1 + |x| )" l (1 + log (2 + |x| ))" \
For a study of the space VFQ(IR2) one can consult [5] for instance. In

particular, it is known that the constant functions belong to WQ([R2) which is
a Banach space when it is equipped with the norm (3.2). Moreover, the
semi-norm || V^||o R 2 is a norm on the quotient space WQ(U2)/C, equivalent
to the quotient norm. It follows that if f20 is an open bounded connected
domain of U2 and if

(imiUll^lliU:)1'2 for te

then || . || and || . H^w, are equivalent norms on WQ(U2) (the proof is

easily obtained ab absurdö). Since the norm and semi-norm || . \\x a and

| . | j n are equivalent on

; f
it is easy to prove the following result.

THEOREM 3 .1 : Let 120 be an open bounded connected domain of
2 and let

Wl
0(U

2) =

Then, the semi-norm || Vtf/1|0 R2 is a norm on WQ(M2) which is equivalent to
the norm || if, || ̂ ( R 2 ) . D

Now, since we shall make use of functions satisfying relationship (2.25),
we shall introducé the following notation. If X is a space of functions
defined on a domain of (R2 containing 12 0, X will dénote the subspace of
functions of X satisfying (2.25), Le.

X = lueX; f udx = ol .
{ Jn0 j

By tradition, we still dénote by LQ(/2 0 ) = L2(/2O).

M2AN Modélisation mathématique et Analyse numérique
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ON A MAGNETOHYDRODYNAMIC PROBLEM 355

Finally, we recall a Leray-Schauders's homotopy lemma which constitutes
the main tool for pro ving the existence of a solution for problem (2.23)-
(2.30).

THEOREM 3.2 [6] : LetXbe a Banach space of norm || . || and let T stand
for a continuons and compact operator from X into X. Assume there exists a
constant C such that each solution of the équation

u = ÀT(u), O ^ s À s s l , (3.3)
satisfies the bound

| | « H * C . (3.4)

Then, T has at least one fixed point in X. D

In all the following C, Cu C2, ••• will dénote generic positive constants
and will have no connection with the constants Co, C1? C2 introduced in
Section 2.

4. EXISTENCE OF SOLUTIONS

In this section, existence of a solution of problem (2.23)-(2.30) is proved
by using Theorem 3.2. Naturally, the main task we are assigned is to choose
a Banach space X and a compact operator T corresponding to our problem
such that estimate (3.4) is satisfied.

We have chosen to seek solutions (<£, u, p) of Problem (2.23)-(2.30) such
that (</>, u, p) 6 Wl> \f20) x Ho(nQ)2 x LQ(Ü0). For this choice we shall
show hereafter that Problem (2.23)-(2.30) is well-posed. The proof will
contain the following steps : we first state some properties of the elec-
tromagnetic problem (2.23)-(2.27) for a given velocity field. Required a
priori estimâtes are next given for Problem (2.23)-(2.30). Finally, compact-
ness arguments allow us to apply Theorem 3.2.

Let us define the Hilbert space

V = {vE/ /<l( /2 0 ) 2 ;d ivv-0} , (4.1)

and consider the following auxiliary problem :
Given u e V, ƒ e L%(O) ;

find <f> e / / ^ (R 2 ) , {a, p) E C2 such that

I

<rQ <j> + yu.o o r 0 u . V^> = ƒ , in I2Q, (4 .2)
+ i < o v ö c r k ( < f > - I k ( < f > ) ) = f , i n n k , k = 1 , 2 , (4.3)

= 0 , in nf = U2\n , (4 .4)
| - 1 ) , | x | - + OO, (4.5)

>(x) dx = O . (4.6)

vol. 26, ne 2, 1992



356 J. RAPPAZ, R. TOUZANI

THEOREM 4.1 : Let u e V, f e LQ({2) be given. Thenproblem (4.2)-(4.6)
has a unique solution (<f>, a, /3). Moreover, <j> e WQ(IR2) which implies
a = 0. In addition, there exists a constant C :> 0, independent of n and f,
such that

UKn^CWfKa- (4-7)

Proof : Let (0 , a, /3) be a solution of Problem (4.2)-(4.6). Clearly, from
the potential theory, there exist R > 0, C =- 0 and i/» e //^(IR2) such that
for |;c| >R :

cf>{x) = a log |*| +/3 + * ( * ) ,

with | ^ (x) ^ C
l V V" / I -^ i j »

' I

Let Br dénote the bail centered in 0 and of radius r 5= R (we assume that
R is large enough in order to have Ö <= BR). Integrating équations (4.2),
(4.3), (4.4) on Br yields :

f f f
— A<f> dx + JULQ cr0 \ u . V<f> dx — f dx .

