L. SONKE

Analysis of domain decomposition for non symmetric problems : application to the Navier-Stokes equations

M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique, tome $26, \mathrm{n}^{\circ} 2$ (1992), p. 289-307
http://www.numdam.org/item?id=M2AN_1992__26_2_289_0
© AFCET, 1992, tous droits réservés.
L'accès aux archives de la revue «M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

ANALYSIS OF DOMAIN DECOMPOSITION FOR NON SYMMETRIC PROBLEMS : APPLICATION TO THE NAVIER-STOKES EQUATIONS (*)

L. Sonke (${ }^{1}$)

Communicated by R Temam

Abstract

Résumé - Cet artıcle est consacré aux fondements mathématıques d'un algorithme de gradıent conjugué pour la solution de problèmes non symétrıques par décompositıon de domaıne, proposé par Sonké et al [5] et applıqué à la simulatıon d'écoulements lamınaires dans une cavité en L L'analyse est effectuée pour un probleme modele de Dtrichlet assocıé a un opéıateur linéatre général du second ordre, non symétrique En utllısant une décomposition de domaine sans recouvrement, nous prouvons l'existence et l'unıcıté de la solutıon du probleme de décompositıon-coordinatıon équivalent, au moyen de l'opérateur de Steklov-Poıncaré Une technıque de symétrisatıon est ensuite applıquée au problème de décompositıon coordination et permet de construire un algorithme de gradientconjugué pour le calcul de la solution

L'applıcatıon de la méthode a une forme linéartsée des équatıons de Navıer-Stokes est explıquée à la fin de l'artıcle D'un point de vue mathématıque, les conditions de cette applicatıon sont assez restrictives Cependant, les résultats numériques présentés dans [5] suggerent que ces conditions ne sont pas optimales Elles sont donc susceptibles d'amélıoratıon

Abstract

A Dirichlet problem with a general second order and non symmetric linear operator is solved via a domain decomposition method without overlapping existence and uniqueness of solution for the equivalent decomposition-coordination problem is proved, using Steklov-Poincaré operator A symmetrization technique is applied to obtain a conjugate gradient algorithm for computation of solution Application to a linearized form of the Navier Stokes equatıons is explained

Key Words - Domain decomposition, Steklov-Poincaré operator, symmetrization techmque, conjugate gradient, Navier-Stokes equations

[^0]
1. INTRODUCTION

During the last decade, scientific calculation has witnessed an increasing interest in domain decomposition methods. Development of parallel calculation has favoured numerical experiments in this scope of science. Besides these experiments, numerous theoretical investigations have been devoted to domain decomposition methods without overlapping. It can be refered to Glowinski [1] as one of pioneer works accomplished in domain decomposition without overlapping. Among recent studies, reader can consult Glowinski and Wheeler [2], Chan [3], Chan and Resasco [4], Sonké et al. [5]. Except [5], these investigations have been restricted to symmetric problems. Iterative methods based on the classical conjugate gradient method are often used. Most of non symmetric problems are solved by numerical analogs to the Schwarz alternating method [6]. In [1], a method based on a combination of optimal control and domain decomposition for symmetric problems is proposed for the study of nonlinear problems. The same idea can be applied to non symmetric problems and utilization of preconditionners [3], [4] can increase performance of such procedure. Nevertheless, this method is expensive, for each iteration of the least squares algorithm [1] needs several domain decomposition procedures. The first conjugate gradient algorithm for domain decomposition methods for non symmetric problems was proposed in [5] and applied to the study of fluid motion in an L-shapped cavity.

This paper is devoted to the mathematical background of the non symmetric method mentioned above. Using domain decomposition without overlapping, we prove the existence and uniqueness of solution for a Dirichlet problem with a linear and non symmetric general second order operator. For computation of this solution, we propose a conjugate gradient algorithm based on a « symmetrization» technique introduced by Sonké [7].

2. MATHEMATICAL ANALYSIS

2.1. Model problem

Let Ω be an open bounded set of R^{N}, with regular boundary Γ. Denote A, B and D operators defined by

$$
\begin{aligned}
A u & =\alpha_{0} u-\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{i}}\left(\alpha_{i j} \frac{\partial u}{\partial x_{j}}\right) \\
B u & =\sum_{i=1}^{N} \beta_{i} \frac{\partial u}{\partial x_{i}} \quad D u=A u+B u
\end{aligned}
$$

where α_{0} belongs to $L^{\infty}(\Omega)$, the $\alpha_{i,}^{\prime}$ s $1 \leqslant i, j \leqslant N$ belong to $L^{\infty}(\Omega)$ and the β_{i}^{\prime} 's belong to $L^{\infty}(\Omega)$. Suppose f belongs to $L^{2}(\Omega)$, take g in $H^{1 / 2}(\Gamma)$ and consider the following global problem

$$
\left\{\begin{align*}
D u & =f \quad \text { in } \quad \Omega \tag{1}\\
u & =g \quad \text { on } \quad \Gamma .
\end{align*}\right.
$$

Problem (1) is non symmetric, because of operator B, and also because we do not suppose the usual symmetry conditions $\alpha_{l j}=\alpha_{j l}$.

Denote $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right)^{T}$. Under the following conditions

$$
\begin{gather*}
\operatorname{div} \beta=0 \tag{2}\\
\exists \tau>0 \text { such that } \forall \xi \in R^{N}, \sum_{i, j=1}^{N} \alpha_{l j}(x) \xi_{l} \xi_{j} \geqslant \tau|\xi|^{2} \text { a.e. in } \Omega, \tag{3}\\
\alpha_{0}(x) \geqslant \tau_{0} \text { a.e. in } \Omega \tag{4}
\end{gather*}
$$

with $\tau_{0}>-\tau / C_{\Omega}^{2}$, where C_{Ω} is the Poincaré constant of Ω.
Sonké [7] proved the existence and uniqueness of solution for problem (1) using the Lax-Milgram theorem [8] and the following lemma of Temam [9].

Lemma 1: Suppose u, v and w are vector functins with $\nabla . u=0$. Operator b(.,., .) defined by

$$
b(u, v, w)=\sum_{i, j=1}^{N} \int_{\Omega} u_{i} \frac{\partial v_{j}}{\partial x_{t}} w_{j} d x
$$

is a continuous trilinear form on $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \times\left(H_{0}^{1}(\Omega) \cap L^{N}(\Omega)\right)$ and one has the following estimate

$$
b(u, v, w) \leqslant c(N)\|u\|_{H_{0}^{1}(\Omega)}\|v\|_{H_{0}^{1}(\Omega)}\|w\|_{H_{0}^{1}(\Omega) \cap L^{N}(\Omega)}
$$

Now consider a family of non-intersecting open sets $\Omega_{k}, n=1,2, \ldots, n$ ($n \geqslant 2$), which is a partition of Ω. For simplicity, we limit our study to the case $n=2 . \Omega$ is the union of Ω_{1}, Ω_{2} and γ, Ω_{1} and Ω_{2} are non-intersecting domains and γ is the intersection of their closures.

$$
\begin{gathered}
\Omega=\Omega_{1} \cup \Omega_{2} \\
\Omega_{1} \cap \Omega_{2}=\varnothing
\end{gathered}
$$

Denote

$$
\begin{aligned}
\Gamma_{k} & =\Gamma \cap \partial \Omega_{k} \quad k=1,2 \\
\gamma & =\partial \Omega_{1} \cap \partial \Omega_{2} .
\end{aligned}
$$

According to distribution theory [10], the global problem (1) is equivalent to the following set of problems

$$
\begin{gather*}
\left\{\begin{aligned}
D u_{k}=f_{k} & \text { in } \Omega_{k} \\
u_{k}=g_{k} & \text { on } \Gamma_{k}
\end{aligned}\right. \tag{5}\\
u_{1}=u_{2} \text { on } \gamma \tag{6}\\
\frac{\partial u_{1}}{\partial \nu_{A}^{(1)}}+\frac{\partial u_{2}}{\partial \nu_{A}^{(2)}}-\left(\beta^{(1)} \cdot \nu^{(1)}\right) u_{1}-\left(\beta^{(2)} \cdot \nu^{(2)}\right) u_{2}=0 \text { on } \gamma
\end{gather*}
$$

$\beta^{(k)}, u_{k}, f_{k}$ (resp. g_{k}) denote the restriction of β, u, f (resp. g) on Ω_{k} (resp. Γ_{k}). $\nu^{(k)}$ is the unit normal vector directed out of Ω_{k}.

$$
\frac{\partial u}{\partial \nu_{A}^{(k)}}=\sum_{i, j=1}^{N} \alpha_{i j} \frac{\partial u}{\partial x_{j}} \nu_{i}^{(k)}
$$

is the conormal derivative associated to operator A, directed out of $\Omega_{k} .\left(\beta^{(k)} . \nu^{(k)}\right)$ denotes the inner product of $\beta^{(k)}$ and $\nu^{(k)}$ in R^{N}.

