
M2AN. MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
- MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

R. S. ANDERSSEN

F. R. DE HOOG

L. B. WAHLBIN
On pointwise stability of cubic smoothing splines
with nonuniform sampling points
M2AN. Mathematical modelling and numerical analysis - Modéli-
sation mathématique et analyse numérique, tome 25, no 6 (1991),
p. 671-692
<http://www.numdam.org/item?id=M2AN_1991__25_6_671_0>

© AFCET, 1991, tous droits réservés.

L’accès aux archives de la revue « M2AN. Mathematical modelling and nume-
rical analysis - Modélisation mathématique et analyse numérique » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/
conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1991__25_6_671_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


r n F T P I MATHEMATKALMODEUiNGANONUMEWCALANALYSIS
ÜJJ ;hj MODÊUSATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 25, n° 6, 1991, p. 671 à 692)

ON POINTWISE STABILITY OF CUBIC SMOOTHING SPLINES
WITH NONUNIFORM SAMPLING POINTS (*)

R. S. ANDERSSEN O, F. R. DE HOOG O, and L. B. WAHLBIN (2)

Communicated by J. H. BRAMBLE

Abstract. — A gênerai technique is developed for analyzing pointwise stability of smoothing
spïines when the design points are unevenly spaced. In particular, it is not assumed that the
distributions of design points approach a limit. The technique can also be applied to the analysis
of pointwise convergence.

Resumé. —- Nous développons une technique générale pour l'analyse de la stabilité ponctuelle
dans le lissage des fonctions splines dans le cas où les points sont inégalement distribués. En
particulier, nous ne supposons pas que les distributions de points approchent une limite. La
technique s'applique aussi à l'analyse de la convergence ponctuelle.

1. INTRODUCTION

Given a grid of n design, or sampling, points 0 = x0 < x{ < • • • <: xn _ { = 1
on the normalized interval [0, 1], data di9 i — 0, 1, ...5 n — 1, at these design
points, and a penalty, or smoothing, parameter X„ =- 0, the piecewise cubic
twice continuously differentiable smoothing spline sn(x) is the solution of
the following minimization problem,

(1.1) min I "f (*„(*,) - dt)
2 + K f (<(x))2 dx ,

sneH2 H i - O J 0

cf. Holladay [2], Reinsch [4] and Schoenberg [5]. Here H2 = H2[0, 1 ] is the
Sobolev space of functions with square integrable second derivatives in the
distribution sensé.

For the underlying idea of striking a happy medium between approximat-
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672 R. S. ANDERSSEN, F. R. DE HOOG, L. B. WAHLBIN

ing data, typically contaminated by errors, and pleasing the eye, see
Whittaker [7], For a critique of smoothing splines, see de Boor [1, p. 248-9].

The major question addressed in this paper is that of point wise stability of
the smoothing spline. To phrase this question precisely we adopt an
asymptotic point of view. Let

Gn ~ {XQ* XU •••> X n~ l } > Xi ~ xi(n) •>

be a séquence of grids of design points, parametrized by n = 2, 3, ..., and
let these grids together with the smoothing parameters \n form a design
family

(1.2) ® = {3n= {G„,X8} ; /i = 1, 2, ... } .

Further, for a continuous fonction v(x) on [0, 1], let

II ü II ao = m£LX

0 =s je ^ 1

and, for an «-vector v = {vt ; i = 0, ..., n - 1},

Then, what conditions can be placed on the design family 2 so that there
exists a constant C — C(@), independent of n, such that

0-4) II*.IL*CKL

for all data d ? (For the reader who likes to think in terms of a fîxed set of
design points, and a fîxed penalty parameter, the equivalent question is to
ask exactly what features of this set influences C in (1.4).)

Our investigation gives a technique for treating the stability question
(1.4). We are aiming at generality, and it is, then, perhaps not surprising
that our technique is somewhat implicit in nature. We will give examples of
design families in which it becomes explicit.

