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MATHEMATICA! MODEUJHG AND NUMEfUCAL ANALYStS
MOOÉUSAT10N MATHÉMATfQUE ET ANALYSE NUMÉRIQUE

(Vol. 26, n° 1, 1992, p. 77 à 93)

CURVES FROM VARIATIONAL PRINCIPLES

by Ch. A. MlCCHELLl O

Abstract. — Variational techniques have long been used as a guiding principle for the
construction of curves and surfaces. In this spirit, we study a practical problem of curve design
where the choice of the curve is governed by a variational principle. The problem is to find the
shape of a deformed wire in the plane of maximum durability which is subject to continuai wear
due to external forces and the surrounding materiat We use this problem as a prototype for a
class of variational curve problems which we solve by using convex duality theory. Thus we
characterize our optimal curve in terms of a fïnite dimensional minimum problem which can be
solved numerically. S ome numerical examples are given.

Resumé. — Courbes déduites de principes variationnels. Les techniques variationnelles ont
depuis longtemps été utilisées comme principe directeur pour la construction de courbes et
surfaces. Dans cet esprit nous étudions un problème pratique de conception de courbe où le choix
de la courbe est piloté par un principe variationnel. Le problème à résoudre est de trouver la
forme d'un câble déformé dans le plan de vie maximum sous V usure continue provenant de forces
extérieures et des matériaux environnants. Nous utilisons ce problème comme prototype pour une
classe de problèmes variationnels de courbes que nous résolvons par la théorie de dualité
convexe. Ainsi notre courbe optimale est caractérisée en termes d'un problème de minimisation
de dimension finie qui peut se résoudre numériquement. Quelques exemples numériques sont
donnés.

1. INTRODUCTION

Variational techniques have long been used as a guiding principle for the
construction of curves and surfaces. Most noteworthy are the fundamental
notions of geodesie curve and minimal surface, cf. do Carmo [1].

Among the many interesting and useful advances in this direction we
mention that recent variational methods have been successfully used to
obtain nonparametric surfaces which interpolate prescribed data, cf. Franke
[5]. For planar interpolatory curves, minimizing the intégral of the square of
its curvature is a criterion that has attracted some interest. This problem was

(l) IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York,
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78 CH. A. MICCHELLI

investigated by Lee and Forsythe [10] and also by Jerome and Fisher [6]
(with the additional constraint that the length of the curve is bounded). A
linearized version of this problem leads to interpolatory (natural) spline
curves, cf. Farin [2], and gênerai results of this type are given in Sidhu and
Weinert [15]. We also mention that variational principles have been also
used to obtain GC 2 (twice geometrically continuous) interpolatory curves,
Nielson [13].

In all these cases, a fîxed parametrization of the curve is assumed. As this
may dramatically affect the shape of the curve proposais have been made to
even choose the parametrization of an optimal interpolatory curve by a
variational principle, see Marin [11], and Scherer [14]. This important
design issue of best parametrization is also discussed by Foley [3] and Foley
and Nielson [13] from nonvariational perspectives.

In this spirit, we study a practical problem of curve design where the
choice of the curve is governed by a variational principle. The problem is to
fïnd the shape a deformed wire in the plane of maximum durability which is
subject to continuai wear due to external forces and the surrounding
materiaL Such a requirement could arise in various situations, for instance,
for wires in matrix printers which connect actuators to print heads.

We use this problem as a prototype for a class of variational curve
problems which we solve by using convex duality theory. Thus we reduce
our infinité dimensional primai problem to a fînite dimensional dual
problem. We show that there is no duality gap and characterize our optimal
curve in terms of the finite dimensional dual problem which can then be
solved numerically. Some numerical examples are given.

2. THE WIRE PATH PROBLEM

The formulation of the problem we are about present is due to John Lew
of IBM T. J. Watson Research Center. The description we give hère is a
physically idealized set up which leads to a satisfactory analytic solution to
the problem.