From the coordination problem (6), we can rewrite problem (5)-(6) in the following primal approach

Find λ defined on γ such that

$$
\begin{equation*}
\frac{\partial u_{1}(\lambda)}{\partial \nu_{A}^{(1)}}+\frac{\partial u_{2}(\lambda)}{\partial \nu_{A}^{(2)}}-\left(\beta^{(1)} \cdot \nu^{(1)}\right) u_{1}(\lambda)-\left(\beta^{(2)} \cdot \nu^{(2)}\right) u_{2}(\lambda)=0 \text { on } \gamma \tag{7}
\end{equation*}
$$

where $u_{k}(\lambda)$ is the solution of (5) with

$$
\begin{equation*}
\left.u_{k}(\lambda)\right|_{\gamma}=\lambda . \tag{8}
\end{equation*}
$$

We are now going to prove the existence and uniqueness of solution for problem (7)-(8).

2.2. Solution of problem (7)-(8)

Define the following spaces

$$
\Lambda_{0}=\left\{\mu \in L^{2}(\gamma) \text { such that } \mu=\tilde{\mu} \mid \gamma \text { where } \tilde{\mu} \in H_{0}^{1}(\Omega)\right\}
$$

$\Lambda_{g}=$

$$
=\left\{\mu \in L^{2}(\gamma) \text { such that } \mu=\tilde{\mu} \mid \gamma \text { where } \tilde{\mu} \in H^{1}(\Omega) \text { and } \tilde{\mu}=g \text { on } \Gamma\right\} .
$$

For $\mu \in \Lambda_{0}$, we need $\tilde{\mu}_{k}, k=1,2$, which is an extension of μ in

$$
H_{k}=\left\{u_{k} \in H^{1}\left(\Omega_{k}\right) \text { such that } u_{k}=0 \text { on } \Gamma_{k}\right\}
$$

This extension can be defined as the unique element $\tilde{\mu}_{k} \in K_{k}$ satisfying

$$
\left.\tilde{\mu}_{k}\right|_{\gamma}=\mu
$$

with

$$
H_{k}=H_{0}^{1}(\Omega) \oplus K_{k}, \quad k=1,2
$$

Λ_{0} is a Hilbert space with norm $\|\mu\|_{\Lambda_{0}}=\|\tilde{\mu}\|_{H_{0}^{1}}$ and the induced inner product. We now give a weak formulation of problem (7)-(8).

Define functions $u_{k}(\lambda), u_{k}^{\lambda}$ and $u_{k}^{0}, k=1,2$ by

$$
u_{k}(\lambda)=u_{k}^{\lambda}+u_{k}^{0}, \quad k=1,2
$$

where $u_{k}(\lambda)$ is the solution of problem (5) with boundary conditions (8) u_{k}^{λ} is the solution of the following problem.

Find $u_{k}^{\lambda} \in H_{k}, u_{k}^{\lambda}=\lambda$ on γ

$$
\begin{align*}
\int_{\Omega_{k}}\left(\sum_{i, j=1}^{N} \alpha_{i j} \frac{\partial u_{k}^{\lambda}}{\partial x_{j}} \frac{\partial v_{k}}{\partial x_{i}}\right) d x & +\int_{\Omega_{k}} \alpha_{0} u_{k}^{\lambda} v_{k} d x+ \\
& +\sum_{i=1}^{N} \int_{\Omega_{k}} \beta_{i} \frac{\partial u_{k}^{\lambda}}{\partial x_{i}} v_{k} d x=0 \quad \forall v_{k} \in H_{0}^{1}\left(\Omega_{k}\right) \tag{9}
\end{align*}
$$

u_{k}^{0} is the solution of the following problem.
Find $u_{k}^{0} \in H^{1}\left(\Omega_{k}\right), u_{k}^{0}=g_{k}$ on $\Gamma_{k}, u_{k}^{0}=0$ on γ

$$
\begin{align*}
\int_{\Omega_{k}}\left(\sum_{i, j=1}^{N} \alpha_{i j}\right. & \left.\frac{\partial u_{k}^{0}}{\partial x_{j}} \frac{\partial v_{k}}{\partial x_{i}}\right) d x+\int_{\Omega_{k}} \alpha_{0} u_{k}^{0} v_{k} d x+ \\
& +\sum_{i=1}^{N} \int_{\Omega_{k}} \beta_{i} \frac{\partial u_{k}^{0}}{\partial x_{i}} v_{k} d x=\int_{\Omega_{k}} f_{k} v_{k} d x \quad \forall v_{k} \in H_{0}^{1}\left(\Omega_{k}\right) . \tag{10}
\end{align*}
$$

Define the non symmetric Steklov-Poincaré operator T [11] on Λ_{0} by

$$
\begin{equation*}
T \lambda=\frac{\partial u_{1}^{\lambda}}{\partial \nu_{A}^{(1)}}+\frac{\partial u_{2}^{\lambda}}{\partial \nu_{A}^{(2)}}-\left(\beta^{(1)} \cdot \nu^{(1)}\right) u_{1}^{\lambda}-\left(\beta^{(2)} \cdot \nu^{(2)}\right) u_{2}^{\lambda} \text {. } \tag{11}
\end{equation*}
$$

For $\mu \in \Lambda_{0}$, we have

$$
\begin{aligned}
& \int_{\gamma} T \lambda \cdot \mu d \gamma+\int_{\gamma}\left(\frac{\partial u_{1}^{0}}{\partial \nu_{A}^{(1)}}+\frac{\partial u_{2}^{0}}{\partial \nu_{A}^{(2)}}\right)-\left(\beta^{(1)} \cdot \nu^{(1)}\right) u_{1}^{0}- \\
&-\left(\left(\beta^{(2)} \cdot \nu^{(2)}\right) u_{2}^{0}\right) \mu d \gamma=0 .
\end{aligned}
$$

We have then the following variational formulation for problem (7)-(8)

$$
\left\{\begin{array}{l}
\text { Find } \lambda \in \Lambda_{0} \text { such that } \tag{12}\\
t(\lambda, \mu)+l(\mu)=0 \quad \forall \mu \in \Lambda_{0}
\end{array}\right.
$$

where t (.,.) is the bilinear form defined on Λ_{0} by

$$
\begin{gathered}
t(., \cdot): \Lambda_{0} \times \Lambda_{0} \rightarrow R \\
(\lambda, \mu) \rightarrow t(\lambda, \mu)=\int_{\gamma} T \lambda \cdot \mu d \gamma
\end{gathered}
$$

and $l($.$) is the linear form defined on \Lambda_{0}$ by

$$
\begin{aligned}
\mu \rightarrow l(\mu)= & l(.): \Lambda_{0} \rightarrow R \\
& =\int_{\gamma}\left(\frac{\partial u_{1}^{0}}{\partial \nu_{A}^{(1)}}+\frac{\partial u_{2}^{0}}{\partial \nu_{A}^{(2)}}-\left(\beta^{(1)} \cdot \nu^{(1)}\right) u_{1}^{0}-\left(\beta^{(2)} \cdot \nu^{(2)}\right) u_{2}^{0}\right) \mu d \gamma
\end{aligned}
$$

We have the following result.
THEOREM 1 : Suppose conditions (2), (3) and (4) are verified. Therefore, problem (12) has a unique solution.

