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\ n ! \ ) \ MQOÉUSATHM MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

( V o l 2 5 , n° 4 , 1 9 9 1 , p 4 2 5 a 440)

SMOOTHING AND INTERPOLATION IN A CONVEX
SUBSET OF A HILBERT SPACE : II.

THE SEWII-NORM CASE (*)

Charles A MiccHELLi (l), Florencio I UTRERAS (2)

Commumeated by P J LAURENT

Abstract — We improve upon results of our previous paper on interpolation subject to convex
constramts In this paper we focus on the case of comtrained best interpolation when the object

function is chosen to be \\ Tx ||2 where T is a bounded hnear operator defined on a Hubert space
X onto another Hilbert space Y with aftmte dimemional kernel ( We simpfy say T is correct from
X to Y) We prove that under rather genet al circumstances this problem can be separated intofirst
finding an orthogonal projection onto some constraint set and then solvmg a fimte dimensional
min-max problem whose saddle point détermines the solution of our problem

Resumé — On presente des résultats permettant d améliorer des théorèmes obtenus dans un
article precedent Dans cet article on étudie le problème d'interpolation optimale sous contraintes
obtenue quand on minimise une semi-norme || Tx ||2 Ici T est un operateur lineaire borne et
surjectif défini dans un espace de Hubert X dans un autre espace de Hubert Y ayant un noyau de
dimension finie On démontre que, sous des hypotheses assez génerales, ce problème peut être
décompose en une projection orthogonale sur un certain ensemble convexe suivie de la resolution
d'un problème de mm-max en dimension finie le point de selle determinant la solution de notre
problème

1. INTRODUCTION

Let X, F be a Hilbert space and T be a bounded lmear operator defîned
on X with range F and a fimte dimensional kernel

dim (Ker (T)) <= + oo (1.1)
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426 Q A. MICCHELLI, F. I. UTRERAS

For simplicity we say that Tis correct from Xto Y. Assume that Z is a finite
dimensional Hubert space, / a bounded linear operator from X into Z, C a
closed convex cone and z°eZ \{0} a given «data value».

We are interested in the solution of the Best Interpolation Problem :

/>.-inf { I || Tx\\2:x G C, 7x = z0} , (1.2)

where we assume that the data z° is consistent with the constraint cone, that
is, c ni~l(z°)*<b.

In the case that C = X it is well-known that there exists a unique solution
to (1.2) for any z° e Z with C n I~\z°) ^ 4 provided that

Ker (T) n Ker (/) = {0} , (1.3)

[2]. Moreover, the unique solution to (1.2) which we dénote by 9 is
determined by the équation

(r*D(e) = /*(x) (1.4)

for some X G Z chosen so that 70 - z°.
Our aim in this paper is to show that under the « interior moment cone »

hypothesis, that is, z° e interior / (C) of [4], see also [8], and Section 2 the
solution CT to (1.2) satisfies the équation

(T* T)(ac) = UK(I*(\) + il) - fi , (1.5)

where \ s Z, ji G Ker (7") are chosen to insure that / (a c) = z° and
ÎI^ is the orthogonal projection onto sorne cone K in X. Specifically, we let
P be the orthogonal projection of (X, || . \\x) onto Ker (T) and choose

K.= {ueX:S* Su + PueC } (1.6)

where

S=(T*)iP±. (1.7)

Hère we use the notation A^ for the pseudoinverse of A. The operator
n^ is now defïned to be the orthogonal projection of X onto K relative to
the norm

l*|2-l|S*||2y+ ll^lli-. « ^ (1-8)

This resuit improves upon a previous resuit of the authors [4], given for
the case T = identity, X = Y. In that case <rc is the orthogonal projection
onto C of some element in the range of ƒ *, that is,

<rc = Pc(I*W) (1-9)
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INTERPOLATION IN A CONVEX SUBSET 427

where P c is the orthogonal projection of X onto C. Hère \ e Z can be
determined as a solution of the finite dimensional minimization problem

- <\,z°> : \ e z } . (1.10)

As pointed out in [4], the gradient of the objective function in (1.10) is
easily obtained in terms of P c ( /*( \ ) ) so that efficient minimization
methods to solve (1.10) are available. In many interesting applications,
however, the introduction of the operator T becomes necessary. In
Section 2 we proceed to study the effect of introducing T into the problem.
We prove under the interior data cône condition that the parameter
ke Z, £L e Ker (T) in (1.5) can be determined as the saddle point of the
max-min problem

?:= max min { I | IIC , ( /*(X) + fx)|2 - I | /* (X) |2 -
\ e Z jL e Ker (T) l Z Â

(1.11)

= max min { I |,x|2 - I |nlï:(7*(X) + n) |2 + <X, z°> } (1.12)

where C* is the conjugate cône of C (relative to || . | |x). Therefore, as in
(1.10), we reduce (1.2) to the solution of & finite dimensional unconstrained
extremal problem. Section 3 contains results concerning smoothing under
convex constraints.