Most published research into smoothing splines involves assumptions that
the grid séquence Gn finally settles down to a distinguishable pattern, in the
sense that the function

Fn(y) = (number of design points =s y )/n

approaches a limit F{y). Our technique does not assume that such a limit
exists. (In two of our applications, Sections 4.2 and 4.3, the limiting
distributions do exist. In contrast to other investigations, we can allow
F' to become infinité or to vanish, corresponding to systematic meshrefme-
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CUBIC SMOOTHING SPLINES ... 673

ment around a point, or meshthinning, respectively, or even to be a Dirac
delta function.)

The motivation for this paper is the earlier work of Silverman [6] and de
Hoog and Anderssen [3]. In these papers the properties of the Green's
(kernel) functions gn(x;y), which recovers the unique minimizer $n(y) of
(1.1) as

1 "-1

W ^ ( ) d

are the key to any analysis of stability and convergence. Following this
pattern, the analysis in the present paper focuses on first obtaining suitable
estimâtes for the Green's functions ; thereafter the desired results follow
using standard techniques. The present analysis will pinpoint the local and
global influences of data and the design family on the behaviour of the
smoothing spline.

We mention two generalizations of (1.1) which, in the interest of brevity,
we do not pursue in this paper. The first is to replace the penalty on second
derivatives by a penalty on some other derivative, thus generating other
than cubic smoothing splines. The second is to replace the sum occurring by
a weighted sum,

"f Witn(sH(x,) - d,f ,
i = 0

where Win (and kn) could be chosen according to statistical rules. (The
statistical aspects of choosing Kn in (1.1) are not considered in this
investigation.)

We now collect together conventions and notation which will be used
throughout the paper. In the interest of clean notation, dependence on
n will usually be suppressed. Thus s(x) = sn(x), X = \n, cf. also (L3). For
an interval / e [0, 1 ],

(1.5)

and

(1.6) (»,*>)/= J v(x)w(x)dx, \\v\\r= (v,v)y

When / = [0, 1] we drop the indicator / so that (v,w)

(V>W)[Q,l],n e t C *

vol. 25, n° 6, 1991



674 R. S. ANDERSSEN, F. R. DE HOOG, L. B. WAHLBIN

An outline of the paper is as follows. In Section 2 we give the heart of our
technique, an investigation into the decay properties of the associated
Green's function. As a follow-up, we give, in Section 3, a technique for
estimating the total energy in the Green's function. Applications to the
stability problem (1.4) occupy Section 4, and applications to convergence
when data corne from sampling a function having two derivatives is the
subject of Section 5.

2. DECAY ESTIMATES FOR THE GREEN'S FUNCTION

The main resuit of this section is stated in précise form in Theorem 2.1 at
the end.

We start by motivating why decay estimâtes for the Green's (kernel)
function are connected with stability bounds of the form (1.4) (see (2.5)
below). For y e [0,1], we define the Green's function 9 = gn(x;y)
centered at y by the relation

(2.1) ( g , v ) + \ ( g " , v " ) = v ( y ) , f o r a i l veH2.

It exists and is unique ; e.g. by the Lax-Milgram lemma. We remark that,
unless y is a design point, the Green's function, as given in (2.1), is not a
cubic spline on the design interval containingy.

The Euler-Lagrange équation corresponding to the minimization problem
(1.1) reduces to finding s e H2 such that

(2.2) (s, v) + \ ( J " , v") = (d,v) , f o r ai l veH2,

It is then immédiate from (2.1) that

(2.3) s(y)= (d,g) .

We shall assume that [0, 1 ] has been subdivided into disjoint (except for
endpoints) closed intervais Ij = \yjy yj + l], j = 0 , 1, ..., / = / (®„),

(2.4) [0,1] = / 0 U / 1 U... U/ y .

The subdivision points yj are, in gênerai, distinct from the design points
Xj. The subdivision (2.4) will, as indicated, depend on n ; it could also
depend on y, but we have found no use for this extra generality. Thus the
subdivisions (2.4) will be independent of y in this investigation. A major
point in this section is to introducé reasonably practical conditions on the
subdivisions relating them to properties of the design family (1.2). In
applications, the central problem will be to construct such a suitable
partition.