JBr Jn0 Jn

By using the Green's formula together with the fact that f e LQ(I2),
div u = 0 in Z20 and u = 0 on Fo, we obtain

It follows that 2 7 r a = ö ( - j and letting r -• 4- 00, we obtain a = 0. In

other words, we have proved that all the solutions (<f>, a, /3) of (4.2)-(4.6)
are such that a — 0. We are then allowed to seek <f> in the space

In Theorem 3.1, we have seen that the space W^M2), equipped with the
norm | . | x U2 is a Hubert space. Let us now define the following
sesquilinear form on WQ(R2) :

r 2

a(<f>, tf/) = V<̂  .Vift*dx+i

f *A* A ] +M0cr0 f (u.
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ON A MAGNETOHYDRODYNAMIC PROBLEM 357

We set the following problem :

Find <f> € Wl(U2) such that

^ 2 , (4.8)

where (., . ) dénotes the L2(/2)-inner product.
If (<£, a, p) is a solution of Problem (4.2)-(4.6) then a = 0 and clearly

<f> is a solution of (4.8). Conversely, if <£ is a solution of Problem (4.8) then
(4.2M4.4) and (4.6) are satisfied and <j> belongs to H2

OC(U2). Since
(/> is harmonie outside the compact domain Ù and because <f> e WQ(U2),
there exists fi e C such that <£(x) = /? + O(|JC|~1 ) when |x | -> oo and
(<£, 0, P) is a solution of Probïem (4.2)-(4.6). In this sensé, Problem (4.8) is
equivalent to Problem (4.2)-(4.6).

We have from the définition of a and since u e V :

Re (a(*, <£))= |<Hi>R2 + M0<r0Re M (u. V0 ) ^ •

= |* l î t t f , forall <̂  e # i ( R 2 ) .

Moreover, the continuity of the form a is obvious. By Lax-Milgram's
theorem we then conclude to the existence and uniqueness of a solution of
(4.8). The estimate (4.7) follows by putting \jj = <f> in (4.8) and taking the
real part of the resulting equality together with Cauchy-Schwarz inequality
and the équivalence of norms | • | j a and || . \x n in Hl(f20) —

geHl
0(n0); f ^ dbc = o l . D

Remark 4A . The above cAi^tence resuit is not necessary for the proof of
the existence of solutions of (2.23)-(2.30). We have mentioned it hère for
the sake of completeness. The estimate (4.7) is however basic for the
sequel. D

Let us now define the operator

where <f> is the solution of Problem (4.2)-(4.6) with u = 0 and ƒ = g. By

classical interior regularity results for elliptic problems (cf. [7]) we deduce

from (4.7) that Tl: L2(f2) -+H2(f20) is continuous. Furthermore, since

the imbedding H2(I70) -> Wl'4(f20) is compact, the operator

Tx :Ll(n) -+ Wh 4(/20) is compact.

vol. 26, n 2, 1992



358 J. RAPPAZ, R. TOUZANI

Notice that if u G V, we can extend it by zero to f2\I20, and if
<f> e Wl'\f20) we have u . V<j> e LQ(I2) since div u = 0 in 120 and
u = 0 on Fo. Therefore, if ƒ e LQ(O) and U Ë V are given, the problem :

Find <f> e Wh 4(i70) such that </> = Tx(f - au . V<f> ) (4.9)

is meaningful. Moreover, if cf> is solution of Problem (4.2)-(4.6) then
4>\n is solution of Problem (4.9). Conversely, if <f> is solution of (4.9) then

<t> G H2(f20) and there exists t// solution of (4.2)-(4.6) such that <j> = t// \ n .