Wire Path Problem : A thin elastic rod of constant circular cross-section,
with moment of inertia / and Young's modulus E is subject to external
forces which bends it from a straight line, its underformed state. Assume
that the axial curve of the rod is parametrized as r(t) — (x(t),y(t)),
te [0, 1 ] and that the external force is a vector-valued function F(t) which
exerts no twist on the rod. Then small déformation theory, cf. Landau and
Lifshitz, eq. (20.14) [9], yields the relation

r<4>(O=f(O, O^t^l, (2.1)

where f (f) := F(t)/IE and r(f)9 r ( 1 )(0, r ( 2 )(0, r ( 3 )(0 are continuous
functions of t e [0, 1 ].
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CURVES FROM VARIATIONAL PRINCIPLES 79

We suppose that the ends of the rod are constrained linearly (no
curvature) which provides us with boundary conditions :

(r(0) sr^)(0)?r^(0) sr(3>(0)) = (0,0,0,0) (2.2)

and

(r( l) , r ^ ( l ) , ' r (2)(1), r<3>(l)) = (a0, a b 0, 0 ) . (2.3)

The material surrounding the rod détermines a wear rate at each point
t, assumed to be proportional to |f(r) | 2 and given by W{t) |f(f) | 2 for some
known functions W(t) ; here |x|2 = the euclidean norm of x e R2.

To maximize the lifetime of the rod we want to find the curve
r(£) which minimizes the maximum wear rate

m a x { W ( t ) \ f ( t ) \ 2 : 0 ^ t ^ 1 } (2.4)

over all curves r(f) subject to (2.1), (2.2) and (2.3).

3. ANALYSES OF THE WIRE PATH PROBLEM

We write the competing curves in the form

r ( 0 = r(O) + r(1)(O)r + r(2)(0) L + r(3)(0) — + — \ (t - afi(a)da .
2! 3! 3! Jo ^

Then the boundary conditions imply that

r ir ) = — i (f — a) il a ) cza [ó.i)

and

3!ao= [ ' ( l - o - ) 3 ^ ) ^ (3.2)

2 ! a L - f1

Jo
(l-afi(a)da (3.3)

r\ r\
0 = i(a)da= (1 - a)i(a)da . (3.4)

Jo Jo

Thus there are eight linear constraints on f which we express as follows.
We define c = (cu c2, ..., c 8) = (c1; c2, c3, c4) e R8 and require that

cj = a0, c2 = a b c3 = c4 - 0 . (3.5)
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80 CH. A. MICCHELLI

Also, we deflne the functions xl5 ..., x 8 : [0, 1 ] -• R2 by

xi(0 = i ( i - O 3 ( i , 0 ) 5 x2(o = I ( i - o 3 - ( 0 , i )

x3(0 = ^ (i - O2 ( i , 0 ) , x4(r) = I (i - o2 (o, i )
= ( 1 - 0 ( 0 , 1 ) (3*6)

x7(0 = ( 1 , 0 ) , x8(O = (0 ,1 ) .

Then the constraints on f take the equivalent form

n

where (x, y) is the Standard euclidean inner product for vectors x,
y e R 2 .

We now extend this problem to the following situation (further examples
of the gênerai case will be given later).

An External Problem : Given constants c = (cu ..., c m) e Rm and vector-
valued functions x b ..., x m, : [0, 1 ] - R" with |x,(. )12 e Ll[0, 1 ],
i = 1, 2, ..., m. Find a curve f( . ) : [0, 1 ] - R", |f( . ) | 2 e L^ö, 1 ] which
minimizes

max | f ( 0 | 2 (3.8)

among all curves f such that

f1

Jo

Note that this is a gênerai version of the wire path problem when the wear
rate is assumed to be constant.

For our flrst result we require the following hypothesis : given any
d = (dl9 ..., d m) e Rm\ {0} the set

Z ( d ; x „ . . . , x w ) = itiQ^t^l, J djxj(t)=o\ (3.10)

l 7 = 1 J

has Lebesgue measure zero, which we express as

measZ(d ;x l 5 . . . , x m ) = 0 . (3.11)

Observe that in the case of the wire path problem this condition is valid
since the set (3.11) is the common zero set of two cubics and hence it is
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CURVES FROM VARIATIONAL PRINCIPLES 81

either a finite set or the whole interval, [0s 1 ]. The latter case cannot occur,
since obviously the curves xb ..., x 8 in (3.6) are linearly independent. Note
that conditions (3.11) certainly implies, in gênerai, that x l 5 . . . ,xm are
linearly independent.