M2AN Modélisation mathématique et Analyse numérique
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CUBIC SMOOTHING SPLINES ... 675

From (2.3) and (2.4) it follows by the triangle inequality and by Cauchy-
Schwarz' inequality that

j

j = o J

(2.5)

** y I ^ L \g\T ̂  y c / ) 1 / 2 \d\ E
j - o J j = o

where

(2.7) fj = f (Ij) = (number of design points in Ij)/n ,

and

(2.8) E? = E2(I ) = Ifll2 + X II""112
i. *

Here ƒ, dénotes the fraction of design points in Ij (with design points
% counted twice if they coincide with an endpoint of Ij other than 0 or 1),
and Ej will be referred to as the energy of g contained in Ij.

At the heart of our argument is a description of properties of the intervals
Ij - Ij(^n) such that the energy Ej exhibits a constant fraction decay as we
move left or right from a central interval Ij containing y, To be précise, we
shall seek the subdivisions (2.4) so that, with p < 1 independent of

(2.9) Ej*p]J-h]-lf, y e l h ,

where ê is the total energy of g in [0, 1 ],

(2.10) ê1^S\y)^ | 0 | 2 + \| |<r|!2-

When this has been accomplished, the result will be reported back into
(2.5). Techniques for estimating S (y) will be given in Section 3.

We proceed to give an analysis of conditions that may be placed on the
intervals Ij so that the constant fraction energy decay estimate (2.9) holds.
We give the details for going to the right of IJQ 3 y ; the analysis to the left is
completely analogous. For y ^ y o + 1 ^et

Lj=\Ij\=yj+x-yj,(2.11)

(2.

(2.

vol

12)

13)

. 25, n'

Rj +

Qh
6, 1991



676 R. S. ANDERSSEN, F. R. DE HOOG, L. B. WAHLBIN

In particular, Qj + l is the energy of g contained in Rj + \. Let 0 === kj(x)
be a cut-off function such that

(2.14)

By a scahng argument from the case Lj = 1, it is clear that we may assume

(2.15) ||*/7)IL ^ CLT1> kil) = dyk/dx\ y = 1, 2, 3, 4 ,

with C a universal constant.

1 •-

y

R: *)

R;

Figure 1.1.

Writing k = kj for simplicity in notation, we have, since k is nonnegative,
and by (2.14),

(2.16) gy
2

+ j = (g, g)R ^ + ^(g'\ g")Rj + ] ^ (g, kg) + \(gn, kg")

= [(g,kg) + \ ( 0 " , (kg)")]-\(g",k"g)-2\(g",k'gf).

From (2.1) the terms in square brackets equal (kg)(y), which vanishes since
k(y) does.

We proceed with some elementary transformations of the two remaining
terms on the right of (2.16). (In the interest of readability we give the trivial
details.)

Integrating by parts,

( Q \ k ' g ' ) = - f g'(k' g ' y = - ! g ' k" g' - j g' kf g"

M2AN Modélisation mathématique et Analyse ^numérique
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CUBIC SMOOTHING SPLINES ... 677

so that, integrating by parts once more,

(2.17) 2(g'\k'g') = ~ f g' k" g' = f gk" g" + f gkm g' .

Further, again integrating by parts,

f 0fcwflr' = - f flffc"»- f ff'fcwflf

or,

(2.18)

Combining (2.17) and (2.18),

^ X j iv g2

so that from (2.16), noting that by (2.14) the intégrais involved actually
extend only over Ij9

f g'fk"g + ± f k i v g 2 .
Jij 2 Jij

Using (2.15), the Cauchy-Schwarz inequality, the arithmetic-geometric
mean inequality, and changing the universal constant C slightly,

(2.19) ^ f
Lj J/.

Uh^gII7j + ± llffllï,]* c[xiiff'ilï, + ^

The idea is now to convert the right hand side of (2.19) into an expression
involving the energy Ej. Noting that the first term is a part of this energy,
while the second is not, we attack the latter. For this a mild condition on the
distribution of design points xt within Ij will be introduced ; namely, (2.20)
below. We isolate the present step as a separate lemma.