In this sense, Problems (4.2)-(4.6) and (4.9) are equivalent.
Let us consider now the fluid flow problem. Given a function

g G L4/3(/20)2, we consider the Stokes problem :
Find (w, p) G //o(i7o)2 x LQ(I20) such that

- v Aw + Vp = g , in n0 , (4.10)

divw = 0 in /2 0 . (4.11)

It is clear that Problem (4.10)-(4.11) has a unique solution (cf. [8]).
Moreover, using regularity results for the Stokes problem (cf. [8], the
boundary Fo being of class C l), we deduce that the operator

is linear and compact. Now, since u e V and <f> € KK1 S 4(/20) we have from
Hölder's inequalities that the functions (u . V ) u, (u . V<f> R) V ^ ,
(u . \?4>j) V<f>r, <t>j V<f>R and <pR V^>7 belong to L4/3(/20)2. Problem (2.23)-
(2.30) is therefore equivalent to the problem :

Find (<£, u) G Wu4(O0) x V such that

4 = A J ^ O ^ u ) , (4.12)

u = Àr2f2(^,u), (4.13)

where

A = 1 ,

fx(4>9 u) = At0C-/jfe — o-ku.V<l> )in/2k, k = 0, 1, 2, (u = 0 in III U I22) ,

f2(*. u ) = - u . V u + ^

- ^ ((u . V^^) V^^ + (u .
2 p

The main estimate is given in the following resuit.
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ON A MAGNETOHYDRODYNAMIC PROBLEM 359

THEOREM 4.2 : There exists a positive constant C, independent of J and v,
such that VA e [0, 1], if (</>, u) is solution of (4.12)-(4.13), then

|| l f iab+ | |u .V^ | | 0 f J | o + | |u.V^| |0 | i a b+ | | < H 1 ) 4 , ^ C / . (4.14)

Proof : Let (<f>, u) be a solution of Problem (4.12)-(4.13). By Theorem
4.1, where u and ƒ are respectively replaced by Au and A g, with
g = Mo-4 m ^*> ^ - 0, 1, 2, we have

I I ^ I I L Û - S C / , (4.15)

where C is independent of A. Now, équation (4.13) implies there exists a
unique p e Lo(/2O) such that (u, p) satisfies :

- v Au + Vp = Af2(<£, u) in /20 ,
div u = 0 in f2Q ,

u = 0 on f 0 .

Hence, by multiplying by u and using Green's formula, we obtain

O> A

lp — • ' - '

where (., . ) dénotes the inner product in L2(f20). The Cauchy-Schwarz
inequality yields :

2

Similarly, we have

I I I » .
Therefore, by (4.15):

^ f l ^ l n ^ K (4.16)
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Inequality (4.16) shows that the three first terms of (4.14) are bounded by
CJ. To obtain the bound for the last term, we first remark that the estimate
(4.16) implies

The continuity of the operator Tx : LQ(H) -• Wl'4(f20) implies then :

H^ II 1,4, / 2 0 ^ C / ' <4-17)

which finally gives the desired result. •
We are now ready to prove the existence theorem.

THEOREM 4.3 : Problem (2.23)-(2.30) has at least one solution,

Proof : Clearly, it is sufficient to prove that Problem (4.12)-(4.13) has at
least one solution for A = 1. This is done by applying Theorem 3.2 with

x= wl-4(nn)xv , T= ,
2f2

Here X is considered as a real Banach space. The continuity of
T is obvious. Furthermore, it is clear that the image of each bounded subset
of Wh\nö) x V by the mapping

is bounded in L Q ( / 2 ) X L4 / 3(I2O)2 . The compactness of the operators
Tx and T2 implies then the compactness of T : X -• X which, by
Theorems 3.2 and 4.2, yields the existence of a solution of Problem (4.12)-
(4.13) for any A e [0, 1]. D

5. A UNIQUENESS RESULT

In this section we seek conditions under which uniqueness of the solutions
of Problem (2.23)-(2.30) can be guaranteed. To do this, a scaling is
performed by setting <p = v~m<f>. Problem (4.12)-(4.13) with A = 1 can

def

then be transformed into the problem to find (<£, u) e X= Wl'\O0) x V
such that :

j> = T 1 / 1 ( f u ) ( u = r 2 f 2 ( f u ) (5.1)
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where