We will now proceed to solve the external problem under the condition
(3.11).

THEOREM 3.1 : There exists a unique curve f° : [0, 1] -• R* which min-
imizes (3.8) subject to (3.9). It is given by

,a.e.,te [ 0 , 1 ] , (3.12)
2

where (yu ...,y m) e Rm is the unique minimum of the strictly convex function

H{&) - f '
~ J o

dt, d = (du...,dm).

subject to

d, c, = 1

(3.13)

(3.14)

and

A n - dt . (3.15)

Note that the extremal curve is a.e. a motion on the sphère with radius
Ào which is the minimum value of (3.8) that we seek.

Proof: Clearly, the function (3.13) has a unique minimum subject to
(3.14) because it is a strictly convex function of d. Let y e Rm\ {0} be the
unique minimum. Then y satisfïes the nonlinear (variational) équations

dt = \Cj, j = 1, ...,m, (3.16)

for some Lagrange multiplier A. Hère we use the easily verified fact that for
anyd= (rf„ .... d m) s Rm\{0}

dH(d)
dd,

dt, j = 1, ...,m. (3.17)

One should keep in mind that our hypothesis insures that the intégral on the
right hand side of (3.17) is finite.

vol 26, n 1, 1992



82 CH. A. MICCHELLI

Now, multiply both sides of équation (3.16) by yj9 and sum over
m

j , j — 1, ..., m. Since £ yt ct = 1 we get

•f
Jo

which is what we call Ao in (3.15). This observation shows that f°, as defined
by (3.12) satisfies our constraints (3.9). Furthermore, since | f°(r) |2 =
A 5"l, a.e. t e [0, 1 ] it only remains to show that any other curve f satisfying
the linear constraints (3.9) has a larger maximum norm. To see this we now
multiply both sides of équation (3.9) by yt and sum over i, 1 ̂  i ̂  m to
obtain

which is, by the Cauchy-Schwarz inequality

f
Jo

£ yi M . | f ( 0 | 2 *

^ A o max | f ( 0 | 2 -

Therefore we get max lf(?)J2 ŝ  A ^ 1 which is the desircd conclusion.

The above inequalities imply even more. They establish that f0 defïned by
(3.12) is indeed the unique solution to our extremal problem. To see this we
let f be any other solution with max |f(/) |2 = AQ1. Therefore the above

inequalities all become equalities, that is,

f' (2>x,(o,f(o)*= f
Jo \ , = i / J

dt\ max | f ( 0 | 2 .yt MO

The last équation above, and our basic hypothesis (3.11) implies that
f(/) ^ o-(t)f°(t) where <r is some function such that |o-( /) | = 1, a.e.,
t e [0, 1 ]. To pin down <r(t) we now use our linear constraints (3.9) which
give

a(t)(xk(t),f\t))dt= \l (xk(t)J°(t))dt,
Jo

(3.18)
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CURVES FROM VARIATIONAL PRINCIPLES 83

First, we multiply équation (3.18) by yk and sum over k, 1 =s k =s m, and
then from our formula (3.12) for f° we get

a(t) dt -i dt.

But then our basic hypothesis (3.12) guarantees that cr(t) = 1, a.e.,
te [0,1].

Before we consider extensions/improvements of Theorem3.1 let us
return to our Wire Path Problem and see what conclusions we can draw
from Theorem 3.L

It is as convenient to consider a somewhat gênerai situation. We suppose
ux(t),..., u r(t), te [0,1], are given linearly independant scalar valued
functions and consider curves f constrained to satisfy

(3.19)c, = Uj(t)f(t)dt9 j = l , . . . , r .
Jo

Obviously the wire path problem is of this form, and generally (3.19) is a
special case of the linear constraints (3.9) for the choice

c = (cl9 ...,c r)eRm , m = m

and
7 = 1,..., n (3.20)

where el5 ...,e„ is the standard coordinate basis in Rw,
j # k and 1 otherwise.