LEMMA 2.1 : Let I be an interval oflength L, and let ƒ (/) be the fraction of
design points contained in I (cf. (2.7)). Assume that there is a constant
cQ > 0 such that

(2.20) c 0 L 2 ƒ ( / ) * : - £ {Xi-kf^^-^^foraimnL
n

 Xi e I

vol. 25, n° 6, 1991



678 R. S. ANDERSSEN, F. R. DE HOOG, L. B. WAHLBIN

Then there exists a constant C = C(CQ1) such that for any we H2(I),

(2.21) I M ^ C ^ M Ï + LVII?]- D

Remark 2.1 : The condition (2.20) ensures that the design points xt in
/ are not clustered only around one point. As an example, if / = [xh xi + l] is
a design interval, then ƒ (/) = 2/n, and (2.20) is fulfilled with cQ = 1/4. D

The proof of Lemma 2.1 will be postponed until later in this section.
Admitting it for the moment, and assuming that (2.20) holds for
/ = Ij9 uniformly in j and n, we obtain from (2.19) and (2.21),

(2.22) Qf+l^C{cöl)U\\9"\\2
Ij + -^- \g\)

To proceed we now make the further assumption that

(2.23) —-— ̂ C l 9 independent of7 and n .
Lj fj

Remark 2.2 : When (2.23) holds one has the following bound for the
number / + 1 of intervals in the partition (2.4),

(2.24) ( / + 1)*E (2C 1) 1 / 4 \ - 1 / 4 ,

For, by Hölder's inequality with conjugate indices 4/3 and 4,

J J r J -|3/4 r J 11/4

^ v 4 \ \ W I \

j

Since £ £ / = 1, and by (2.23),

1/4

Since the intervals Ij are disjoint except for endpoints, £ fj =s 2, and (2.24)
o

follows. D

Assuming (2.23) we now have from (2.22) that, with K= K(CQ\ CX),
cf. (2.13),

(2.25) Qf+ ! =

M2AN Modélisation mathématique et Analyse numérique
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CUBIC SMOOTHING SPLINES ... 679

so that vtithp =P(CQ\ CX) = (Kj{K+ l ) ) 1 / 2 < 1,

(2-26) QJ+x^p2QJ, j * j o+l. ~

Performing the analogous construction to the left, applying induction to
(2.26), and noting that Ej =s Qj ̂  ê, we have the decay estimate (2.9),
subject to the conditions (2.20) and (2.23) relating the partitioning
Ij = Ij{n) of (2.4) to the design family (1.2).

We next prove Lemma 2.1.

Proof of Lemma 2.1 : By the mean-value theorem for averages,

(2.27) * | M | 2 ^ _ J _ £ M2(JCl.) = M2( 'n),forsomeTie/.
J K1 ) nJ K1 ) XjEl

Now,

(2.28) \\u\\) = | u\x) dx = Lu2^) + J (u\x) - u2^)) dx .

By Cauchy-Schwarz' inequality and the arithmetic-geometric mean inequali-
ty,

(2.29) f (u\x) - u2(r\)) dx = | [ T 2 M(T) M'(T) ch 1 dx «

Hence from (2.27)-(2.29),

(2.30) | | M | | ^ 2 L 2

The first term on the right of (2.30) already occurs in the energy-related
expression on the right of our desired result (2.21). To treat the second term
on the right of (2.30), we first dérive an auxiliary result, (2.31) below. For
this, let £0 be the point where |w(£)|2 attains its minimum on / , and let
Ci be the minimum point for |« ' (£) |2 . By the mean-value theorem,

(x - Éo) w' (f) = u (x) - u (|0), for some l e Int (x, Êo) .

It follows that

(x - £o)2 (u'tt,))2 ^ (u(x) - u(ïö))
2 ^ u\x), for all x e I,

vol. 25, n° 6, 1991



680 R. S. ANDERSSEN, F. R. DE HOOG, L. B. WAHLBIN

since either w(£0) = 0 or u does not change sign on I. In particular,

| x - « o l î ( « ' ( ? i ) ) 2 * \ u \ )

so that the assumption (2,20) gives

To apply this estimate to the last term in (2.30) note first that by the
mean-value theorem we have for some £ in I,

(2.32) II M' || J = L{u'{ï))2 = £.(«'«i))2 + L[{u'tt))2 - (w'fe))2] .