Demonstration of theorem 1: Denote

$$
\mathfrak{|}\|\alpha\| \dot{\|} \mid=\max \left\{\left\|\alpha_{i j}\right\|_{\infty}, \overline{1} \leqslant i, j \leqslant N\right\}
$$

where

$$
\left\|\alpha_{i j}\right\|_{\infty}=\sup \operatorname{ess}\left\{\alpha_{i j}(x), x \in \Omega\right\}
$$

i) $t(,,$.$) is continuous on \Lambda_{0} \times \Lambda_{0}$.

Let $(\lambda, \mu) \in \Lambda_{0} \times \Lambda_{0}$. Using Green formulas, we obtain

$$
\begin{aligned}
& t(\lambda, \mu)=\sum_{k=1}^{2}\left(\int_{\Omega_{k}}\left(\sum_{i, j=1}^{N} \alpha_{i j} \frac{\partial u_{k}^{\lambda}}{\partial x_{j}} \frac{\partial \tilde{\mu}_{k}}{\partial x_{i}}\right) d x\right. \\
& \left.\quad+\int_{\Omega_{k}} \alpha_{0} u_{k}^{\lambda} \tilde{\mu}_{k} d x-\int_{\Omega_{i=1}} \sum_{i}^{N} \beta_{i} \frac{\partial \tilde{\mu}_{k}}{\partial x_{i}} u_{k}^{\lambda} d x\right) \\
& =\sum_{k=1}^{2}\left(\int_{\Omega_{k}}\left(\sum_{i, j=1}^{N} \alpha_{i j} \frac{\partial u_{k}^{\lambda}}{\partial x_{j}} \frac{\partial u_{k}^{\mu}}{\partial x_{i}}\right) d x\right. \\
& \left.\quad+\int_{\Omega_{k}} \alpha_{0} u_{k}^{\lambda} u_{k}^{\mu} d x-\int_{\Omega_{i=1}} \sum_{i}^{N} \beta_{i} \frac{\partial u_{k}^{\mu}}{\partial x_{i}} u_{k}^{\lambda} d x\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
|t(\lambda, \mu)| \leqslant & \left|\sum_{k=1}^{2}\left(\int_{\Omega_{k}}\left(\sum_{i, j=1}^{N} \alpha_{i j} \frac{\partial u_{k}^{\lambda}}{\partial x_{j}} \frac{\partial u_{k}^{\mu}}{\partial x_{i}}\right) d x+\int_{\Omega_{k}} \alpha_{0} u_{k}^{\lambda} u_{k}^{\mu} d x\right)\right| \\
& +\left|\sum_{k=1}^{2} \int_{\Omega} \sum_{i=1}^{N} \beta_{i} \frac{\partial u_{k}^{\mu}}{\partial x_{i}} u_{k}^{\lambda} d x\right| .
\end{aligned}
$$

From Lemma 1, we obtain

$$
\begin{aligned}
& |t(\lambda, \mu)| \leqslant\left(N \cdot \operatorname{Cte}|\|\alpha\|| \int_{\Omega_{k}} \sum_{i=1}^{N}\left|\frac{\partial u_{k}^{\lambda}}{\partial x_{i}}\right|\left|\frac{\partial u_{k}^{\mu}}{\partial x_{i}}\right| d x\right. \\
& \left.+\left\|\alpha_{0}\right\|_{\infty} \int_{\Omega_{k}}\left|u_{k}^{\lambda}\right|\left|u_{k}^{\mu}\right| d x\right) \\
& \quad+\sum_{k=1}^{2} c(N) \cdot\|\beta\|_{\infty}\left\|u_{k}^{\lambda}\right\|_{H_{0}^{1}}\left\|u_{k}^{\mu}\right\|_{H_{0}^{1}} \\
& \leqslant \max \left(N \cdot \operatorname{Cte}|\|\alpha\||,\left\|\alpha_{0}\right\|_{\infty},\|\beta\|_{\infty}\right) \\
& \quad \times\left(\sum_{k=1}^{2}\left\|u_{k}^{\lambda}\right\|_{H^{1}}^{2}\right)^{1 / 2}\left(\sum_{k=1}^{2}\left\|u_{k}^{\mu}\right\|_{H^{1}}^{2}\right)^{1 / 2}
\end{aligned}
$$

thus $t(.,$.$) is continuous.$
ii) $t(.,$.$) is \Lambda_{0}$-elliptic.

Let $\lambda \in \Lambda_{0}$. We have

$$
\int_{\Omega} \sum_{i=1}^{N} \beta_{i} \frac{\partial u_{k}^{\lambda}}{\partial x_{i}} u_{k}^{\lambda} d x=0 .
$$

We then obtain from Green formulas

$$
t(\lambda, \lambda)=\sum_{k=2}^{N} \int_{\Omega_{k}}\left(\sum_{i, j=1}^{N} \alpha_{i j} \frac{\partial u_{k}^{\lambda}}{\partial x_{j}} \frac{\partial u_{k}^{\lambda}}{\partial x_{i}}+\alpha_{0}\left(u_{k}^{\lambda}\right)^{2}\right) d x .
$$

Using conditions (3)-(4), we obtain

$$
\begin{aligned}
t(\lambda, \lambda) & \geqslant \sum_{k=2}^{N}\left(\tau\left\|\nabla u_{k}^{\lambda}\right\|_{L^{2}}^{2}+\tau_{0}\left\|u_{k}^{\lambda}\right\|_{L^{2}}^{2}\right) \\
& \geqslant \min \left(\tau, \tau_{0}\right) \sum_{k=1}^{N}\left\|u_{k}^{\lambda}\right\|_{H^{1}}^{2}
\end{aligned}
$$

$t(.,$.$) is therefore \Lambda_{0}$-elliptic.
vol. $26, \mathrm{n}^{\circ} 2,1992$

The linear form $\ell($.$) beeing continuous, we conclude that problem (12)$ has a unique solution by the Lax-Milgram theorem.

3. ALGORITHMIC APPROACH

Our objective in this section is the construction of an algorithm for the solution of problem (12). Recall the following result.

Consider the following problem

$$
\begin{cases}F i n d u \in V & \text { such that } \tag{13}\\ a(u, v)=L(v), & \forall v \in V\end{cases}
$$

where
i) V is a Hilbert space for (., .) and $\|$.$\| ,$
ii) $a: V \times V \rightarrow R$ is bilinear, continuous, V-elliptic,
iii) $L: V \rightarrow R$ is continuous.

Problem (13) has a unique solution. More, if $a(.$,) is symmetric, therefore (13) is equivalent to the following minimization problem

$$
\begin{cases}\text { Find } u \in V & \text { such that } \tag{14}\\ J(u) \leqslant J(v), & \forall v \in V\end{cases}
$$

where

$$
J(v)=\frac{1}{2} a(v, v)-L(v)
$$

A conjugate gradient algorithm for solution of (14) is given in [2], but we cannot use this algorithm to compute the solution of (12), since this problem is not symmetric. In order to find an algorithm for solution of (12), we are going to apply the symmetrization technique described in [7].

3.1. «Symmetrization»

The principle of the symmetrization technique is described below.
Given a non symmetric linear problem (P), which solution belongs to a Hilbert space V, we construct in $\mathbf{V}=V \times V$, a symmetric positive definite problem (P^{\prime}) which contains problem (P). Iterative methods of the conjugate gradient type can then be used to solve (P^{\prime}). Solution of (P) is deduced from the solution of $\left(P^{\prime}\right)$.

Now define operators \bar{A}, \bar{B} and \bar{D} by

$$
\begin{gathered}
\bar{A} \psi=\alpha_{0} \psi-\sum_{t, j=1}^{N} \frac{\partial}{\partial x_{t}}\left(\bar{\alpha}_{l \jmath} \frac{\partial \psi}{\partial x_{j}}\right) \quad \text { where } \quad \bar{\alpha}_{l j}=\alpha_{\jmath l} \\
\bar{B} \psi=\sum_{t=1}^{N} \bar{\beta}_{t} \frac{\partial \psi}{\partial x_{l}} \quad \text { where } \quad \bar{\beta}_{\imath}=-\beta_{l} \quad \text { and } \quad \bar{D} \psi=\bar{A} \psi+\bar{B} \psi .
\end{gathered}
$$

We use large characters to denote product spaces, for example $\mathbf{H}^{1}(\Omega)=\left(H^{1}(\Omega)\right)^{2}$.