We apply our main characterization for (1.2) to only one model problem
at the end of Section 2. Generally speaking, any application of the gênerai
principle we develop hère, for instance, to monotone or convex interpo-
lation or to area-matching of density functions as in [9] require some effort.
For practical reasons this issue deserves more work. Nevertheless, the main
content of our resuit is to demonstrate how to separate the « global »
convexity constraint in (1.2) embodied by the requirement, x e C, from the
finite linear constraints Ix = z° which, in fact, can be large in number. Our
computational expérience with the case T = identity in [4] indicates that a
significant réduction of computational cost results by this séparation of
constraints.

2. THE CONSTRAINED INTERPOLATION PROBLEM

Let 7"be a bounded linear operator with domain D{T) = X and suppose
that R(T), the range of T, is Y. As indicated in the introduction we are
interested in the case 0 ^ dim (Ker (71)) < + oo. Let P be the orthogonal
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428 C. A MICCHELLI, F I UTRERAS

projection of X onto Ker (T) and dénote by P± the orthogonal projection
onto R(T*) = [Ker ( r ) ] x . Now, let r1" be the pseudoinverse of T, i.e.,
Tf :R(T) -+D(T) is the bounded linear operator defmed as x = T1 y
where x has least norm among all v e D(T) such that

b - 7 ^ | | =min {\\y-Tn\\ : <» e D (T)} . (2.1)

We list some f acts about pseudoinverse which can be found in [7].
First we record the équation

ker (r+ ) = RiT)"- , R(T*) = ker (T)x (2.2)

and then the useful formula

TT^y=y, y e R (T) . (2.3)

It is known that since i?(T) is (a closed subspace of) 7, Tf is a bounded
linear operator. Also, it is important to recall the identities

( r f ) f =T (2.4)

and

(T1")* = ( r * ) f . (2.5)

Next, we introducé the operator

S = (T-)1 P± . (2.6)

According to (2.3), applied to the adjoint of Tand y == P± x e R(T*) we
have

T^Sx^P^x, xeX. (2.7)

Hence, Ker (5) = Ker ( P x ) = Ker (T) and we are led to

PROPOSITION 2.1 : Let T be correct from X to Y. Then

G-=S* S+P (2.8)

is a bounded linear operator from X int o itself which is invertible and has a
dense range.

Proof : Since Ker (5* S) = Ker (S) = Ker (T) which is orthogonal to
Ker (P) = [Ker ( r ) ] x , we conclude that Ker (G) = {0}. Similarly, if
ca e i?(G)x then 0 - (co, GP x u>) - ( P x <o, 5* SPX o) and so P x a> = 0.
Also, since 0 = (a>, Ga> ) — (o>, Pco ) we get Po> — 0 and therefore w = 0.
Thus we have proved that R(G) = X, as claimed.
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INTERPOLATION IN A CONVEX SUBSET 429

Let us now observe that the cone iTintroduced in (1.7) may be expressed
in the equivalent form

K=Gl(C), (2.9)

Moreover, it is now apparent that the semi-norm | . |, introduced in (1.8) is
in fact a norm since

\x\2o ||Sx||2F+ \\Px\\2
x = 0

o Sx = 0 and Px = 0
oxe Ker (S) H Ker (P)
oxe [Ker (T)]1* n Ker (T) = {0} .

We require some further facts concerning the operators S and T.

LEMMA 2.2 : Let T be correct from X to Y. Thenfor S defined by (2.8) we
have

S* ST* T = T* TS* S = P±

and so, in particular S* S and T* T commute.

Proof : First we note that

5* ST* T = P x T1 ( r*) f pL T* T

which, on account of the fact that Px is the orthogonal projection
R(T*), becomes

Similarly, we have

T* TS* S = T* 77>x T^(T*)^ P x .

Since TPX = T{PL + P ) = r this becomes

= (r* r)(r* r)f =p-L

which proves the lemma.
Next we give a useful alternative description of the projection.