Using again Cauchy-Schwarz' inequality and the arithmetic-geometric mean
inequality,

{u>{k)f ~ {uf&x))
2 = 2 J ' M ' ( T ) u"{t) * ^ ^ T \\u' \\) + 2L | |M"||2 .

From this and (2.31) applied to (2.32),

(2.33) K l l ? 5 * -

Reporting back into (2,30) complètes the proof of Lemma 2.1. •
We conclude this section by writing up the resuit of our investigation into

the energy decay of the Green's function in précise form, and by giving
three additional remarks. For emphasis we relabel the assumptions (2.20)
and (2.23) made on the partitioning (2.4).

THEORÊM 2.1 : Let & = {Bn} be a design family {cf. (1.2)). Assume that
for each n a partition {/y} of [0,1] exists {cf. (2.4)) such that with constants

c0 > 0 and C^ independent of n and j ,

(A. 1 ) c0 £.ƒƒ,-* | * - Ç | )}, for ail iinlj

(cf. (1.5), (2.7) and (2.11) for notation, and cf. also Remark 2.1), and

(A.2) -i-r^C,.

{cf. Remark 2.2). Then there exists p ~P{CQ1, C{) <: 1 such that for

(2.34) Ej^pV-J^-

{cf (2.8) and (2.10) for notation). D

M2AN Modélisation mathématique et Analyse numérique
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Remark 2 .3: If fj^oijLj, where to,-= <o (yy-), for some "frequency
function" co, and if approximate equality holds in (A.2), then Lj =* (ü)y/\)1/4.
This fits in with the decay properties of the kernel of the equivalent
smoothing kernel method given, under rather stringent conditions, in
Silverman [6]. D

Remark 2.4 : The energy decay result of Theo rem 2.1 givës a pointwise
decay estimate for the Green's function. With the break-up (2.4), if
x e Ik and y e Iç9 '

\g(x;y)\ ^Cp\k-*\ ê{x)ê{y).

For, by (2.1),

. ; x\ g" ( . ; y )) |

j = 0

Remark 2.5 : The techniques introduced in this section (and the next) can
easily be adapted to investigating the pointwise stability of solutions to the
fourth order boundary value problem

\\slv + o)5 = <>>d, for O === x =s 1 ,
\s" = s'" = 0 for x = 0,l.

f1
Here the nonnegative weight function w is subject to co = 1. Since \ may

Jo
be small, we could be in a singularly perturbed case, with rough <o. The

adaptation referred to merely consists of redeflning (i?9 M;) / = o>vw dx
Ji

and ƒ ( / ) = o> dx. The obvious analogue of Theorem 2.1 then holds, with
Ji

the same proof. •

3. ESTIMATING THE TOTAL ENERGY IN THE GREEN'S FUNCTION

In this brief section we shall give methods for estimating the total energy
in the Green's function g = gn(x ; y) of (2.1),

By (2.1) we have

(3.1)

vol. 25, n° 6, 1991



682 R. S. ANDERSSEN, F. R. DE HOOG, L. B. WAHLBIN

Let / be an interval containing y, and assume that (A.l) holds on

(A.l) cüL
2f(I)^\x-ï\), foral l £ e / ,

where L = \I\, cf. (1.5) and (2.7) for notation, and also Remark 2.1. Let
further x, dénote any design point in I. Then

so that by Cauchy-Schwarz' inequality,

Assuming (A.l) we have then from (2.33) in the proof of Lemma 2.1,

Summing this over the design points xt in / , and dividing by n, we obtain

which, on using (3.1), becomes

£\y) = g\y) ̂  c [ ^ +

so that, with (A.l),

Under the further assumption that

(A.3) 0 <: c2 =s

(the complement to (A.2)), we have

In our applications we shall sometimes be able to use this with I = IjQ, the
interval from the subdivision (2.4) which contains the central point
y. Then, assuming that (A.l) and (A.3) hold for / = Ijo,

(3-3) S{y)^CIfV\ for yeIJQ.