Define $F=(f, f)^{T}, G=(g, g)^{T}$ and operator $P: \mathbf{H}^{1}(\Omega) \rightarrow \mathbf{H}^{-1}(\Omega)$ by

$$
\Phi=(\phi, \psi)^{T} \rightarrow P \Phi=(\bar{D} \psi, D \phi)^{T} .
$$

Consider the following problem, which is a juxtaposition of two independant problems similar to (1).

$$
\left\{\begin{array}{l}
P \Phi=F \text { in } \Omega \tag{15}\\
\Phi=G \text { on } \Gamma .
\end{array}\right.
$$

The following result is proved in [7].
Proposition 1: Denote $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right)^{T}, \quad U=\left(u_{1}, u_{2}\right)^{T}$ and $V=\left(v_{1}, v_{2}\right)^{T}$. Define operator $\sigma(.,$.$) on \mathbf{H}_{0}^{1}(\Omega) \times \mathbf{H}_{0}^{1}(\Omega)$ by

$$
\sigma(U, V)=a(U, V)+b(U, V)
$$

where
$a(U, V)=\int_{\Omega}\left(\sum_{t, j=1}^{N}\left(\alpha_{\imath j} \frac{\partial u_{1}}{\partial x_{j}} \frac{\partial v_{2}}{\partial x_{t}}+\bar{\alpha}_{\imath j} \frac{\partial u_{2}}{\partial x_{j}} \frac{\partial v_{1}}{\partial x_{i}}\right)\right) d x+$

$$
+\int_{\Omega} \alpha_{0}\left(u_{1} v_{2}+u_{2} v_{1}\right) d x
$$

$b(U, V)=b_{\beta}\left(u_{1}, v_{2}\right)+b_{\bar{\beta}}\left(u_{2}, v_{1}\right) b_{\beta}(u, v)=\sum_{i=1}^{N} \int_{\Omega} \beta_{i} \frac{\partial u}{\partial x_{l}} v d x$.
We suppose hypothesis (2).
Therefore $\sigma(.,$.$) is a bilinear symmetric form on \mathbf{H}_{0}^{1}(\Omega) \times \mathbf{H}_{0}^{1}(\Omega)$.
One can also prove (see [7]) that $\sigma(.,$.$) is the bilinear form of the$ variational formulation of (15), $\sigma(,$,$) is continuous on \mathbf{H}_{0}^{1}(\Omega) \times \mathbf{H}_{0}^{1}(\Omega)$ and one has the following estimate

$$
\begin{equation*}
|\sigma(U, V)| \leqslant 4 . \max \left(N . \operatorname{Cte}\|\alpha\|,\left\|\alpha_{0}\right\|_{\infty},\|\beta\|_{\infty}\right)\|U\|_{\mathbf{H}^{1}}\|V\|_{\mathbf{H}^{1}} \tag{16}
\end{equation*}
$$

In the following, we suppose that $\sigma(.,$.$) is coercive.$
Global problem (15) is equivalent to the family of problems

$$
\left\{\begin{array}{c}
P \Phi_{k}=F_{k} \text { in } \Omega \tag{17}\\
\Phi_{k}=G_{k} \text { on } \Gamma
\end{array}\right.
$$

vol. $26, \mathrm{n}^{\circ} 2,1992$
with the coordination problem

$$
\left\{\begin{array}{c}
\Phi_{1}=\Phi_{2} \quad \text { on } \quad \gamma \tag{18}\\
\frac{D \Phi_{1}}{D \nu^{(1)}}+\frac{D \Phi_{2}}{D \nu^{(2)}}-\nu_{\beta}^{(1)} \cdot \Phi_{1}-\nu_{\beta}^{(2)} \cdot \Phi_{2}=0 \quad \text { on } \quad \gamma
\end{array}\right.
$$

where for $k=1,2$.
Φ_{k} and F_{k} (resp. G_{k}) are restrictions of Φ and F (resp. G) to Ω_{k} (resp. Γ_{k}),$\frac{D}{D \nu^{(k)}}$ is defined by

$$
\Phi=(\phi, \psi)^{T} \rightarrow \frac{D \Phi}{D \nu^{(k)}}=\left(\frac{\partial \psi}{\partial \nu_{A}^{(k)}}, \frac{\partial \phi}{\partial \nu_{A}^{(k)}}\right)^{T}
$$

and

$$
\nu_{\beta}^{(k)} \cdot \Phi=\left(\left(\bar{\beta}^{(k)} \cdot \nu^{(k)}\right) \psi,\left(\beta^{(k)} \cdot \nu^{(k)}\right) \phi\right)^{T}
$$

We have the following formulation of (17)-(18) in the primal approach.

$$
\left\{\begin{array}{l}
\text { Find } M \text { such that } \tag{19}\\
\frac{D \Phi_{1}(M)}{D \nu^{(1)}}+\frac{D \Phi_{2}(M)}{D \nu^{(2)}}-\nu_{\beta}^{(1)} \cdot \Phi_{1}(M)-\nu_{\beta}^{(2)} \cdot \Phi_{2}(M)=0 \text { on } \gamma
\end{array}\right.
$$

where

$$
\begin{equation*}
\left.\Phi_{k}(M)\right|_{\gamma}=M, \quad k=1,2 \tag{20}
\end{equation*}
$$

3.2. Solution of problem (19)-(20)

Define the following spaces
$\Lambda_{0}=\left\{M=(\mu, \mu)^{T} \in L^{2}(\gamma) \times L^{2}(\gamma)\right.$ such that $\quad M=\left.\tilde{M}\right|_{\gamma}$,

$$
\left.\tilde{M} \in \mathbf{H}_{0}^{1}(\Omega)\right\}
$$

$\Lambda_{g}=\left\{M \in L^{2}(\gamma) \times L^{2}(\gamma) \quad\right.$ such that $\quad M=\left.\tilde{M}\right|_{\gamma}$,

$$
\left.\tilde{M} \in \mathbf{H}^{1}(\Omega) \quad \text { and } \quad \tilde{M}=G \quad \text { on } \quad \Gamma\right\}
$$

Λ_{0} is a Hilbert space with norm $\|M\|_{\Lambda_{0}}=\|\tilde{M}\|_{\mathbf{H}_{0}}$, where \tilde{M} is the unique element of

$$
\mathbf{H}_{k}=\left\{U_{k} \in \mathbf{H}^{1}\left(\Omega_{k}\right) \text { such that } U_{k}=0 \quad \text { on } \quad \Gamma_{k}\right\}
$$

defined by its restrictions $\tilde{M}_{k}=\left.\tilde{M}\right|_{\Omega_{k}} \in \mathbf{K}_{k}$ such that

$$
\left.\tilde{M}_{k}\right|_{\gamma}=M \quad \text { with } \quad \mathbf{H}_{k}=\mathbf{H}_{0}^{1}(\Omega) \oplus \mathbf{K}_{k}, \quad k=1,2 .
$$

Consider the following decomposition

$$
\begin{equation*}
\Phi_{h}(M)=\Phi_{h}^{M}+\Phi_{h}^{0} \tag{21}
\end{equation*}
$$

where $\Phi_{k}(M)$ is the solution of problem (17) with boundary conditions (20), Φ_{k}^{M} is the solution of the following variational problem.