LEMMA 2.3: Let T be correct from X to Y. Suppose that C* is the
conjugate cone of C relative to the standard norm on X. Furthermore, dénote

vol. 25, n° 4, 1991



430 C. A. MICCHELLI, F. I. UTRERAS

by Ilc> the orthogonal projection of X, relative to the norm (1.8), onto
C*. Then

+ nc,(x) =x9 xeX. (2.10)

In other words, K is the conjugate cone of C* in {X, | . | ).

Proof : According to our définition u e K if and only if S* Su + Pu e c
which is equivalent to

(S* Su + Pu, ( 0 ) ^ 0 , (o e C*

where \\x\\x = (x, x) x is the original inner product on X. Hence,
u G K if and only if

{Su, 5oa>y+ ( P M , P Ö J ) J ^ 0 , a) G C*.

However, the left hand side of the above inequality is predsely the inner
product of u and w relative to the norm (1.9). This proves the claim (2.10).

We are now ready to show that characterizing the solutions of (1.2) can be
reduced to an existence problem. For this reason we introducé the operator

/ f : Z x K e r (T) ^ X

deflned by

2.4: -Let T be correct frorn X to Y. Assuma that ihere exists a
y° = (\°, fi°) e Z x Ker (T) such that

x°: = GUK(H(y0)) (2 Al)

satisfies both

I(x°) = z° (2.12)

and

PUK(H(y0)) = ^° . (2.13)

Then x° is the solution to the problem.

p = min l^ \\Tx\\2:xe C, ƒ* =

Proof: Let us first remark that since ïlK(H(y°)) e K we conclude that
x°e C.

M2AN Modélisation mathématique et Analyse numérique
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INTERPOLATION IN A CONVEX SUBSET 431

Now, consider an arbitrary element w e C such that Zoo = z°. We will
show that

For this purpose, we use Lemma 2.2 and observe that

T* Tx° = T* TS* SUK(H(y0)) + T* TPIIK(y0)
= P±UK(H(y0))

= UK(H(y0)) - 0

= nK(H(y0)) -

Therefore we have established that

(Tx°, To>) = (n

and so invoking Lemma 23 gives us

= </*(X°),o>> - <nc*(i7(7
0)),co>

= < \ 0 , z 0 > - < n /

Hence we have obtained the inequality

<7x°, 7o>> ^ <\°,z°> (2.14)

because Hc*(H(y0)) s C*. Moreover, equality holds in (2.14) for co = x°, if
we can demonstrate that

<nc«(//(7
0)),x°> = 0 . (2.15)

For this purpose, we use the définition of x° and note that

)) + (PUK(H(y°)), PUK(H(y0)))
= (Uc,(H(y°)lUK(H(y0)))
= 0

since Lemma 2.3 guarantees that ^ i s the conjugate cone of C* relative to
the norm (1.9). Thus we have demonstrated that

(Tx°,Tx°) = <\0,z°>

and
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432 C. A. MICCHELLI, F. L UTRERAS

for any w e C such that /o> = z°. Consequently, the Cauchy-Schwartz
inequahty implies that

which proves the desired result.
To make use of Theorem 2.4 we consider the following fmite dimensional

variational problem. For every X G Z and JJL e Ker (T) we define

(2.17)

Using Lemma 2.3 we fïrst rewrite J in the form

~ | / * 0 0 + f x | 2 - l | i W * ( x ) + f x ) | 2 - I | / * ( x ) | 2 -

<X,z°> . (2.18)

Then, using the fact that jx G Ker ( T) implies S\x = 0, we get

(n, /*(X)) = <Sp.,S7*(X)>+ (PIL, PI* (k))

and so

/ ( X ; a ) ^ I l a P - I i n ^ / ^ X ) ^ ^ ) ! 2 ^ <X,z°>. (2.19)

Therefore we conclude from (2.19) that / is concave in X, while from (2.17),
we see it convex in |x. This leads us to consider the sup-inf problem

q = sup inf J(k9 |x). (2.20)
j i e Z \L€ Ker (T)

The following lemma clarifies the connection between / and the solution to
(1.2).