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



CUBIC SMOOTHING SPLINES ... 683

Finally, we make the following trivial observation : if y = xt is a design
point, then

so that

(3.4) <*(*,)

4. APPLICATIONS TO POINTWISE STABILITY

From (2,5), which was the motivation for the investigations in Section 2, we
have by Theorem 2.1, assuming (A.l) and (A.2) there, that

(4-1)

where y e IJQ (cf. (2.4), (2.6), (2.7) and (2.10) for notation). In this section
we examine how to actually construct the fondamental partition (2.4), and
estimate the total energy, so that the pointwise stability estimate (1.4) is
obtained from (4.1).

We shall treat three examples of meshfamilies. Unfortunately, we have
not been able to identify a useful wider class of meshfamilies, and some
details of the analysis will there fore be spécifie to each example.

We start by considering design families where local irregularities in the
placement of design points are smoothed out when averaged on the scale of

4.1. \l/4 almost-regular meshes

Assume that there are constants 0 < fc0 < ku independent of n, such that
for any interval I of length comparable to X1^4 = \lJ4,

(4.2) kvk^^fiO^k.X114,

where ƒ (/) is the fraction of design points contained in / (cf. (2.7)). This,
then, is a condition only on the average distribution of design points on the
scale X1'4. For it to make sensé we must have, essentially,

(4.3) X^rc- 4 .

We further make the weak assumption (A.l) of Theorem 2.1 on the internai
distribution of design points within each interval of length | / | = X1/4,
namely that they do not cluster too much around a single point in

vol. 25, n° 6, 1991



684 R. S. ANDERSSEN, F. R. DE HOOG, L. B. WAHLBIN

Ij {cf. Remark 2.1). We refer to design families satisfying (4.2) and (A.l)
when | / | = \ l / 4 as being X1/4 almost-regular meshes. We may then take for
the Ij of (2.4) simply intervals of length \1/4 (with some adjustment, perhaps,
at one end of [0,1]). Clearly (A.2) of Theo rem 2.1 and (A.3) of Section 3
are satisfied and we obtain immediately from (3.3), (4.1) and (4.2) that

(4.4) 1 * 0 0 1 ^ C £ \ d \ W J p l J - h ] = 1 , p ^ l ,
j = o

where C = max (fj)l/2/(fJo)
l/2*z (^i/^)1/2. Clearly, then, the stability esti-

j

mate (1.4) holds for such meshes.

Remark 4.1 : The local dependence of smoothing splines is clearly
identified in the. above stability estimate (4.4). For a point y, the terms in the
summation on the right hand side of (4.4) bound the contributions of the
individual data points to the value of the smoothing spline at y. The essential
nature of the local dependence is encapsulated in the exponential decay
associated with each of these terms. It shows that the influence of a data
point is dominated by an exponential decay the exponent of which dépends
linearly on the '"distance" of the data point from y. D

As remarked above, in (4.3), if k<n~4 the condition (4.2) for
\1/4 almost-regular meshes does not make sense. In the interest of testing the
power of our gênerai technique, one may wonder what stability results can
be obtained for \ <: n ~ 4. We shall give a simple one : assume that the grid
family is quasi-uniform ; i.e., with hi = xi + i - xi9 the foliowing condition
holds

( 4 . 5 ) k0 n~l === m i n hi =s m a x ht ^ k{n ~l

where k0 and kx are independent of n. We take the intervals Ij in (2.4) as
design point intervals, I}-.— [Xj,xJ + l]. Then fj=2/n and Theorem2.1
clearly applies so that by (4.1),

From (3.4) then, for a design point xh

This establishes the stability of the smoothing splines at the knot points.

M2AN Modélisation mathématique et Analyse numérique
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Their global stability then follows from the well known stability of the
natural spline interpolants on quasi-uniform meshes.

4.2. Meshes which are systematically refined or thinned

We start by describing, in some generality, a rational procedure for
finding the subdivisions {ƒ,-} in (2.4). Let F : [0,1 ] -• [0,1 ], one-to-one and
onto, be a strictly monotone continuous function, and let, apart from local
irregularities, the gridpoints be "regularly distributed with density dF/dx".