Find $\Phi_{k}^{M}=\left(\phi_{k}^{\mu}, \psi_{k}^{\mu}\right)^{T} \in \mathbf{H}_{k}, \quad \Phi_{k}^{M}=M=(\mu, \mu)^{T}$ on γ

$$
\begin{align*}
& \int_{\Omega_{k}}\left(\sum_{i, j=1}^{N}\left(\alpha_{\imath j} \frac{\partial \phi_{k}^{\mu}}{\partial x_{j}} \frac{\partial v_{k}}{\partial x_{l}}+\bar{\alpha}_{\imath j} \frac{\partial \psi_{k}^{\mu}}{\partial x_{j}} \frac{\partial u_{k}}{\partial x_{i}}\right)\right) d x+\int_{\Omega_{k}} \alpha_{0}\left(\phi_{k}^{\mu} v_{k}+\psi_{k}^{\mu} u_{k}\right) d x \\
& \sum_{i=1}^{N} \int_{\Omega_{k}} \beta_{i} \frac{\partial \phi_{k}^{\mu}}{\partial x_{l}} v_{k} d x+\sum_{i=1}^{N} \int_{\Omega_{k}} \bar{\beta}_{\imath} \frac{\partial \psi_{k}^{\mu}}{\partial x_{l}} u_{k} d x \\
& \quad=0 \quad \forall U_{k}=\left(u_{k}, v_{k}\right)^{T} \in \mathbf{H}_{0}^{1}\left(\Omega_{k}\right) \tag{22}
\end{align*}
$$

Φ_{k}^{0} is the solution of the following variational problem.
Find $\Phi_{k}^{0}=\left(\phi_{k}^{0}, \psi_{k}^{0}\right) \in \mathbf{H}^{1}(\Omega), \Phi_{k}^{0}=G_{k}$ on $\Gamma_{k}, \Phi_{k}^{0}=0$ on γ

$$
\begin{gather*}
\int_{\Omega_{k}}\left(\sum_{\imath, j=1}^{N}\left(\alpha_{\imath \jmath} \frac{\partial \phi_{k}^{0}}{\partial x_{j}} \frac{\partial v_{k}}{\partial x_{\imath}}+\bar{\alpha}_{\imath J} \frac{\partial \psi_{k}^{0}}{\partial x_{J}} \frac{\partial u_{k}}{\partial x_{\imath}}\right)\right) d x+\int_{\Omega_{k}} \alpha_{0}\left(\phi_{k}^{0} v_{k}+\psi_{k}^{0} u_{k}\right) d x \\
\sum_{\imath=1}^{N} \int_{\Omega_{k}} \beta_{\imath} \frac{\partial \phi_{k}^{0}}{\partial x_{\imath}} v_{k} d x+\sum_{\imath=1}^{N} \int_{\Omega_{k}} \bar{\beta}_{\imath} \frac{\partial \psi_{k}^{0}}{\partial x_{\imath}} u_{k} d x \\
=\int_{\Omega_{k}}\left(f u_{k}+f v_{k}\right) d x \quad \forall U_{k}=\left(u_{k}, v_{k}\right)^{T} \in \mathbf{H}_{0}^{1}\left(\Omega_{k}\right) \tag{23}
\end{gather*}
$$

Define the following Steklov-Poincaré operator Ξ

$$
\begin{equation*}
\Xi M=\frac{D \Phi_{1}^{M}}{D \nu^{(1)}}+\frac{D \Phi_{2}^{M}}{D \nu^{(2)}}-\nu_{\beta}^{(1)} \cdot \Phi_{1}^{M}-\nu_{\beta}^{(2)} \cdot \Phi_{2}^{M} \tag{24}
\end{equation*}
$$

Define the linear form L by

$$
\begin{gathered}
L: \quad \Lambda_{0} \rightarrow R \\
M \rightarrow L(M)=\int_{\gamma}\left(\frac{D \Phi_{1}^{0}}{D \nu^{(1)}}+\frac{D \Phi_{2}^{0}}{D \nu^{(2)}}-\nu_{\beta}^{(1)} \cdot \Phi_{1}^{0}-\nu_{\beta}^{(2)} \cdot \Phi_{2}^{0}\right) \cdot M d \gamma
\end{gathered}
$$

Define the bilinear form ζ (., .) by

$$
\begin{gathered}
\zeta: \Lambda_{0} \times \Lambda_{0} \rightarrow R \\
\left(M, M^{\prime}\right) \rightarrow \zeta\left(M, M^{\prime}\right)=\int_{\gamma}(\Xi M) \cdot M^{\prime} d \gamma
\end{gathered}
$$

We obtain the following variational formulation for problem (19)-(20)

$$
\begin{cases}\text { Find } M=(\lambda, \lambda)^{T} \in \Lambda_{0} & \text { such that } \tag{25}\\ \zeta\left(M, M^{\prime}\right)+L\left(M^{\prime}\right)=0 & \forall M^{\prime}=(\mu, \mu)^{T} \in \Lambda_{0}\end{cases}
$$

Proposition 2: The bilinear form ζ (., .) is symmetric
Demonstration of proposition 2: Take a couple $\left(M, M^{\prime}\right)^{T}=$ $\left((\lambda, \lambda)^{T},(\mu, \mu)^{T}\right)$ in Λ_{0}. We have

$$
\zeta\left(M, M^{\prime}\right)=\int_{\gamma}(\Xi M) \cdot M^{\prime} d \gamma
$$

$$
\begin{aligned}
= & \sum_{k=1}^{2} \int_{\gamma}\left(\frac{D \Phi_{k}^{M}}{D \nu^{(h)}}-\nu_{\beta}^{(k)} \cdot \Phi_{h}^{M}\right) \cdot M^{\prime} d \gamma \\
= & \sum_{k=1}^{2} \int_{\gamma}\left(\frac{\partial \psi_{k}^{\lambda}}{\partial \nu_{\bar{A}}} \mu+\frac{\partial \phi_{k}^{\lambda}}{\partial \nu_{A}} \mu\right) d \gamma \\
& -\sum_{k=1}^{2}\left(\left(\bar{\beta}_{k} \cdot \nu^{(k)}\right) \psi_{k}^{\lambda} \mu+\beta_{k} \cdot \nu^{(k)} \phi_{k}^{\lambda} \mu\right) d \gamma .
\end{aligned}
$$

Using Green formulas, we obtain

$$
\begin{aligned}
\zeta\left(M, M^{\prime}\right)= & \sum_{k=1}^{2}\left(\int_{\Omega_{k}}\left(\sum_{\imath, j=1}^{N} \bar{\alpha}_{l l} \frac{\partial \psi_{k}^{\lambda}}{\partial x_{j}} \frac{\partial \hat{\mu}}{\partial x_{l}}\right) d x\right. \\
& \left.+\int_{\Omega_{k}} \alpha_{0} \psi_{k}^{\lambda} \hat{\mu} d x-\sum_{i=1}^{N} \int_{\Omega_{k}} \bar{\beta}_{t} \frac{\partial \hat{\mu}}{\partial x_{l}} \psi_{k}^{\lambda} d x\right) \\
& +\sum_{k=1}^{2}\left(\int_{\Omega_{k}}\left(\sum_{t, j=1}^{N} \alpha_{l \jmath} \frac{\partial \phi_{k}^{\lambda}}{\partial x_{j}} \frac{\partial \hat{\mu}}{\partial x_{\imath}}\right) d x\right. \\
& \left.+\int_{\Omega_{k}} \alpha_{0} \phi_{k}^{\lambda} \hat{\mu} d x-\sum_{t=1}^{N} \int_{\Omega_{k}} \beta_{i} \frac{\partial \hat{\mu}}{\partial x_{t}} \phi_{k}^{\lambda} d x\right) \\
= & \sum_{k=1}^{2}\left(\int_{\Omega_{k}}\left(\sum_{\imath, j=1}^{N} \alpha_{l j} \frac{\partial \phi_{k}^{\lambda}}{\partial x_{j}} \frac{\partial \psi_{h}^{\mu}}{\partial x_{t}}+\bar{\alpha}_{l j} \frac{\partial \psi_{k}^{\lambda}}{\partial x_{j}} \frac{\partial \phi_{k}^{\mu}}{\partial x_{l}}\right) d x\right. \\
& \left.+\int_{\Omega_{k}} \alpha_{0}\left(\phi_{k}^{\lambda} \psi_{k}^{\mu}+\psi_{k}^{\lambda} \phi_{k}^{\mu}\right) d x\right) \\
& -\sum_{k=1}^{2}\left(\sum_{\imath=1}^{N} \int_{\Omega_{k}} \beta_{t} \frac{\partial \psi_{k}^{\mu}}{\partial x_{l}} \phi_{k}^{\lambda} d x \sum_{t=1}^{N} \int_{\Omega_{k}} \bar{\beta}_{\imath} \frac{\partial \phi_{k}^{\mu}}{\partial x_{l}} \psi k^{\lambda} d x\right)
\end{aligned}
$$