A ( ^ f u ) = /üL0(Jkv-m-aku.V<f>) infljfc, * = 0, 1, 2 , (5.2)

V u ^ ( ( u
2 p

(O V

- <f>j V<f>R) . (5.3)5 W2p

If f : (4>,u)eX^ T(<f>, u) e X is the mapping defined by

then Problem (5.1) is equivalent to find the fixed points of 7. Moreover, it is
easy to see that Problem (2.23)-(2.30) has a unique solution if and only if
T has a unique fixed point. In order to find sufficient conditions to obtain
the uniqueness of a fixed point of 7\ we calculate ||Df(<£, u ) | where

Df(<fi,u) is the Fréchet derivative of f at a point ( < £ , u ) e X and
il * IIJS?(X) ^S rï*e norm of continuous linear operators from X into
X.

THEOREM 5.1 : There is a constant C, independent ofvandJ, such that for
ail (<f>, u)e X we have :

4, J
Proof : We dénote by D^, Du the partial derivatives with respect to
and u and we obtain for ail pairs (<£, u), (<//, v) e X :

, U)V = -

, u) £ = T2\- °^- ((u . V<£R) V ^ + (u .
L 2 P

, u)v = r2[-u.Vv-v.Vu
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If, for a continuous linear operator A : Y -> Z where Y and Z are two
Banach spaces, we dénote by \\A \ig,Y z) *ts norm> w e easily prove by using
Hölder's inequalities that :

||Z)f (*, u)(*. v)||x ^

where C is independent of J and v. By noticing that

*>\n)) * C a n d H r2ll^(L^)2 v) * C " " '

where C is independent of J and ^, we finally obtain for all (<£, u) e X

By using the inequality ab =s - («2 + i?2) we thus have proven (5.4). LJ

THEOREM 5.2 : Let trk9 k = 0, 1, 2, p <Z/Ï<2 O> èe given positive real
numbers. Then, for all v * r> 0 r/ier^ ex/ste a positive real number y such that
for all v 5= v * and allJ ïz 0 satisfying J *z y vm Problem (2.23)-(2,30) has a
unique solution.

Proof : Clearly, Problem (2.23)-(2.30) has a unique solution if and only if
Problem (4.12)-(4.13) has a unique solution (<£, u) for A = 1 or, equiva-
lently, if and only if f has a unique fixed point (<f>, u) with $ = v~ m <f>.

From Theorem 4.2 we deduce that if (<£, u) is a fixed point of

f, then

where C is independent of/, v and (< ,̂ u). We prove, from Theorem 5.1,
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that for ail v * > 0 there exists e = £ ( ^ * ) ; > 0 such that for ail (^, v) e X

satisfying || v|| x n + || ̂  || s= e and for ail v > v* \

: 1 . (5.6)

By choosing y = e/C we deduce from (5.5) and (5.6) that if v > v * and
J ^ yv1/2, then T has a? /was? one fixed point. The existence is proven in
Theorem 4.3. D

We conclude this paper by some remarks.

Remark 5.1 : Let us fix all the physical parameters in Problem (2.23)-
(2.30) except / and look for the solutions {<f>, u, /?, a, /3) of this problem as
functions of/. Trivially, if / = 0 we have the unique solution (0, 0, 0, 0, Q.
The proof of Theorem 5.2 shows that for small / we can apply the implicit
function theorem in order to obtain the existence of a solution branch
(0, u, p, a, p) parametrized by ƒ, starting from the trivial solution.

Remark 5.2 : The arbitrary choice of / and v as parameters in the
statement of the uniqueness resuit is made in Theorem 5.2 to simplify the
présentation. We can prove, for example, that if v and J are given,
uniqueness holds if cr0 is small enough.

Remark 5.3 : As we have mentioned it in Section 2, prescribing a slip
boundary condition for u instead of Dirichlet boundary conditions can also
be considered. In this case, the Stokes problem can be written in terms of a
stream-function/vorticity formulation whose standard regularity results
{cf. [7]) yield the same properties for the operator T2 as those used for the
proof of existence and uniqueness of solutions.
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