Before turning to discussion of local irregularities, we give our rational
procedure for selecting the subdivision. Assume that Ff exists, that

F'-LjF'iyj),

and, if yj = y(j) for some function y( . ), that

Considering (A.2) of Theorem 2.1, and its complement (A.3) of Section 3,
it is natural to try to find y(. ) as a solution of

Le.,

(4.6) ^ ' =

Assuming that we have a solution y{. ) of this separable differential
équation, we then attempt

(4.7) yj =y(j), j - 0 , . . . , / ,

with possible adjustment, if needed, at the right end. It remains, of course,
to verify in each application (Le., for the design family) that (A.l), (A.2),
and (A.3) if desired, hold.

In order to show that the effect of local irregularities can often be ignored,
we consider the following situation. Assume that the design points are
2 n + 1 in number, and let every other point be given in terms of the inverse
function to F as

( 4 - 8 ) x / = J p - i | " _ L _ j s , - = 0 , 2 , 4 , . . . , 2 / 1 .
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E a c h o f t h e p o i n t s XQ, X 2 , ---, x 2 „ _ 2 n o w h a s a c o m p a n i o n xu x3, ..., x 2n_l,
p o s s i b l y c h o s e n q u i t e c l o s e t o i t .

2n

2n

Figure 4.1.

In fact, we examine this situation when, in (4.8), F(y) = ya, 0 <: a. The
case a <: 1 corresponds to a systematic meshrefmement towards the left
endpoint, whereas a > 1 corresponds to a mesh that is thinned towards the
left (cf. fig. 4.1). The procedure in (4.6), (4.7) yields

(4.9) [ir
For simplicity in writing, we take instead

3 + a

(4.10) j=0,...,J~X

assuming proper adjustment on the right.
We shall check that, under certain conditions on \„ to be given below,

(A.l), (A.2) and (A.3) hold for y} as given in (4.10). Firstly,

(4.11)

4

3 + a

+ \ - 1

Here and below, ^ indicates équivalence of quantities, independently of
j . The constants in such équivalences will depend on a. For notational
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simplicity we do not trace this dependence, but if desired, this is easily done.
Secondly (cf. fig. 4.1)

(4.12) ƒ}

provided each Ij contains at least a few gridpoints. For a < 1, meshreflne-
ment, an elementary calculation shows that this is the case if

(4.13) k„^can-4, a < l ,

while for the thinning mesh,

(4.14) ••c„n

The positive constants ca can easily be made explicit, if desired. It is easy to
check that (A.l) is satisfied. For (A.2) and (A.3), by (4.10), (4.11) and
(4.12),

i

Thus, under the condition (4.13) or (4.14), we may apply (4.1) and (3.3) so
that for y e IJo,

which by (4.12) and (4.10) gives

It is easily seen that
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so that, flnally,

C I d | ̂  , independent of y ,

since the algebraic growth of the flrst factor in the sum is held in check by
the exponential decay of the second. Stability therefore holds.

Remark 4.2 : Although we have only examined systematically reflned and
thinned grids in this section, the ideas generalize. In f act, if a mesh has a
subgrid obtained from a systematic refmement such that the remaining
points satisfy the conditions (A.l) and (A.3), then stability will be
guaranteed. D

4.3. A "Universal" meshrefinement

Let XQ = 0 and xx = xx (n ) be given. let further

F-\z)=eCn{z~l), for z ̂  \jn ,

and

(4.15)

In particular, this détermines Cn = Cn(xx(n)) = In ——— . A distinguish-
L x\\n) \

ing feature of these grids is that, with k — kn a factor independent of
i,

Since F'n{y) = l/(C„y) they are also, in a sensé, a natural limit of our
previous meshrefinements as a approaches zero.

The rational guess of Section 4.2, see (4.6) and (4.7), easily adapts to the
present case in which /^„dépends on n. Instead of (4.10) we are now led to

Provided

yfA

\„ 5= C max
cn

one obtains pointwise stability.
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We remark that in this case the distribution function { # i :x( **s} jn
approaches unity for all 0 < s =s 1, if xx(n) approaches zero. Thus, in the
limit, everything is concentrated at the origin, and hence the name
"universai" meshrefinement. The limiting frequency function is a Dirac
delta at the origin. (The name "universal" is also motivated by the
following folklore: meshrefinement according to (4.15), with suitably
chosen second meshpoint xx = xx (n ), is sufficient to résolve any localized
singularity found in actual practice.)