prolonging functions $\phi_{k}^{\lambda}, \psi_{k}^{\lambda}, \Phi_{k}^{M}$, and $\Phi_{k}^{M^{\prime}}$ on $\Omega-\Omega_{k}$ by 0 , we can extend integrals on Ω. We obtain

$$
\begin{aligned}
\zeta\left(M, M^{\prime}\right)= & \sum_{k=1}^{2}\left(\sum_{i=1}^{N} \int_{\Omega} \beta_{i} \frac{\partial \phi_{k}^{\lambda}}{\partial x_{i}} \psi_{k}^{\mu} d x \sum_{i=1}^{N} \int_{\Omega} \bar{\beta}_{i} \frac{\partial \psi_{k}^{\lambda}}{\partial x_{i}} \phi_{k}^{\mu} d x\right) \\
& +\sum_{k=1}^{2}\left(\int_{\Omega}\left(\sum_{i, j=1}^{N} \alpha_{i j} \frac{\partial \phi_{k}^{\lambda}}{\partial x_{j}} \frac{\partial \psi_{k}^{\mu}}{\partial x_{i}}+\bar{\alpha}_{i j} \frac{\partial \psi_{k}^{\lambda}}{\partial x_{j}} \frac{\partial \phi_{k}^{\mu}}{\partial x_{i}}\right) d x\right. \\
& \left.+\int_{\Omega} \alpha_{0}\left(\phi_{k}^{\lambda} \psi_{k}^{\mu}+\psi_{k}^{\lambda} \phi_{k}^{\mu}\right) d x\right)=\sum_{k=1}^{2} \sigma\left(\Phi_{k}^{M}, \boldsymbol{\Phi}_{k}^{M^{\prime}}\right)
\end{aligned}
$$

where $\sigma(.$, .) is the symmetric bilinear form defined in proposition 1 . We conclude that ζ (.,.) is symmetric.

THEOREM 2: Under hypothesis (2), (3), (4), with $\tau_{0}>0$, and the following additional condition

$$
\begin{equation*}
\exists \tau_{1}>0, \quad\left|\alpha_{0}\right| \leqslant \tau_{1} \quad \text { and } \quad \tau+\left(\tau_{0}-2 \tau_{1}\right) C_{\Omega}^{2} \geqslant \alpha>0 \tag{26}
\end{equation*}
$$

solution of problem (12) can be computed by means of a conjugate gradient algorithm.

Démonstration of Theorem 2 : Since problem (25) contains problem (12), we just have to prove that one can compute solution of (25) using a conjugate gradient algorithm.
i) $\zeta(.,$.$) is continuous.$

From the proof of proposition 2, we have

$$
\zeta\left(M, M^{\prime}\right)=\sigma\left(\Phi_{1}^{M}, \Phi_{1}^{M^{\prime}}\right)+\sigma\left(\Phi_{2}^{M}, \Phi_{2}^{M^{\prime}}\right)
$$

We have then

$$
\left|\zeta\left(M, M^{\prime}\right)\right| \leqslant\left|\sigma\left(\Phi_{1}^{M}, \Phi_{1}^{M^{\prime}}\right)\right|+\left|\sigma\left(\Phi_{2}^{M}, \Phi_{2}^{M^{\prime}}\right)\right|
$$

From estimate (16) and Cauchy-Schwarz inequalities, we obtain $\left|\zeta\left(M, M^{\prime}\right)\right| \leqslant 4 . \max \left(N\right.$. Cte $\left.\|\alpha\|,\left\|\alpha_{0}\right\|_{\infty},\|\beta\|_{\infty}\right) \times$

$$
\times \sum_{k=1}^{2}\left\|\Phi_{k}^{M}\right\|_{H^{1}}\left\|\Phi_{k}^{M^{\prime}}\right\|_{H^{1}}
$$

$\leqslant 4 \cdot \max \left(N\right.$. Cte $\left.\|\alpha \cdot\|\|,\| \alpha_{0}\left\|_{\infty},\right\| \beta \|_{\infty}\right) \times$

$$
\times\left(\sum_{k=1}^{2}\left\|\Phi_{k}^{M}\right\|_{H^{1}}^{2}\right)^{1 / 2}\left(\sum_{k=1}^{2}\left\|\Phi_{k}^{M^{\prime}}\right\|_{H^{1}}^{2}\right)^{1 / 2}
$$

$\zeta(.,$.$) is thus continuous.$
vol. $26, n^{\circ} 2,1992$
ii) Coercivity.

We suppose that $\sigma(.$,) is coercive. Actually, this can be proved under condition (26).

Then, relation

$$
\zeta(M, M)=\sigma\left(\Phi_{1}^{M}, \Phi_{1}^{M}\right)+\sigma\left(\Phi_{2}^{M}, \Phi_{2}^{M}\right)
$$

and the fact that the Λ_{0}-norm is induced by the \mathbf{H}^{1}-norm prove that $\zeta(.,$.$) is coercive. Proposition 2$ completes this demonstration.

Remark: One can prove that $\zeta(.$, .) is coercive, under the more precise following condition

$$
\begin{equation*}
\min \left(\tau+\left(\tau_{0}-2 \tau_{1}\right) C_{\Omega_{1}}^{2}, \tau+\left(\tau_{0}-2 \tau_{1}\right) C_{\Omega_{2}}^{2}\right) \geqslant \alpha>0 \tag{27}
\end{equation*}
$$

where $\Omega_{\imath^{\prime}}=\Omega_{\imath} \cup \gamma \cup W_{\imath j}, W_{\imath j}=\Omega_{\imath^{\prime}} \cap \Omega_{j}$ is a very thin open set.

3.3. Algorithm

We apply an algorithm of minimization for the solution of problem (25), see Glowinski [12]. From this algorithm, we obtain the following conjugate gradient algorithm for the solution of (12).

Initialization.

Choose λ^{0} in Λ_{g} compute ρ^{0}.
For $k=1,2$.
Find $u_{k}^{0} \in H^{1}\left(\Omega_{k}\right), u_{k}^{0}=g_{k}$ on $\Gamma_{k}, u_{k}^{0}=\lambda^{0}$ on γ such that

$$
\begin{align*}
& \int_{\Omega_{k}}\left(\sum_{t, j=1}^{N} \alpha_{\imath j} \frac{\partial u_{k}^{0} \partial v_{k}}{\partial x_{j}} \frac{\partial x_{i}}{\partial x_{i}}\right) d x+\int_{\Omega_{k}} \alpha_{0} u_{k}^{0} v_{k} d x+ \\
&+\sum_{k=1}^{N} \int_{\Omega_{k}} \beta_{i} \frac{\partial u_{k}^{0}}{\partial x_{t}} v_{k} d x=\int_{\Omega_{k}} f_{k} v_{k} d x \forall v_{k} \in H_{0}^{1}\left(\Omega_{k}\right) \tag{28}
\end{align*}
$$

Find $\rho^{0} \in \Lambda_{0}$ such that

$$
\begin{align*}
& \sum_{k=1}^{2}\left(\int_{\Omega_{k}}\left(\nabla \tilde{\rho}_{k}^{0} \nabla \tilde{\mu}_{k} d x+\int_{\Omega_{k}} \tilde{\rho}_{k}^{0} \tilde{\mu}_{k} d x\right)\right)= \\
&= \sum_{k=1}^{2}\left(\int_{\Omega_{k}}\left(\sum_{t, j=1}^{N} \alpha_{\imath \jmath} \frac{\partial u_{k}^{0}}{\partial x_{j}} \frac{\partial \tilde{\mu}_{k}}{\partial x_{i}}\right) d x\right. \\
&+\int_{\Omega_{k}} \alpha_{0} u_{k}^{0} \tilde{\mu}_{x} d x+\sum_{t=1}^{N} \int_{\Omega_{k}} \beta_{i} \frac{\partial u_{k}^{0}}{\partial x_{t}} \tilde{\mu}_{k} d x \\
&\left.-\int_{\Omega_{k}} f_{k} \tilde{\mu}_{k} d x\right) \quad \forall \mu \in \Lambda_{0} \tag{29}
\end{align*}
$$

Take

$$
\begin{equation*}
\bar{\delta}^{0}=\delta^{0}=\bar{\rho}^{0}=\rho^{0} \tag{30}
\end{equation*}
$$

Iterations.
$n \geqslant 0, \quad \lambda^{n}, \quad \rho^{n}, \bar{\rho}^{n}, \quad \delta^{n}$ et $\bar{\delta}^{n}$ known, compute $\lambda^{n+1}, \rho^{n+1}, \bar{\rho}^{n+1}$, δ^{n+1} et $\bar{\delta}^{n+1}$.