Thus the dual minimum problem becomes, in this case,

f1
min dt (3.21)

subject to Y, (bi> ci) = Is b b ...,b re Rn. In particular to solve the wire
i = i

path problem we are led to minimizing

f
Jo

\v(t)\2dt

where p(r) = b0 + b ^ l - t) + b2(l - t)2/2l + b3(l - t)3/3\ is a parametric
cubic curve in the plane such that (a0, b3) = (al9 b2). Although in this case
(r°)(4) (t) is a motion on the circle of radius Ao, the functional form of the
actual curve r°(r) is quite complicated. Nonetheless, the numerical calcu-
lation r°(?) can be accomplished easily.

vol 26, n° 1, 1992
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0.0 0.2 0.4 0.6 0 . 8 1 . 0

F i g u r e 3 . 1 . — r ( l ) - ( 1 , 1 ) , r ( 1 ) ( l ) = ( 1 , 2 ) , r ( 2 ) ( l ) = ( 0 , 0 ) , r ( 3 ) ( l ) = ( 0 , 0 ) .

0.0 0.2 0.4 0.6 0.8 1.0
t

F i g u r e 3 . 2 . — r ( l ) = ( 1 , 5 ) , r u ) ( l ) = ( 2 , 6 ) , r ( 2 ) ( l ) = ( 3 , 7 ) , r ( 3 ) ( l ) - ( 4 , 8 ) .

Software for minimizing a convex function of several (eight) variables,
given a procedure to compute the partial derivative of the objective
function, is required. The computation of the intégrais can be accomplished
by a quadrature which may take account of the zéros (integrable singulari-
ties) of the denominator. As a check it is advisable to employ a quadrature
on the computed curve r°(/) to check if it satisfîes the boundary conditions
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CURVES FROM VARIATIONAL PRINCIPLES 85

and the variational équations. Above are the results of such computations
using some Harwell Library subroutines. We have plotted the curve and
each component as well.

4. EXTENSIONS

First let us note that the analysis extends easily to non constant
continuous wear function W(t) which are positive on [0, 1 ]. It will appear in
the dual minimum problem as a reciprocal weight. Specifïcally (3.12) still
holds where (yh ...,y m) e Rm is chosen to minimize

i:
subject to

W~\t)dt

and A o is likewise given by

Jo
W(t) dt .

To remove the critical hypothesis (3.1) is another matter. A particularly
interesting example when it doesn't hold is the problem of fïnding a curve
r : [0 , 1]->R" which passes through prescribed points ru ..., r q + k, -at
distinct points t — tu ..., t q + k, (t{ = 0, tq + k = 1 ) in [0, 1], respectively, that
is,

=r

and minimizes the quantity

max r<*>(0|

(4.1)

(4.2)

As in the wire path problem we expand r(t) as

We evaluate both sides of this équation at / = th ..., t i + g and take the
divided différence of the resulting expressions. By doing so we obtain the

vol. 26, n° 1, 1992



86 CH. A. MICCHELLI

equivalent problem of finding a curve f(f)(= riq\t)) : [0, 1 ] -• R" which
minimizes

max | f (0 | 2

subject to

[ t i 9 . . . 9 t i + q ] r = f M ( t \ t t 9 . . . 9 t i + q ) f ( t ) d t 9 1 = 1 , . . . , * : . ( 4 . 3 )
J o

Here

r = X

is the q-th order divided différence vector, and

^̂* '" n
is the q — lst degree i?-spline with knots at th ...5 ? / + ?. This problem is of
the type (3.19), but now (3.11) fails to hold, since spline functions may
vanish on intervals. Thus the daal objective function (3.13) or (3.21) is no
longer differentiable.

We will only prove the foUowing fact about minimizing (4.2) subject to
(4.1).

THEOREM 4.1 : There exists a curve r : [0, 1] -• Rrt which minimizes the
maximum length of its q-th derivative, (4.2) subject to the interpolation
conditions (4.1) such that

(i) |= r{q)(t)\2= constant, a.e., t e [0, 1],
( i i ) F o r e v e r y a e R " , t h e f u n c t i o n ( s k , r ^ g \ t ) ) h a s a t m o s t k - l s i g n

c h a n g e s .

In the scalar case n = 1, this result was proved by Karlin, [8].