LEMMA 2.5 : Let T be correct from X to Y. Assume that there exists a
saddle point of J, that is, there is a y° = (X°, |x°) G Z X Ker (T) such that

J(k9 fx°) ^ J(X°, jut0) ^ /(X°, IJL), (X, IJL) G Z x Ker (T) . (2.21)

Then y° = (X°, |x°) satisfies the hypothesis of Theorem 2.4 and consequently

is the unique solution to (1.2).
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INTERPOLATION IN A CONVEX SUBSET 433

Proof ; If (2.21) is satisfîed then for any X e Z, V (x 0) /(-y
0) = 0, that is,

the directional derivative of / at 70 in the direction of (X, 0) is zero. Using
(2.19) we conclude that

= (z°-I(GnK(H(y°)))9k)

which means that z° = I(GïlK(H(y0))). On the other hand, we also have
for all fx G Ker (T)

Since Ker (T) = Ker (5) we obtain

0 = (v?

and so (x° - Ïï*(i7(7°)) G [Ker T]x. In other words,

° 0 ) ) (2.22)

which proves the lemma.
In order to complete our characterization of a solution to (L2) we must

provide conditions under which / has a saddle point. To do this let us recall
the notion of recession direction of a (fînite) convex function g : W -+ fR (cf.,
[5], p. 60).

DEFINITION 2.6 : An everywhere finite convex function g defined on
M? has a recession direction y G MS\ {0} ifthere exists a constant M e i such
that for any a ^ 0 one has

Notice that the convexity of g implies that for any a e Ms there exists
M G R such that for any a ̂  0 one has

g(x + ay) =•= M .

The usefulness of this notion for us rests on the following theorem which
is proved in [5], specifically see Theorems (37.3) and (37.6).

THEOREM 2.7 (cf. Rockafeller [5]) : Let À be a (finite) concave-convex
function on Rm x R". Either of the following conditions implies that the
saddle value of À exists, that is, inf sup À = sup inf À. If both conditions
hold, then A has a saddle point, that is, there is an (x, y) e Mm x R" such that
A(x, y) = inf sup A = sup inf A.

vol. 25, ne 4, 1991



434 C A. MICCHELLI, F I UTRERAS

(a) The convex functions A(x, .), for x e IRm have no common direction of
recession.

(b) The convex functions - A(.,y ), for y e R" have no common direction
of recession.

With the help of this fact we shall now prove under rather gênerai
conditions the existence of a saddle point of / , that is, the existence of an
extended real number q such that

q = inf sup /(X, jx)
H-eKer (T) \eZ

= sup inf J(k, |x) .
\e Z [L€ Ker (T)

THEOREM 2.8 : Let T be correct from X to Y. Assume that

C n Ker (T) n Ker (/) = {0} . (2.24)

then the saddle value q exists.

Proof : According to Theorem 2.7, it is sufficient to prove that the convex
functions J(\, . ) \ e Z have no common direction of recession other than
zero.

To verify this fact we assume \x e Ker T is a recession direction for
J(k, . ). Thus there is an M G M such that for a ^ 0

l a ^ n ^ C a " 1 7 * ( \ ) + V)\2~\ | / * ( \ ) | 2 - a < ^ / * ( \ ) > + <X, z°> «s M .

Dividing both sides o f this inequality by a2 and letting a -• oo we get
|n c*( |x) | — 0 and so |x G C. Next we use the fact

J(K W - / * (X)) = - I |/*(X) | 2 - a <|i, ƒ * (X)> + ||/*(X)||2 + <X; z°>

is also bounded for ail a 5= 0. Hence we conclude that

0. (2.25)

Since X was arbitrary chosen m Z we conclude /|x = 0. In summary, we have
|x e C n Ker (/) Pi Ker (7") and so by hypothesis \x = 0 which complètes
the proof.

Our final and main resuit of this section dépends on the following fact :

LEMMA 2.9 : Suppose z° e 7°(C) ( := interior / (C)). Then f or any (x

lim /(X, |x) = — oo .
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INTFRPOLATION IN A CONVEX SUBSET 435

Proof : Suppose to the contrary that there is a séquence {\k} ç Z,
lim kk = oo, and a constant M such that

fc-00

-J(\k
9 IL)**M. (2.26)

Set ô :̂= X*/||X*|| and let {8*'} be a subsequence which converges to some
5°°eZ\{0}. Dividing both sides of (2.26) by | | \*| |2 and sending
k' -+ oo we conclude from (2.19) that /•(S00) e C*.

Returning to (2.26), we also have

and so (8e0, z°> ^ 0 as well. It was shown in [8] that z° e /°(C) if and only if
{8 : 8 e Z, <8, z°> s= 0, ƒ * 8 e C* } = 0. Therefore it follows that 8°° = 0,
a contradiction which proves the lemma.