For $k=1,2$.
Find $v_{k}^{n} \in H_{k}, v_{k}^{n}=\delta^{n}$ on γ such that

$$
\begin{align*}
\int_{\Omega_{k}}\left(\sum_{t, j=1}^{N} \alpha_{\imath j} \frac{\partial v_{k}^{n}}{\partial x_{j}} \frac{\partial z_{k}}{\partial x_{i}}\right) d x & +\int_{\Omega_{k}} \alpha_{0} v_{k}^{n} z_{k} d x+ \\
& +\sum_{i=1}^{N} \int_{\Omega_{k}} \beta_{\imath} \frac{\partial v_{k}^{n}}{\partial x_{\imath}} z_{k} d x=0 \quad \forall z_{k} \in H_{0}^{1}\left(\Omega_{k}\right) \tag{31}
\end{align*}
$$

Find $w_{k}^{n} \in H_{k}, w_{k}^{n}=\bar{\delta}^{n}$ on γ such that

$$
\begin{align*}
\int_{\Omega_{k}}\left(\sum_{i, J=1}^{N} \bar{\alpha}_{\imath j} \frac{\partial w_{k}^{n}}{\partial x_{J}} \frac{\partial y_{k}}{\partial x_{i}}\right) & d x+\int_{\Omega_{k}} \alpha_{0} w_{k}^{n} y_{k} d x+ \\
& +\sum_{i=1}^{N} \int_{\Omega_{k}} \beta_{i} \frac{\partial w_{k}^{n}}{\partial x_{\imath}} y_{k} d x=0 \quad \forall y_{k} \in H_{0}^{1}\left(\Omega_{k}\right) \tag{32}
\end{align*}
$$

Compute η^{n} and $\bar{\eta}^{n}$ as solutions of the following variational problems. Find $\eta^{n} \in \Lambda_{0}$ such that

$$
\begin{align*}
& \sum_{k=1}^{2}\left(\int_{\Omega_{k}} \nabla \tilde{\eta}_{k}^{n} \cdot \nabla \tilde{\zeta}_{k} d x+\int_{\Omega_{k}} \tilde{\eta}_{k}^{n} \tilde{\zeta}_{k} d x\right)= \\
&= \sum_{k=1}^{2}\left(\int_{\Omega_{k}}\left(\sum_{t, j=1}^{N} \tilde{\alpha}_{\imath j} \frac{\partial w_{k}^{n}}{\partial x_{j}} \frac{\partial \tilde{\zeta}_{k}}{\partial x_{l}}\right) d x+\int_{\Omega_{k}} \alpha_{0} w_{k}^{n} \tilde{\zeta}_{k} d x\right. \\
&+\sum_{i=1}^{N} \int_{\Omega_{k}} \beta_{t} \frac{\partial w_{k}^{n}}{\partial x_{l}} \tilde{\zeta}_{k} d x \quad \forall \zeta \in \Lambda_{0} \tag{33}
\end{align*}
$$

Find $\bar{\eta}^{n} \in \Lambda_{0}$ such that

$$
\begin{align*}
& \sum_{k=1}^{2}\left(\int_{\Omega_{k}} \nabla \tilde{\tilde{\eta}}_{k}^{n} \cdot \nabla \tilde{\zeta}_{k} d x+\int_{\Omega_{k}} \tilde{\bar{\eta}}_{k}^{n} \tilde{\zeta}_{k} d x\right)= \\
&= \sum_{k=1}^{2}\left(\int_{\Omega_{k}}\left(\sum_{i, j=1}^{N} \alpha_{l j} \frac{\partial v_{k}^{n}}{\partial x_{J}} \frac{\partial \tilde{\zeta}_{k}}{\partial x_{t}}\right) d x+\int_{\Omega_{k}} \alpha_{0} v_{k}^{n} \tilde{\zeta}_{k} d x\right. \\
&+\sum_{i=1}^{N} \int_{\Omega_{k}} \beta_{i} \frac{\partial v_{k}^{n}}{\partial x_{i}} \tilde{\zeta}_{k} d x \quad \forall \zeta \in \Lambda_{0} \tag{34}
\end{align*}
$$

$$
\begin{align*}
& \varphi_{n}= \\
& \frac{\sum_{k=1}^{2} \int_{\Omega_{k}}\left(\left|\nabla \tilde{\rho}_{k}^{n}\right|^{2}+\left|\tilde{\rho}_{k}^{n}\right|^{2}\right) d x+\sum_{k=1}^{2} \int_{\Omega_{k}}\left(\left|\nabla \tilde{\bar{\rho}}_{k}^{n}\right|^{2}+\left|\tilde{\rho}_{k}^{n}\right|^{2}\right) d x}{\sum_{k=1}^{2} \int_{\Omega_{k}}\left(\nabla \tilde{\eta}_{k}^{n} \cdot \nabla v_{k}^{n}+\tilde{\eta}_{k}^{n} v_{k}^{n}\right) d x+\sum_{k=1}^{2} \int_{\Omega_{k}}\left(\nabla \tilde{\eta}_{k}^{n} \cdot \nabla v_{k}^{n}+\tilde{\tilde{\eta}}_{k}^{n} v_{k}^{n}\right) d x} \tag{35}\\
& \lambda^{n+1}=\lambda^{n}+\varphi_{n} \delta^{n} \tag{36}\\
& \rho^{n+1}=\rho^{n}-\varphi_{n} \eta^{n} \tag{37}\\
& \bar{\rho}^{n+1}=\bar{\rho}^{n}-\varphi_{n} \bar{\eta}^{n} \tag{38}\\
& \rho_{n=1}^{2}=\int_{\Omega_{k}}^{2}\left(\left|\nabla \tilde{\rho}_{k}^{n+1}\right|^{2}+\left|\tilde{\rho}_{k}^{n+1}\right|^{2}\right) d x+\sum_{k=1}^{2} \int_{\Omega_{k}}\left(\left|\nabla \tilde{\bar{\rho}}_{k}^{n+1}\right|^{2}+\left|\tilde{\bar{\rho}}_{k}^{n+1}\right|^{2}\right) d x \\
& \sum_{k=1}^{2} \int_{\Omega_{k}}\left(\left|\nabla \tilde{\rho}_{k}^{n}\right|^{2}+\left|\tilde{\rho}_{k}^{n}\right|^{2}\right) d x+\sum_{k=1}^{2} \int_{\Omega_{k}}\left(\left|\nabla \tilde{\bar{\rho}}_{k}^{n}\right|^{2}+\left|\tilde{\bar{\rho}}_{k}^{n}\right|^{2}\right) d x \tag{39}\\
& \delta^{n+1}=\rho^{n+1}+\rho_{n} \delta^{n} \tag{40}\\
& \bar{\delta}^{n+1}=\bar{\rho}^{n+1}+\rho_{n} \bar{\delta}^{n} . \tag{41}
\end{align*}
$$

Do $n=n+1$, go to (31).