Proof : Given e > 0 we define

f{t)= f ' Gs{t,
Jo

Mf{t)= f Gs{t,a)M{a\ti,...,ti+q)da, i = 1, ..., *
J

where Gs(t, er) = (2 TT-T^exp ( - 5 ((' -
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CURVES FROM VARIATIONAL PRINCIPLES 87

Then

h m Mf(t) = M(t\ti9 ...9 t i + q),te ( 0 , 1 ) , i = 1, ..., k , ( 4 .4 )

uniformly on compact subsets of (0, 1).
Moreover, from the variation diminishing property of 5-spline series and

the strict total positivity of the heat kernel G£(x, y), cf. Karlin [7], it foliows
that {Aff(Oï .»> A*"]?(0} constitutes a Chebyshev system on (0, 1). Thus
any nontrivial linear combination of these functions have a most k — 1 zéros
on (0, 1). Hence, we may appeal to Theorem 3.1 and characterize the
minimum of

max |f( /) |2 (4.5)

subject to

Mf{t) f (0 dt = d,,, i = l, ...,*, (4.6)
o

since the zero measure condition (3.11) is satisfïed for the corresponding
functions x(, given by (3.20), for ut = M£

t, i = 1, ..., k. We let AQ be the
corresponding minimum to the dual problem and fg the unique solution to
the primai problem. Then |f"o(0| = (Ao)~1

)
 a-e-> te [0,1] and (a, fg(O)

has at most k - 1 sign changes for every aeR" . It is apparent that
lim A o = A 0, where

A n = min
o

k

dt:
2 i = 1

which is positive since the f?-splines are linearly independent. Thus
fg converges weakly in L l (and hence a.e.), through some subsequence to an
f0 which therefore minimizes (4.5) subject to (4.3) (which holds for
f = f0, because (4.6) holds for f = f(j). Consequently, the curve = r(q) = f0
solves our minimum problem and inherits from fg the properties claimed in
the Theorem.

It would be nice to have an efficient computational procedure to obtain an
extremal curve for the problem above, even for the case that q = 2.

Various other extensions of our basic extremal problem are possible. Our
previous analysis rests on being able to détermine the norm conjugate to the
primai norm

||fII„,2- max | f(f) |2 . (4.7)

vol. 26, ns 1, 1992



88 CH A MICCHELLI

Specifîcially, we used m our proofs the fact that

| * 2

That is, the norm conjugate to HfH^ 2
 1S ll^lli 2 ^his < < m i x ed» norm, a

combmation of the 12 norm on Rw, and sup norm on [0, 1 ], quite naturally
arose in the wire path problem But, perhaps, one might have flrst thought
of the simpler Hilbert space norm on curves in R" given by

| | f | |2
2 2= P \f(t)\2

2dt (4 8)
Jo

Tms norm is self-conjugate

More complicated possibilities immediately come to mind, namely,

(49)

where |x|jj = £ |JC, |^, x = (xl9 , x n) e Rn, is the lp norm on Rn The

conjugate norm in this case is

| | f | | ; r=maxJJ 1(f(O,gW)A llgl l^^l} (4 10)

and it easily follows from Holder's inequality that

where {p, q ) , (r9 s) are conjugate pairs, i e

p q " ' 7 Is ~

For instance, as we have already pointed \\f ||^ 2 = |j ƒ || t 2

Using équation (4 11) a version of Theorem 3 1 will hold also for the
mixed norms (4 9) Perhaps the special cases p, r = 1 or oo will lead to some
further interesting vanational problems for curves
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CURVES FROM VARIATIONAL PRINCIPLES 89

Amongst all these norms the simplest is the (2, 2) norm because here the
variational équations are linear. Thus, minimizing

\W\\dt (4.12)
JO

subject to

f1
^ = (xf(0> f (0) dt , i = 1, ..., m (4.13)

Jo

is solved by

*o(0 - f yi*i(i) (4.14)

where yh ..., 7 m a r e determined by the linear équations obtain by substitut-
ing f = f0 in (4.13). In the special case (3.19), (3.20) the linear System has a
block structure so that it reduces to an r x r (rather than an m x m,
m — rk) linear System. This means we can characterize the optimal curve by
minimizing coordinate by coordinate. For instance, when (4.2) is replaced
by the (2, 2) norm and the curve is constrained by the interpolation
conditions (4.1) we see that the optimal curve is coordinatewise, natural
spline interpolation. This fact was the departure point for the problem of
optimal knot parametrization for spline interpolation mentioned earlier in
the introduction.