This lemma is the last ingrediënt we need for

THEOREM 2.10: Let T:X^Y be correct from X to Y, two Hubert
spaces. Let I : X -• Z be a bounded linear operator from X into Z,
dim Z < oo aw<i C a closed convex cone in X, Suppose further that

C n Ker (T) H Ker (/) = {0} (2.27)

and

z°eI0(C). (2.28)

Then there exists a y0 = (X°, (JL°) e Z X Ker (T) such that the unique solution
of the variational problem

p = mïn {I ||rx||2:xe C,/x = z°

by

x°=G(UK(H(y0))) (2.29)

/(x°) =z° (2.30)

) = ^.°. (2.31)

Moreover, 70 = (X°, |JL°) is a saddle point of J with saddle value p, that is,

p = J(\°, |A°) = min max/(X, |x) = max min J(\, |x) . (2.32)
|x e Ker (T) \ e Z X e Z (JL e Ker (T)

vol 25, n° 4, 1991



436 C A MICCHELLI, F I UTRERAS

Proof According to Lemma 2 9, our hypothesis (2 28) implies for any
jji G Ker (T), — / ( . , |x) does not have a direction of recession We have
already venfied m Theorem 2 8 that condition (2 26) implies the family of
convex functions / (M, X € Z does not have a common direction of
recession Hence we have confirmed both a) and b) of Theorem 2 7 This
proves the existence of a saddle pomt of / and so Lemma 2 5 and
Theorem 2 4 estabhshes (2 29) to (2 31) It only remains to estabhsh that
p = / ( \ ° } jx°) which we do next

Recall that since T* TG = T* TS* S = P L we get

||7x°||2 = (T*Tx°,x°)

= (P-L nK(H(y0)), UK(H(y°))) (2 33)

= \nK(H(y0))\2 - \PUK(H(yQ))\2

= \nK(H(y»))\2 - l ^ l 2

On the other hand,

<\°,z°> = (l*(X°),GnK(H(y0))) = (7*(\°),nJC(H(70)))

°), UK(H(y0))) - (M-0, nK(H(y0))) (2 34)

and so combinmg these équations give us

(2 35)

which proves the theorem

Remark 2 11 Note that when C = X, the charactenzation Theorem 2 9
takes the familar form

T* T(x°) =/*(X°) + fx° (2 36)

where jx° G Ker (T) and 7*(\°) e Ker (T)1- (cf [2], chapter 5) These
conditions, with the équation I(x°) = z°, pro vide a System of nonsingular
lmear équations for determimng x° = G(/*(X°) + |x°) when
Ker (T) n Ker (ƒ) = {0} Alternatively, (\°, |x°) can be obtained as the
saddle pomt of
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INTERPOLATION IN A CONVEX SUBSET 437

2 2

Generally, we can expect that the use of algorithms for determining
saddle points coupled with a numerical method to fînd n^ will lead to an
efficient gênerai purpose numerical method for solving (1.2). However, this
program requires further work for its successful implementation.

As an example of Theorem 2.8 we consider the problem of smooth
monotone interpolation. This leads us, for instance, to the problem

min j P («<2>(O)2dr : u e H2[0, 1 ], u(t() = yt,
(Jo -j

i = 0, 1,..., n, u' (t) s= 0, 0 ̂  t ^ 1, a.e. i (2.38)

where 0 =s ?0 < c *„ sg 1. This problem is equivalent, with the replace-
ment v = M', to (1.2) where

(Tu) ( 0 = v'(t), C = {u : u (f) s* 0, 0 «s / as 1, a.e. } ,

Iv = ( \lv(t)dt, ..., M v(t)dt), z= (y1-y09...,yn-yn_l),

X=Hl[09l], Y=L2[09l]9 a n d Z = f 2 ( I R " ) .

T is correct from X to Y and ail other requirements in Theorem 2.8 are
fulfïlled. A straightforward computation shows that

(Of)(t)= P G(t,x)f(x)dx, / e L 2 [ 0 , 1 ] ,
Jo

where G(t,x) is the strictly positive kernel

G (t, x) = min (?, x) + - + t + x - - (x2 + t2) .

Thus the cône K in this case is

K = {g : Gg ̂  0 } .