5. APPLICATIONS TO POINTWISE CONVERGENCE

Let data dt equal D (xt) for some underlying function D (JC) in
H1. Then from (2.1) and (2.3) (with exact measurements),

(5.1) s(y)-D(y) = -\(D\g").

We first give a simple resuit, (5.2) below, which nevertheless is of interest
since it shows that pointwise convergence occurs for an extremely wide
range of design families. By Cauchy-Schwarz' inequality,

\(s-D)(y)\ *z\ \\g"\\ \\D"\\ ^\V2£(y) \\D"\\ .

By (3.2), taking y e [xiQ, xiQ + x] a meshinterval, since then fio = 2/n, and

(A.l) holds with c0 = 1/4,

where ht = x, , , - x} . Thus

(5.2) \(s-D)(y)\ ^C((\n)^2
+hfl2) \\D"\\, y e [ x , 0 , x , 0 + 1 ] ,

with C completely independent of the design family and of y. (In fact,
C = 1 works.) Hence convergence occurs for D G H2[0, 1] if \nn and
hi(i = hiQ(y, n) both approach zero as n tends to infinity.

We next consider the examples of design families given in Section 4, and
we shall assume that D(x) is twice continuously differentiable on [0, 1]. The
object is to dérive estimâtes which are sharper than (5.2). For the breakup
(2.4) we now have from (5.1) and Theorem 2.1, using the Cauchy-Schwarz
inequality,

(5.3) | ( S - 2 ) ) 0 ' ) | * \ | Y I \g"\ I \\D"Z ƒ \9"\
= 0 Jij
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5.1. X1/4 almost-regular meshes

Using (3.3), which applies in this situation in which Lj =* X1'4^ fj, (5.3)
immediately gives the following convergence result :

(5 4) \\s — D !| =s CX1^2 ||Dtr ||

Again, localization is easily performed.
Recall that X === n ~ 4 is required. It is well known that the natural spline

interpolant to D has convergence bounded by Ch2 \\ D " || ^

h = max (xi + l — xt), completely independent of the mesh-distribution.
One may wonder what happens for the smoothing spline when X„ is very
small. We shall give a partial answer.

Let h = min (xt + l — xt) and assume that

(5.5) \n^h3/n(^n-4).

We may then take Ij = [xy-, xj + l] as the partition intervals in (2.4).
Theorem 2.1 applies under the condition (5.5), and we use (3.2) to estimate
ê(y). Thus, from (5.3),

independent of the distribution of design points, but subject to (5.5). In the
formai limit X = 0 we recover the result for the spline interpolant mentioned
above.

5.2. Meshes which are, disregarding local irregularities, systematically
refîned or thinned

Using the breakup of Section 4.2 (recall the conditions (4.13) and (4.14))
we have from (5.3), and from (4.11), (4.12) and (3.3),

(5.6) \(s-D)(y)\^

\j = o

2

after some elementary algebra.
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For the case a < l of meshrefinement toward the left,

|0' + 1)| ^ 1 + J o + U-Jo l

so that from (5.6),

2 4(1 - g )

1 - g
2 \\D"\

Thus we have uniform convergence of order \1/2. The convergence estimate
gets better as y moves towards the left, and in the first interval,

y e IQ = [O, X ~a ] , it is actually Ck J T ^ \\D» || 00.

A similar calculation in the case of meshthinning, ot > 1, under the
constraint (4.14), \n ^ ca n ~ (3 + a)/a, establishes uniform convergence of

2

order k3 + CL. The convergence estimate now gets better towards the right,
where it approaches \ l /2.

We remark that iïD(x) has four derivatives and D"(x) = D'" (x) = 0 for
x = 0, 1, then from integrating by parts in (5.1),

Analyses similar to those above are readily made, but we leave the details to
the interested reader (cf. (2.21)).

We also leave it to the reader to investigate pointwise convergeüce in the
« universal » meshrefinement of Section 4.3.
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