Our final comments will focus on adding, in addition to our linear
constraints, some global constraint on the curve. For instance, generally
speaking we might want the curve to avoid certain obstacles. We can
cavalierly describe this by saying f(t) e K, for all t e [0, 1], for some set
K^ Rn. But, duality will only apply when K is convex, a strong hypothesis.
We describe one possible resuit in the case that K is a closed convex cone.
We restrict ourselves to the norm || f || ̂  2 and use methods of [12]. Although
that paper, is restricted to Hilbert spaces norms, i.e. the (2.2) case, the
gênerai methods used there suggest the following approach.

We suppose K is a closed convex subset of R" and that P K : R" -• K is the
orthogonal projection onto K, i.e.

min | x - y | 2 = |x - PK x| x, y e Rn .

In gênerai, PK is a nonlinear function of n variables, which, however can
be determined for some simple sets. When K is a closed convex cone, the
case we will restrict ourselves to it is known that

vol. 26, n 1, 1992
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+ ' y ) l 2 ) / « o = (FK*,y)> x j e R " , (4.15)

( x , y ) ^ ( P , ( x ) , y ) , x e R " , yeK (4.16)

(PK(x), PK(x)) = (x, PK(x)l x e R \ (4.17)

cf. [12, Lemma 2.1]. Based on these facts we are lead to consider the (dual)
minimum problem

dt (4.18)

subject to y dj Cj = 1. If HK(d) has a minimum at d = y and

f m \
PK j y yt xt(t) 1 = 0 only on a set of Lebesgue measure zero then remove

using (4.15) there is a Lagrange multiplier Ao such that

f dt (4.19)

As bef o re,

satisfies
M

Jo

Multiplying both sides of (4.19) by y} and summing over j , 1
simplifying the resulting expression gives

An =

(4.20)

(4.21)

m and

(4.22)

Now, let f be any curve such that f (f) e K, te [0, 1 ], and (3.9) holds, that
i s ,

t = (xt(t)J(t))dt, i - 1, ... ,w.
Jo
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Using (4.16), we have for all te[O, 1]

7 = 1

PK

91

. | f ( 0 | 2 . (4.23)

Integrating both sides over i e [0, 1 ] and using (4.21), and also (4.17),
(4.22) gives

dt
= f' (fo(0, i^x/

m a x | f ( 0 | 2 -

Hence we get

This proves most of the following theorem.

THEOREM 4.2 : Let K be a closed convex cone in R" and suppose
x i ) -> x m>} ' i ) - Jm are as ï-n the extremal problem in section three. Suppose
PK:Rn -• K is the orthogonal projection of Rn onto K and it has the
following property. For any d e Rm\{0}

meas lt:te [O, 1 ] , PK £ ^ x , ( O l = O . (4.24)

{ \j = i / J

77ze/? f0 defined by (4.20) is the unique curve which minimizes

max | f ( 0 | 2 (4-25)

over all curves in K satisfying

ct = (x,(O,f(O) A, 2 = 1 « .
Jo

Proof : First, we observe that HK indeed has a minimum. Let
{df : f = 1, 2, ... } be any minimizmg séquence i.e.

lim = inf

vol 26, nQ 1, 1992



92 CH A MICCHELLI

If {d : t — 1,2, ... } is bounded then we may choose a convergent
subsequence and prove HK has a minimum. If not, we consider the vectors

which surely have a convergent subsequence, sayd := d
o o

/ | d j

hm d = d°. Then it easily follows, since |d oo, that

dt = 0.

But this contradicts our hypothesis (4.24) and so HK indeed has a minimum.
As for the uniqueness, the argument is similar to the one used in Theorem
3.1. Namely, if max |f(0l = -̂ö"1 then the inequahties in (4.23) become

0 * * ^ 1

equalities and so f(0 = cr(t)fo(i). But then the moment conditions (3.9)
imply that

<r(t) dt = dt

which proves that <r(t) = l, a.e., t e [0, 1 ] by using our hypothesis (4.24),
once again.
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