According to Theorem 2.8 the solution of the optimization problem (2.37) is
given as

<Pt(t)= P G(t,x)UK(f0)(x)dx
Jo

for some piecewise linear function f0 with breakpoints at tj e (0, 1 ). We do
not describe UK in detail except to note the following : Given any

vol. 25, n° 4, 1991



438 C. A. MICCHELLI, F. I. UTRERAS

ƒ e L2[07 1], there is a nonnegative measure jxy with support on [0, 1]
(depending on f) such that

n** (ƒ)(*)"= [ G(t,x)d^f(t). (2.38)
Jo

The dual extremal problem described in Theorem 2.8 gives information for
finding f0 and Computing u'ovi numerically.

As for the reason for équation (2.38), we observe the following gênerai
fact.

LEMMA 2.9 : Let K(x, t) be continuons function for x, t e [0, 1 ] and
suppose there does not exist a nontrivial measure d[L (t) such that

K(x, t) dp (JC) = 0 for all t e [0, 1 ] then given any f e L2[Q, 1 ] there
o

exists a nonnegative measure \x.f with support on [0, 1] such that

su

Jo

= [
JoJo

is the orthogonal projection of L2[0, 1] onto the closed cone

K = lg:geL2[09ï]9 P K(x9 t) g(t) dt ̂  O, O ̂  t * 1 j .

Proof : Let g° = HK f e K be the best approximation o f / i n AT. Then
' f1

(ƒ — fif07 g) = ( / ( O — fln(/)) fl(O dt ^0 whenever g E K. Define the
Jo

set PF = <j I ^T(x, /) Ö?|X(X) : |x a nonnegative measure >. PF is a closed
L^o J

convex cone in Z,2[0, 1 ] because any séquence of measures d^n such that the
ri

functions K(x, t) d^n(x) converge in L2[0, 1 ] must have bound variation
Jo

independent of n. As a resuit, if ƒ — g0 £ FF there would exist an
e Z>2[0, 1 ] such that (g — g0, h ) <: 0 while necessarily

^T(x, £) & (?) dt ^0 for all x. But then h would be in K which contradicts
o

the définition of gQ.

ft-

I
3. BEST CONSTRAINED SMOOTHING

In this section we present a resuit similar to Theorem 2.8 for smoothing
under convex constraints. We let T, I, X, Y and C be as before and consider
the extremal problem

| i { ï } (3.1)
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for p :> 0. This problem arises when the data vector is « noisy » hence the
demand that x e C satisfies Ix = z°, as in (1.2), would generally lead to an
inappropriate estimate for x. Now, for (3.1) we study the concave-convex
function Jp(K |x)

1 2

yp(x;^)== - M --

where [ . | and 11^ are as in the preceding section. This leads us to

THEOREM 3.1 : Let T be correct from X to Y and I a bounded linear
operator from X int o a finite dimensional Hubert space Z. Suppose C is a
closed convex cône and z° a data vector in Z such that I~ l(z°) C\ C ^ <|> and

C H Ker (ƒ) Pi Ker (T) = {0} .

Then for each p >• 0 there exists a 7p = (\p5 |xp) which is a saddle point of
Jp and pp is its corresponding saddle value, Moreover, the unique solution of
(3.1) is given by

x°p = G(UK(H(y°p))) (3.3)

where

and

I(x9) + -K9 = z . (3.5)

Proof: The proof is similar to the proof of Theorem 2.10 and so we shall
only briefly discuss the details centering upon the différences in the proof.

Since

.)-JL

we see that - /p(., |m ) for each jx G Ker (T) has no direction of recession
and the functions / p ( \ , . ), X e Z have, as with the case p = 0, no common
direction of recession. Thus Jp has a saddle point 7p(Xp, |xp) G Z x Ker (T)
which we will show satisfies (3.3), (3.4), and (3.5).

First, note that

V(x,o) J(y°P) = ( - I(G(UK(y°p))) + z° - -

vol. 25, n° 4, 1991
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and

V(o.,o •/(?!!)= (^o
p-nK(H(yo

p)),^).

This proves (3.4) and (3.5) ; it remains to show (3.3) solves (3.1).
Let ça € C (clearly xp 6 C), then the équation

T* T(x°p) = HK(H(y°p)) - ^

gives

<rT(*J),o>> = (H(yo
p)-^-Uc,(H(y°p)),uy)

= <Xj,/co> - <nc*(tf(7°)),(o) .

Therefore

<r(xp°),7o>> + p</(xp
0)-z°,/<o) = - (nc*(H(y°p)),o>)^0

which establishes the optimality of xp for (3.1). We omit the computation
that vérifies that the saddle value of Jp is pp.
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