4. APPLICATION TO THE 2D NAVIER-STOKES EQUATIONS

The $2 D$ Navier-Stokes equations for laminar unsteady flow of an incompressible fluid are considered in the velocity-vorticity formulation [13]. We have the following system

$$
\begin{align*}
\frac{\partial \omega}{\partial t}+u \frac{\partial \omega}{\partial x}+ & v \frac{\partial \omega}{\partial y}-\frac{1}{\operatorname{Re}} \nabla^{2} \omega=0 \tag{42}\\
\nabla^{2} u & =\frac{\partial \omega}{\partial y} \tag{43}\\
\nabla^{2} v & =-\frac{\partial \omega}{\partial x} \tag{44}
\end{align*}
$$

plus boundary and initial conditions.
Where Re is the Reynolds number, u and v are velocity components and vorticity is defined by

$$
\omega=\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}
$$

Continuity equation $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$ is implicitly taken into account, see Fasel [14].

Denote $U=(u, v)^{T}$ the velocity vector. At each time step, velocity components can be computed by a conjugate gradient algorithm for symmetric problems with domain decomposition, proposed by Sonké et al. [15]. The same algorithm can be applied for vorticity computation, via the following time discretization

$$
\begin{equation*}
\frac{3 \omega^{n+1}-4 \omega^{n}+\omega^{n-1}}{2 \Delta t}+2(U \cdot \nabla \omega)^{n}-(U \cdot \nabla \omega)^{n-1}=\frac{1}{\operatorname{Re}} \nabla^{2} \omega^{n+1} \tag{45}
\end{equation*}
$$

which is obtained using an explicit scheme of Adams-Bashforth type for non linear term [16]. We have then to solve an Helmholtz problem at each time step.

For reasons mentioned in [5], we avoid scheme (45). Using a semi-implicit two-steps second order accurate θ-scheme [17] for vorticity, we obtain at each time step the following problem

$$
\left\{\begin{array}{l}
\left(\frac{I}{\Delta t}+\theta\left[\left(\tilde{U}^{n+1} \cdot \nabla\right)-\frac{1}{\operatorname{Re}} \nabla^{2}\right]\right) \omega^{n+1}= \tag{46}\\
\quad=\left(\frac{I}{\Delta t}-(1-\theta)\left[\left(U^{n} \cdot \nabla\right)-\frac{1}{\operatorname{Re}} \nabla^{2}\right]\right) \omega^{n} \text { in } \Omega \\
\omega^{n+1}=\frac{\partial \tilde{u}^{n+1}}{\partial y}-\frac{\partial \tilde{v}^{n+1}}{\partial x} \text { on } \Gamma, \quad 0 \leqslant \theta \leqslant 1
\end{array}\right.
$$

This problem is similar to the model problem (1), operator A is replaced by

$$
\frac{I}{\Delta t}-\frac{\theta}{\operatorname{Re}} \nabla^{2}
$$

where I is the identity operator, that is

$$
\alpha_{0}=\frac{1}{\Delta t} \quad \text { and } \quad \alpha_{i J}=\frac{\theta}{\operatorname{Re}} \delta_{i j}
$$

$\delta_{i j}$ is the Kronecker symbol, operator B is replaced by $\theta\left(\tilde{U}^{n+1} \cdot \nabla\right)$, where \tilde{U}^{n+1} is a second order prediction of U^{n+1}.

Evolution of fluid motion can then be studied by solving system (43), (44), (46).

Condition (2) is satisfied, since continuity equation is implicitly verified [14].

$$
\text { Conditions (3) and (4) are satisfied with } \tau=\frac{\theta}{\operatorname{Re}} \text { and } \tau_{0}=\frac{1}{\Delta t} \text {. }
$$

Now, taking $\tau_{1}=\frac{1}{\Delta t}$, condition (27) can be expressed in the following form

$$
\min \left(\frac{\theta}{\operatorname{Re}}-\frac{C_{\Omega_{1}}^{2}}{\Delta t}, \frac{\theta}{\operatorname{Re}}-\frac{C_{\Omega_{2}}^{2}}{\Delta t}\right) \geqslant \alpha>0
$$

that is

$$
\begin{equation*}
\operatorname{Re}<\frac{\theta . \Delta t}{\max \left(C_{\Omega_{1}}^{2}, C_{\Omega_{2}}^{2}\right)} \tag{47}
\end{equation*}
$$

Recall that if l is the thickness of a bounded set O, then one has $C_{0}^{2} \approx \frac{1}{2} l^{2}$, see Raviart and Thomas [18]

Scheme (46) is unconditionally stable for $1 / 2 \leqslant \theta \leqslant 1$ and one can choose quite large time steps, e g $\Delta t=1 / 10$

Suppose Ω is decomposed into subdomains of thickness $\leqslant 1 / 10$ Then for a fully implicit scheme, that is $\theta=1$, condition (47) is satisfied for $\mathrm{Re} \leqslant 20$

The discrete version of algorithm presented in this paper and numerical results of its application to problem (46) can be seen in [5] This application shows that condition (27) is restrictive, since succesful results have been obtained in simulation of fluid motion for $\operatorname{Re}=100$, computational domain being decomposed into subdomains of thickness $l=1 / 2$

REFERENCES

[1] R Glowinski, J Periaux and Q V Dihn, Domain Decomposition Methods for Nonlinear Problems in Fluid Dynamics, INRIA report 147, July 1982
[2] R Glowinski and M F Wheeler, Domain Decomposition and Mixed Finite Element Methods for Elliptic Problems, Proc of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations Paris, January 1987, SIAM 1988
$[31$ T F Chan, Analysis of preconditioners for domain decomposition, SIAM J Numer Anal, 24/2, 1987
[4] T F Chan and D C Resasco, A Framework for Analysis and Construction fo Doman Decomposition Preconditioners, Proc of the First International Symposium on Domain Decomposition Methods for Partual Differential Equattons Paris, January 1987, SIAM 1988
[5] L Sonke, P Le Quére and Ta Phuoc Loc, Domain decomposition and multigradient methods for the Navier-Stokes equations, Proc 6th International Conference on Numerical Methods in Laminar and Turbulent Flow, Swansea, UK July 1989

[^1][6] K. Miller, Numerical analogs to the Schwarz alternating procedure, Numer. Math. 1965.
[7] L. Sonké, Solution algorithmique de certaines équations aux dérivées partielles non symétriques : application aux équations de Navier-Stokes, in preparation.
[8] R. Dautray and J. L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Masson, Paris 1985.
[9] R. Temam, Navier-Stokes equations, North Holland, 1977.
[10] L. Schwartz, Théorie des distributions, Hermann, Paris, 1957.
[11] P. S. Vassilevski, Poincaré-Steklov operators for elliptic difference problems, C. R. Acad. Bulgare Sci., 38, no. 5, 543-546, 1985.
[12] R. Glowinski, Numerical Methods for nonlinear variational problems, Springer, 1984.
[13] C. G. Speziale, On the Advantages of the Vorticity-Velocity Formulation of the Equations of Fluid Dynamics, J. Comp. Phys. 73, 476-480, 1987.
[14] H. F. FASEL, Numerical solution of the complete Navier-Stokes equations for the simulation of unsteady flows. Approximation Methods For Navier-Stokes Problem, Proc. Paderborn, Germany, 177-191, Springer-Verlag, 1979.
[15] L. Sonke, P. Le Quéré and Ta Phuoc Loc, Domain decomposition and Velocity-vorticity formulation for fluids flows in multiply-connected regions, in preparation.
[16] J. M. Vanel, R. Peyret and P. Bontoux, A pseudo-spectral solution of vorticity-stream function equation using the influence matrix technique, Numer. Meth. Fluid Dynamics II, 463-472, Clarendon Press, Oxford, 1986.
[17] R. Peyret and T. D. Taylor, Computational methods for fluid flow, Springer-Verlag, 1985.
[18] P. A. Raviart and J. M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris, 1984.

[^0]: ${ }^{(*)}$ Received February 1990
 (${ }^{1}$) LIMSI-CNRS, BP 103, 91403 Orsay Cedex, and Laboratorre d'Analyse Numénque Unıversıté Parıs-Sud, 91405 Orsay Cedex, France
 M^{2} AN Modélısatıon mathématıque et Analyse numérıque 0764-538X/92/02/289/19/\$ 390
 Mathematical Modelling and Numerical Analysis (C) AFCET Gauther-Villars

[^1]: M^{2} AN Modehsation mathematıque et Analyse numerique
 Mathematical Modelling and Numencal Analysis

